The Influence of Oat β-Glucans of Different Molar Mass on the Properties of Gluten-Free Bread
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Isolation and Modification of Oat β-Glucans
3.1.1. Isolation of Oat β-Glucans
3.1.2. Modification of Oat β-Glucan by Partial Enzymatic Hydrolysis
3.2. Determination of the Monosaccharide Composition of β-Glucans
3.3. Determination of Molecular Properties of β-Glucans
3.4. Preparation of Dough without and with a Share of β-Glucans and Baking of Model Gluten-Free Bread by Direct Method
3.4.1. Baking Loss
3.4.2. Volume
3.4.3. Moisture
3.4.4. Texture
3.4.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, D.; Schönlechner, R. Innovative approaches towards improved gluten-free bread properties. J. Cereal Sci. 2019, 91, 102904. [Google Scholar] [CrossRef]
- Cui, W.; Wood, P.J. Relationships between structural features, molecular weight and rheological properties of cereal β-d-glucans. In Hydrocolloids; Nishinari, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 159–168. [Google Scholar]
- Lee, C.J.; Horsley, R.D.; Manthey, F.A.; Schwarz, P.B. Comparisons of β-glucan content of barley and oat. Cereal Chem. J. 1997, 74, 571–575. [Google Scholar] [CrossRef]
- Åman, P.; Rimsten, L.; Andersson, R. Molecular weight distribution of β-glucan in oat-based foods. Cereal Chem. J. 2004, 81, 356–360. [Google Scholar] [CrossRef]
- Johansson, L.; Tuomainen, P.; Ylinen, M.; Ekholm, P.; Virkki, L. Structural analysis of water-soluble and-insoluble β-glucans of whole-grain oats and barley. Carbohydr. Polym. 2004, 58, 267–274. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lakhdara, N.; Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Water extractable (1→3,1→4)-β-d-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. J. Cereal Sci. 2005, 42, 213–224. [Google Scholar] [CrossRef]
- Harasym, J.; Olędzki, R. The Mutual Correlation of Glucose, Starch, and Beta-Glucan Release During Microwave Heating and Antioxidant Activity of Oat Water Extracts. Food Bioprocess Technol. 2018, 11, 874–884. [Google Scholar] [CrossRef]
- Bhatty, R.S. Laboratory and pilot plant extraction and purification of β-glucans from hull-less barley and oat brans. J. Cereal Sci. 1995, 22, 163–170. [Google Scholar] [CrossRef]
- Tosh, S.M.; Brummer, Y.; Miller, S.S.; Regand, A.; Defelice, C.; Duss, R.; Wood, P.J. Processing Affects the Physicochemical Properties of β-Glucan in Oat Bran Cereal. J. Agric. Food Chem. 2010, 58, 7723–7730. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; You, M.; Liu, X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int. J. Biol. Macromol. 2021, 182, 1192–1199. [Google Scholar] [CrossRef]
- Harasym, J.; Suchecka, D.; Gromadzka-Ostrowska, J. Effect of size reduction by freeze-milling on processing properties of beta-glucan oat bran. J. Cereal Sci. 2015, 61, 119–125. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocoll. 2003, 17, 693–712. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Micha-Screttas, M.; Steele, B.R. A comparative study on structure–function relations of mixed-linkage (1→3), (1→4) linear β-d-glucans. Food Hydrocoll. 2004, 18, 837–855. [Google Scholar] [CrossRef]
- Skendi, A.; Biliaderis, C.G.; Lazaridou, A.; Izydorczyk, M.S. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003, 38, 15–31. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Ma, Z.; Hu, X. Solvent retention capacity of oat flour: Relationship with oat β-glucan content and molecular weight. Food Hydrocoll. 2019, 93, 19–23. [Google Scholar] [CrossRef]
