Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Dark and Light Reactions of CN-1 and CN-2
2.2. The pH Effect on the Photodegradation of CN-1 and CN-2
2.3. Role of •OH, O2•− and 1O2
2.4. The Influence of Typical Inorganic Ions on CN-1 in Natural Water
2.5. Photodgrdation of 1-Naphthol and Naphthalene
2.6. Density Functional Theory (DFT)
3. Materials and Methods
3.1. Reagents
3.2. Photodegradation Experiments
3.3. Competitive Reaction
3.4. Samples Analysis
3.5. Density Functional Theory (DFT) Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Die, Q.; Nie, Z.; Fang, Y.; Yang, Y.; Gao, X.; Tian, Y.; He, J.; Liu, F.; Huang, Q.; Tian, S. Seasonal and Spatial Distributions of Atmospheric Polychlorinated Naphthalenes in Shanghai, China. Chemosphere 2016, 144, 2134–2141. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, W.; Guo, E.; Cui, C.; Li, Y. Assessment of Long-Range Transport Potential of Polychlorinated Naphthalenes Based on Three-Dimensional QSAR Models. Environ. Sci. Pollut. Res. 2017, 24, 14802–14818. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, M.; Adali, M. Determination of Temperature Dependent Henry’s Law Constants of Polychlorinated Naphthalenes: Application to Air-Sea Exchange in Izmir Bay, Turkey. Atmos. Environ. 2016, 147, 200–208. [Google Scholar] [CrossRef]
- Schuhmacher, M.; Nadal, M.; Domingo, J.L. Levels of PCDD/Fs, PCBs, and PCNs in Soils and Vegetation in an Area with Chemical and Petrochemical Industries. Environ. Sci. Technol. 2004, 38, 1960–1969. [Google Scholar] [CrossRef]
- Guo, W.; He, M.; Yang, Z.; Lin, C.; Quan, X.; Wang, H. Distribution of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Watershed, China. Chemosphere 2007, 68, 93–104. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Mortimer, D.; Holmes, M.; Rose, M.; Zhihua, L.; Huang, X.; Smith, F.; Panton, S.; Marshall, L. Occurrence and Spatial Distribution of Chemical Contaminants in Edible Fish Species Collected from UK and Proximate Marine Waters. Environ. Int. 2018, 114, 219–230. [Google Scholar] [CrossRef]
- Lega, R.; Megson, D.; Hartley, C.; Crozier, P.; MacPherson, K.; Kolic, T.; Helm, P.A.; Myers, A.; Bhavsar, S.P.; Reiner, E.J. Congener Specific Determination of Polychlorinated Naphthalenes in Sediment and Biota by Gas Chromatography High Resolution Mass Spectrometry. J. Chromatogr. A 2017, 1479, 169–176. [Google Scholar] [CrossRef]
- Lee, S.C.; Harner, T.; Pozo, K.; Shoeib, M.; Wania, F.; Muir, D.C.G.; Barrie, L.A.; Jones, K.C. Polychlorinated Naphthalenes in the Global Atmospheric Passive Sampling (GAPS) Study. Environ. Sci. Technol. 2007, 41, 2680–2687. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Chakraborty, P.; Syed, J.H.; Malik, R.N.; Wang, Y.; Tian, C.; Luo, C.; Zhang, G.; Jones, K.C. Atmospheric Polychlorinated Naphthalenes (PCNs) in India and Pakistan. Sci. Total Environ. 2014, 466–467, 1030–1036. [Google Scholar] [CrossRef]
- Hogarh, J.N.; Seike, N.; Kobara, Y.; Masunaga, S. Atmospheric Polychlorinated Naphthalenes in Ghana. Environ. Sci. Technol. 2012, 46, 2600–2606. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, L.; Yan, Y.; Dong, L.; Huang, Y.; Li, X. Concentrations and Patterns of Polychlorinated Naphthalenes in Urban Air in Beijing, China. Chemosphere 2016, 162, 199–207. [Google Scholar] [CrossRef]