- Doublier, J.L.; Wood, P.J. Rheological Properties of Aqueous Solutions of (1→3)(1→4)-β-d-Glucan from Oats (Avena sativa L.). Cereal Chem. 1995, 72, 335–340. [Google Scholar]
- Beer, M.U.; Wood, P.J.; Weisz, J. Molecular weight distribution and (1→3)(1→4)-β-d-glucan content of consecutive extracts of various oat and barley cultivars. Cereal Chem. J. 1997, 74, 476–480. [Google Scholar] [CrossRef]
- Wood, P.J. Evaluation of oat bran as a soluble fibre source. Characterization of oat β-glucan and its effects on glycaemic response. Carbohydr. Polym. 1994, 25, 331–336. [Google Scholar] [CrossRef]
- Johansson, L.; Virkki, L.; Maunu, S.; Lehto, M.; Ekholm, P.; Varo, P. Structural characterization of water soluble β-glucan of oat bran. Carbohydr. Polym. 2000, 42, 143–148. [Google Scholar] [CrossRef]
- Chang, Y.J.; Lee, S.; Yoo, M.A.; Lee, H.G. Structural and Biological Characterization of Sulfated-Derivatized Oat β-Glucan. J. Agric. Food Chem. 2006, 54, 3815–3818. [Google Scholar] [CrossRef]
- McCleary, B.V. Purification of (1→3),(1→4)-β-d-glucan from barley flour. Biomass Part A: Cellulose and Hemicellulose. Methods Enzymol. 1988, 160, 511–514. [Google Scholar] [CrossRef]
- Ronda, F.; Perez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G. Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocoll. 2015, 48, 197–207. [Google Scholar] [CrossRef]
- Hager, A.S.; Ryan, L.A.M.; Schwab, C.; Gänzle, M.G.; O’Doherty, J.V.; Arendt, E.K. Influence of the soluble fibres inulin and oat β-glucan on quality of dough and bread. Eur. Food Res. Technol. 2011, 232, 405–413. [Google Scholar] [CrossRef]
- Kurek, M.A.; Wyrwisz, J.; Wierzbicka, A. Effect of β-glucan particle size on the properties of fortified wheat rolls. CyTA - J. Food 2015, 14, 124–130. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G.; Ronda, F. Effect of β-glucan molecular weight on rice flour dough rheology, quality parameters of breads and in vitro starch digestibility. LWT-Food Sci. Technol. 2017, 82, 446–453. [Google Scholar] [CrossRef]
- Pastuszka, D.; Gambuś, H.; Ziobro, R.; Buksa, K.; Sabat, R.; Augustyn, G. Impact of oats β-glucans on properties of gluten-free bread. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 972–979. [Google Scholar]
- Osella, C.A.; Sánchez, H.D.; Carrara, C.R.; de la Torre, M.A.; Pilar Buera, M. Water Redistribution and Structural Changes of Starch During Storage of a Gluten-free Bread. Starch Stärke 2005, 57, 208–216. [Google Scholar] [CrossRef]
- Karp, S.; Wyrwisz, J.; Kurek, M.A.; Wierzbicka, A. The use of high-in-β-glucan oat fibre powder as a structuring agent in gluten-free yeast-leavened cake. FSTI 2019, 25, 618–629. [Google Scholar] [CrossRef]
- He, H.; Hoseney, R.C. Changes in bread firmness and moisture during long-term storage. Cereal Chem. 1990, 67, 603–608. [Google Scholar]
- Dawkins, N.L.; Nnanna, I.A. Oat gum and β-glucan extraction from oat bran and rolled oats: Temperature and pH effects. J. Food Sci. 1993, 58, 562–566. [Google Scholar] [CrossRef]
- Ahmad, A.; Anjum, F.M.; Zahoor, T.; Nawaz, H.; Ahmed, Z. Extraction and characterization of β-d-glucan from oat for industrial utilization. Int. J. Biol. Macromol. 2010, 46, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Aktas-Akyildiz, E.; Sibakov, J.; Nappa, M.; Hytönen, E.; Koksel, H.A.M.İ.T.; Poutanen, K. Extraction of soluble β-glucan from oat and barley fractions: Process efficiency and dispersion stability. J. Cereal Sci. 2018, 81, 60–68. [Google Scholar] [CrossRef]
- Girhammar, U.; Nair, B.M. Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocoll. 1992, 6, 329–343. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed. Milling Int. 1997, 191, 13–26. [Google Scholar]
- Tosh, S.M.; Wood, P.J.; Wang, Q.; Weisz, J. Structural characteristics and rheological properties of partially hydrolyzed oat β-glucan: The effects of molecular weight and hydrolysis method. Carbohydr. Polym. 2004, 55, 425–436. [Google Scholar] [CrossRef]
- Błaszczyk, K.; Wilczak, J.; Harasym, J.; Gudej, S.; Suchecka, D.; Królikowski, T.; Lange, E.; Gromadzka-Ostrowska, J. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocoll. 2015, 51, 272–280. [Google Scholar] [CrossRef]
- Kittisuban, P.; Ritthiruangdej, P.; Suphantharika, M. Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT-Food Sci. Technol. 2014, 57, 738–748. [Google Scholar] [CrossRef]
- Pruska-Kędzior, A.; Kędzior, Z.; Gorący, M.; Pietrowska, K.; Przybylska, A.; Spychalska, K. Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. Eur. Food Res. Technol. 2008, 227, 1523–1536. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024, 29, 904. [Google Scholar] [CrossRef]
- Correia, P.; Guiné, R.P.; Fonseca, M.; Batista, L. Analysis of textural properties of gluten free breads. JHED 2021, 34, 102–108. [Google Scholar]
- Bieniek, A.; Buksa, K. Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking. Appl. Sci. 2023, 13, 2282. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Praznik, W.; Gambuś, H. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol. 2012, 235, 385–395. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Ziobro, R. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem. 2016, 192, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The influence of acorn flour on rheological properties of gluten-free dough and physical characteristics of the bread. Eur. Food Res. Technol. 2015, 240, 1135–1143. [Google Scholar] [CrossRef]
- Murat Karaoğlu, M.; Gürbüz Kotancilar, H. Effect of partial baking, storage and rebaking process on the quality of white pan bread. Int. J. Food Sci. Technol. 2006, 41, 108–114. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MA, USA, 2006. [Google Scholar]
- Jekle, M.; Fuchs, A.; Becker, T. A normalized texture profile analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. J. Cereal Sci. 2018, 81, 147–152. [Google Scholar] [CrossRef]
Component | BG-LMW * | BG-MMW * | BG-HMW * |
---|---|---|---|
Yield [%] | nd | 1.65 ± 0.37 b | 0.33 ± 0.09 a |
Glucose [%] | 81.4 ± 1.9 a | 80.3 ± 1.7 a | 84.2 ± 2.2 a |
Xylose [%] | 2.9 ± 0.4 a | 2.7 ± 0.8 a | 2.1 ± 0.5 a |
Galactose [%] | 7.2 ± 0.8 a | 6.9 ± 1.0 a | 6.3 ± 0.7 a |
Arabinose [%] | 4.9 ± 0.4 a | 4.7 ± 0.5 a | 3.8 ± 0.6 a |
Mannose [%] | 1.4 ± 0.2 a | 1.3 ± 0.6 a | 0.9 ± 0.3 a |
β-glucan ** [%] | 73.3 ± 1.7 a | 72.3 ± 1.5 a | 75.8 ± 2.0 a |
Arabinoxylan ** [%] | 6.9 ± 0.7 a | 6.5 ± 1.1 a | 5.2 ± 1.0 a |
Galactomannan ** [%] | 7.7 ± 0.9 a | 7.4 ± 1.4 a | 6.5 ± 0.9 a |
Total sugar content [%] | 87.9 ± 3.3 a | 86.2 ± 4.0 a | 87.5 ± 3.9 a |
Protein [%] | 6.5 ± 2.0 a | 7.7 ± 2.1 a | 7.9 ± 1.4 a |
Molecular properties | |||