- Herbert, B.M.J.; Halsall, C.J.; Villa, S.; Fitzpatrick, L.; Jones, K.C.; Lee, R.G.M.; Kallenborn, R. Polychlorinated Naphthalenes in Air and Snow in the Norwegian Arctic: A Local Source or an Eastern Arctic Phenomenon? Sci. Total Environ. 2005, 342, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.A.; Bidleman, T.F.; Li, H.H.; Fellin, P. Seasonal and Spatial Variation of Polychlorinated Naphthalenes and Non-/Mono-Ortho-Substituted Polychlorinated Biphenyls in Arctic Air. Environ. Sci. Technol. 2004, 38, 5514–5521. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Schuhmacher, M.; Feliubadaló, J.; Domingo, J.L. Air Concentrations of PCDD/Fs, PCBs and PCNs Using Active and Passive Air Samplers. Chemosphere 2008, 70, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Orlikowska, A.; Hanari, N.; Wyrzykowska, B.; Bochentin, I.; Horii, Y.; Yamashita, N.; Falandysz, J. Airborne Chloronaphthalenes in Scots Pine Needles of Poland. Chemosphere 2009, 75, 1196–1205. [Google Scholar] [CrossRef]
- Gebru, T.B.; Li, Y.; Dong, C.; Yang, Y.; Yang, R.; Pei, Z.; Zhang, Q.; Jiang, G. Spatial and Temporal Trends of Polychlorinated Naphthalenes in the Arctic Atmosphere at Ny-Ålesund and London Island, Svalbard. Sci. Total Environ. 2023, 878, 163023. [Google Scholar] [CrossRef] [PubMed]
- Gulan, M.P.; Bills, D.D.; Putnam, T.B. Analysis of Polychlorinated Naphthalenes by Gas Chromatography and Ultraviolet Irradiation. Bull. Environ. Contam. Toxicol. 1974, 11, 438–441. [Google Scholar] [CrossRef]
- Ruzo, L.O.; Bunce, N.J.; Safe, S. Photoreactions of Simple Halonaphthalenes in Solution. Can. J. Chem. 1975, 53, 688–693. [Google Scholar] [CrossRef]
- Ruzo, L.O.; Bunce, N.J.; Safe, S.; Hutzinger, O. Photodegradation of Polychloronaphthalenes in Methanol Solution. Bull. Environ. Contam. Toxicol. 1975, 14, 341–345. [Google Scholar] [CrossRef]
- Järnberg, U.G.; Asplund, L.T.; Egebäck, A.-L.; Jansson, B.; Unger, M.; Wideqvist, U. Polychlorinated Naphthalene Congener Profiles in Background Sediments Compared to a Degraded Halowax 1014 Technical Mixture. Environ. Sci. Technol. 1999, 33, 1–6. [Google Scholar] [CrossRef]
- Keum, Y.-S.; Li, Q.X. Photolysis of Octachloronaphthalene in Hexane. Bull. Environ. Contam. Toxicol. 2004, 72, 999. [Google Scholar] [CrossRef] [PubMed]
- Hanari, N.; Falandysz, J.; Yamazaki, E.; Yamashita, N. Photodegradation of Polychlorinated Naphthalene in Mixtures. Environ. Pollut. 2020, 263, 114672. [Google Scholar] [CrossRef]
- Kang, Q.; Bao, S.; Chen, B. Photoconversion of Polychlorinated Naphthalenes in Organic Solvents under Simulated Sunlight: Solvent Effect and Mechanism. Chemosphere 2021, 272, 129887. [Google Scholar] [CrossRef]
- Kang, C.; Bao, S.; Wang, Y.; Xiao, K.; Zhu, L.; Liu, F.; Tian, T. Comparison of the Photoconversion of 1-Chloronaphthalene and 2,3-Dichlornaphthalene in Water. Water Sci. Technol. 2018, 78, 1946–1955. [Google Scholar] [CrossRef]
- Kang, C.; Bao, S.; Chen, B.; Zhong, Y.; Huang, D.; Wang, Y.; Xue, H.; Tian, T. Photoconversion of 2-Chloronaphthalene in Water. Bull. Environ. Contam. Toxicol. 2017, 99, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Karci, A.; Arslan-Alaton, I.; Olmez-Hanci, T.; Bekbolet, M. Degradation and Detoxification of Industrially Important Phenol Derivatives in Water by Direct UV-C Photolysis and H2O2/UV-C Process: A Comparative Study. Chem. Eng. J. 2013, 224, 4–9. [Google Scholar] [CrossRef]
- Real, F.J.; Benitez, F.J.; Rodríguez, C. Elimination of Benzene and Chlorobenzenes by Photodegradation and Ozonation Processes. Chem. Eng. Commun. 2007, 194, 811–827. [Google Scholar] [CrossRef]
- Tian, C.; Huang, W.; Wei, Z.; Liang, C.; Dong, Y.; Shi, J.; Zhang, X.; Nong, G.; Wang, S.; Xu, J. Photocatalytic Degradation of Different Antibiotics Using TiO2 –Carbon Composites: A Case Study of Tetracycline and Ciprofloxacin. New J. Chem. 2023, 47, 19646–19656. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, W.; Wang, H.; Pan, C.; Xu, J.; Pozdnyakov, I.P.; Wu, F.; Li, J. Interaction between Graphene Oxide and Acetaminophen in Water under Simulated Sunlight: Implications for Environmental Photochemistry of PPCPs. Water Res. 2023, 228, 119364. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, Y.; Liu, T.; Li, R.; Li, R.; Zhu, Y.; Fang, F. Zn-Doped MnCO3/CS Composite Photocatalyst for Visible-Light-Driven Decomposition of Organic Pollutants. Molecules 2024, 29, 1094. [Google Scholar] [CrossRef]
- Wang, M.; Shi, H.; Shao, S.; Lu, K.; Wang, H.; Yang, Y.; Gong, Z.; Zuo, Y.; Gao, S. Montmorillonite Promoted Photodegradation of Amlodipine in Natural Water via Formation of Surface Complexes. Chemosphere 2022, 286, 131641. [Google Scholar] [CrossRef] [PubMed]
- Novikov, M.V.; Snytnikova, O.A.; Fedunov, R.G.; Yanshole, V.V.; Grivin, V.P.; Plyusnin, V.F.; Xu, J.; Pozdnyakov, I.P. A New View on the Mechanism of UV Photodegradation of the Tricyclic Antidepressant Carbamazepine in Aqueous Solutions. Chemosphere 2023, 329, 138652. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, X.; Fu, J.; Liu, W.; Cai, Z. Elevated Nitrate Promoted Photodegradation of PAHs in Aqueous Phase: Implications for the Increased Nutrient Discharge. J. Hazard. Mater. 2023, 443, 130143. [Google Scholar] [CrossRef]
- Zuo, Y.; Hoigné, J. Evidence for Photochemical Formation of H 2 O 2 and Oxidation of SO2 in Authentic Fog Water. Science 1993, 260, 71–73. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Javed, F.; Sohail, R.; Kazmi, M.; Rehman, A.; Qi, F. Solar Photo-Catalytic Ozonation on γ-Alumina for the Removal of Dyes in Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 1967–1974. [Google Scholar] [CrossRef]
- Tyutereva, Y.E.; Sherin, P.S.; Polyakova, E.V.; Koscheeva, O.S.; Grivin, V.P.; Plyusnin, V.F.; Shuvaeva, O.V.; Pozdnyakov, I.P. Photodegradation of Para-Arsanilic Acid Mediated by Photolysis of Iron(III) Oxalate Complexes. Chemosphere 2020, 261, 127770. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Li, J.; Wu, F. Natural Montmorillonite Induced Photooxidation of As(III) in Aqueous Suspensions: Roles and Sources of Hydroxyl and Hydroperoxyl/Superoxide Radicals. J. Hazard. Mater. 2013, 260, 255–262. [Google Scholar] [CrossRef]