Weight-average molar mass—Mw [g/mol] | 24,540 | 85,940 *** | 1,714,770 |
Number-average molar mass—Mn [g/mol] | 2140 | 24,380 *** | 329,770 |
Dispersity (Ð = Mw/Mn) | 11.5 | 3.5 *** | 5.2 |
Parameters | Control * | BG-LMW * | BG-MMW * | BG-HMW * | |||
---|---|---|---|---|---|---|---|
0% | 1% | 2% | 1% | 2% | 1% | 2% | |
Water addition [mL] | 88.7 ± 1.5 a | 89.4 ± 0.5 a,b | 90.7 ± 0.9 b | 93.3 ± 0.5 c | 96.7 ± 0.0 d | 100.0 ± 0.8 e | 110.0 ± 0.5 f |
Dough yield [%] | 188.7 a | 189.4 a,b | 190.7 b | 193.3 c | 196.7 d | 200.0 e | 210.0 f |
Parameters | Control * | BG-LMW * | BG-MMW * | BG-HMW * | |||
---|---|---|---|---|---|---|---|
0% | 1% | 2% | 1% | 2% | 1% | 2% | |
Baking loss [%] | 15.3 ± 0.8 a | 15.3 ± 0.6 a | 15.8 ± 1.6 a | 14.7 ± 0.8 a | 16.3 ± 1.8 a | 15.0 ± 0.2 a | 15.2 ± 1.0 a |
Total baking Loss [%] | 18.5 ± 0.7 a | 19.8 ± 0.4 b | 19.5 ± 1.4 a,b | 19.9 ± 0.4 b | 21.3 ± 0.5 c | 19.4 ± 0.3 a | 19.1 ± 0.7 a |
Bread volume [cm3] | 93.7 ± 3.1 a,b | 101.7 ± 2.2 d | 98.8 ± 1.1 c,d | 100.7 ± 1.6 d | 89.7 ± 3.2 a | 101.2 ± 1.6 d | 97.6 ± 1.7 b,c |
Specific bread volume [cm3/100 g of flour] | 294.6 ± 9.7 a | 321.0 ± 6.9 b,c | 314.0 ± 3.5 b | 324.6 ± 5.2 c | 294.0 ± 10.5 a | 332.0 ± 5.3 c | 341.6 ± 6.0 d |
Texture Parameter | Storage Time [Day] | Control * | BG-LMW * | BG-MMW * | BG-HMW * | |||
---|---|---|---|---|---|---|---|---|
0% | 1% | 2% | 1% | 2% | 1% | 2% | ||
Hardness [N] | 0 | 14.3 ± 1.3 c | 8.1 ± 0.2 b | 7.6 ± 0.3 b | 8.8 ± 1.0 b | 12.2 ± 1.1 c | 8.3 ± 1.3 b | 4.4 ± 0.4 a |
1 | 34.3 ± 2.8 g | 18.8 ± 0.3 d | 20.0 ± 0.1 e | 17.0 ± 0.5 c | 25.3 ± 3.1 f | 14.8 ± 3.0 b | 7.6 ± 0.1 a | |
Adhesiveness [cN·s] | 0 | −0.3 ± 0.2 a | 0.0 ± 0.0 a | −0.2 ± 0.3 a | 0.0 ± 0.0 a | −0.1 ± 0.1 a | −0.1 ± 0.2 a | 0.0 ± 0.0 a |
1 | −16.6 ± 0.9 c | −13.3 ± 2.3 b | −9.4 ± 3.2 b | −10.3 ± 2.0 b | −9.5 ± 2.1 b | −9.0 ± 1.7 b | −3.2 ± 0.8 a |
Part of Bread Crumb | Storage Time [Day] | Control * | BG-LMW * | BG-MMW * | BG-HMW * | |||
---|---|---|---|---|---|---|---|---|
0% | 1% | 2% | 1% | 2% | 1% | 2% | ||
Central | 0 | 43.2 ± 0.6 a,B | 45.7 ± 0.3 b,A | 47.0 ± 0.3 c,A | 46.4 ± 0.6 b,c,A | 46.9 ± 0.3 c,A | 48.7 ± 0.1 d,A | 52.5 ± 0.3 e,B |
1 | 41.9 ± 0.8 a,A | 46.1 ± 0.5 b,A | 47.1 ± 0.4 c,A | 46.9 ± 0.1 b,c,A | 46.9 ± 0.3 b,c,A | 48.3 ± 0.1 d,A | 51.0 ± 0.4 e,A | |
Peripheral | 0 | 42.7 ± 0.5 a,B | 46.1 ± 0.4 b,B | 46.9 ± 0.9 b,B | 46.4 ± 0.3 b,A | 47.1 ± 0.3 b,B | 48.9 ± 0.4 c,B | 51.1 ± 0.5 d,B |
1 | 40.6 ± 0.8 a,A | 44.0 ± 0.0 b,A | 44.9 ± 0.6 b,c,A | 46.0 ± 0.1 d,A | 45.9 ± 0.3 c,d,A | 46.8 ± 0.4 d,A | 48.1 ± 0.3 e,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Buksa, K. The Influence of Oat β-Glucans of Different Molar Mass on the Properties of Gluten-Free Bread. Molecules 2024, 29, 4579. https://doi.org/10.3390/molecules29194579
Bieniek A, Buksa K. The Influence of Oat β-Glucans of Different Molar Mass on the Properties of Gluten-Free Bread. Molecules. 2024; 29(19):4579. https://doi.org/10.3390/molecules29194579
Chicago/Turabian StyleBieniek, Angelika, and Krzysztof Buksa. 2024. "The Influence of Oat β-Glucans of Different Molar Mass on the Properties of Gluten-Free Bread" Molecules 29, no. 19: 4579. https://doi.org/10.3390/molecules29194579
APA StyleBieniek, A., & Buksa, K. (2024). The Influence of Oat β-Glucans of Different Molar Mass on the Properties of Gluten-Free Bread. Molecules, 29(19), 4579. https://doi.org/10.3390/molecules29194579