- Bouddouch, A.; Akhsassi, B.; Amaterz, E.; Bakiz, B.; Taoufyq, A.; Villain, S.; Guinneton, F.; El Aamrani, A.; Gavarri, J.-R.; Benlhachemi, A. Photodegradation under UV Light Irradiation of Various Types and Systems of Organic Pollutants in the Presence of a Performant BiPO4 Photocatalyst. Catalysts 2022, 12, 691. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Khan, M.A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the Hazardous Applications and Photodegradation Mechanisms of Chlorophenols over Different Photocatalysts. Environ. Res. 2021, 195, 110742. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (•OH/•O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Uzelac, M.M.; Srđenović Čonić, B.; Kladar, N.; Armaković, S.; Armaković, S.J. Removal of Hydrochlorothiazide from Drinking and Environmental Water: Hydrolysis, Direct and Indirect Photolysis. Energy Environ. 2023, 34, 1243–1257. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, D.; Wu, F. Mechanism and Products of the Photolysis of Hexabromocyclododecane in Acetonitrile–Water Solutions under a UV-C Lamp. Chem. Eng. J. 2015, 281, 892–899. [Google Scholar] [CrossRef]
- Xiang, R.; Zhou, C.; Liu, Y.; Qin, T.; Li, D.; Dong, X.; Muddassir, M.; Zhong, A. A New Type Co(II)-Based Photocatalyst for the Nitrofurantoin Antibiotic Degradation. J. Mol. Struct. 2024, 1312, 138501. [Google Scholar] [CrossRef]
- Vialaton, D.; Richard, C.; Baglio, D.; Paya-Perez, A.-B. Mechanism of the Photochemical Transformation of Naphthalene in Water. J. Photochem. Photobiol. Chem. 1999, 123, 15–19. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J.; Zhang, H.; Zhou, P.; Yao, G.; Liu, Y.; Lai, B.; Song, Y. CoFe2O4@BC as a Heterogeneous Catalyst to Sustainably Activate Peroxymonosulfate for Boosted Degradation of Enrofloxacin: Properties, Efficiency and Mechanism. Sep. Purif. Technol. 2024, 345, 127349. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Zhou, W. Cu-Doped Ni-LDH with Abundant Oxygen Vacancies for Enhanced Methyl 4-Hydroxybenzoate Degradation via Peroxymonosulfate Activation: Key Role of Superoxide Radicals. J. Colloid Interface Sci. 2022, 610, 504–517. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Hao, M.; Yu, F.; Houda, C. Persistent Degradation of 2,4-Dichlorophenol in Groundwater by Persulfate Synergize with Fe(III)/CaSO3 System: Role of Fe(IV) and 1O2 Oxidation. Sep. Purif. Technol. 2024, 334, 125979. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, S.; Duan, X.; Wang, Y.; Wu, D.; Pang, J.; Wang, X.; Wang, S. Catalytic Oxidation of Sulfachloropyridazine by MnO2: Effects of Crystalline Phase and Peroxide Oxidants. Chemosphere 2021, 267, 129287. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water—Water Supply Paper, 3rd ed.; US Geological survey: Reston, VA, USA, 1985; pp. 16–17. [Google Scholar]
- Fazli, A.; Brigante, M.; Khataee, A.; Mailhot, G. Fe2.5Co0.3Zn0.2O4/CuCr-LDH as a Visible-Light-Responsive Photocatalyst for the Degradation of Caffeine, Bisphenol A, and Simazine in Pure Water and Real Wastewater under Photo-Fenton-like Degradation Process. Chemosphere 2022, 291, 132920. [Google Scholar] [CrossRef]
- Feng, Y.; Tao, Y.; Qu, J.; Zhang, Y. S-Scheme P-Doped g-C3N4/BiOBr Heterojunction with Oxygen Vacancy for Efficient Photocatalytic Degradation of Phenanthrene: Enhance Molecular Oxygen Activation and Mechanism Insights. Chem. Eng. J. 2023, 472, 145053. [Google Scholar] [CrossRef]
- Qiao, M.; Fu, L.; Barcelo, D. Removal of Polycyclic Aromatic Hydrocarbons by G-C3N4 Nanosheets under Visible Light Irradiation and Effect of Typical Co-Existence Substances in River Water. Process Saf. Environ. Prot. 2022, 159, 376–381. [Google Scholar] [CrossRef]
- Jacobi, H.-W.; Annor, T.; Quansah, E. Investigation of the Photochemical Decomposition of Nitrate, Hydrogen Peroxide, and Formaldehyde in Artificial Snow. J. Photochem. Photobiol. Chem. 2006, 179, 330–338. [Google Scholar] [CrossRef]
- Huang, W.; Huang, Y.; Wang, S.; Lin, H.; Mailhot, G. Degradation of 2,4-Dichlorophenol by Ethylenediamine-N,N′-Disuccinic Acid-Modified Photo-Fenton System: Effects of Chemical Compounds Present in Natural Waters. Processes 2020, 9, 29. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Wang, S.; Li, H.; Francisco, J.S.; Zeng, X.C.; Gao, Y. Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO2 with Aqueous HSO3−/SO32−. J. Am. Chem. Soc. 2019, 141, 19312–19320. [Google Scholar] [CrossRef]
- Debnath, B.; Hussain, M.; Li, M.; Lu, X.; Sun, Y.; Qiu, D. Exogenous Melatonin Improves Fruit Quality Features, Health Promoting Antioxidant Compounds and Yield Traits in Tomato Fruits under Acid Rain Stress. Molecules 2018, 23, 1868. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, L.; Deng, F.; Zhu, W.; Guo, L.; Xu, C. Efficient Degradation of Orange IV by an Ultraviolet/Sulfite System: Influencing Factors, Degradation Mechanisms and Response Surface Analysis. J. Ind. Eng. Chem. 2024, 138, 270–281. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, W.; Li, J.; Jiang, J.; Pang, S. Review on UV/Sulfite Process for Water and Wastewater Treatments in the Presence or Absence of O2. Sci. Total Environ. 2021, 765, 142762. [Google Scholar] [CrossRef]
- Yu, Y.; Lyu, Y.; Zhang, T.; Liu, L.; Fan, B.; Wang, J.; Zhang, C. Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. Molecules 2021, 26, 6527. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Kumari, S.; Bux, F. Mechanistic Insight into SO4•−/•OH Radical for Enhancing Stability and Activity of LaMO3 Perovskite toward Detoxification of Bulk Pharmaceutical Wastewater: Stoichiometric Efficiency and Controlled Leaching Study. Sep. Purif. Technol. 2023, 319, 123967. [Google Scholar] [CrossRef]
- Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the Origin and Nature of Internal Methyl Rotation Barriers: An Information-Theoretic Approach Study. Theor. Chem. Acc. 2022, 141, 68. [Google Scholar] [CrossRef]
- Gong, S.; Yang, J.; Pan, Q.; Liu, X.; Zhang, Q.; Wang, D. Simultaneous Oxidation of Roxarsone and Adsorption of Released Arsenic by FeS-Activated Sulfite. Water Res. 2023, 237, 119979. [Google Scholar] [CrossRef]
- Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20, 722–725. [Google Scholar] [CrossRef]
- Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules. J. Chem. Phys. 2014, 22, 1433–1442. [Google Scholar] [CrossRef]
- Tu, Z.; Qi, Y.; Tang, X.; Wang, Z.; Qu, R. Photochemical Transformation of Anthracene (ANT) in Surface Soil: Chlorination and Hydroxylation. J. Hazard. Mater. 2023, 452, 131252. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, S.; Lu, Y.; Chen, K.; Luo, L.; Hao, C. Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water. Molecules 2023, 28, 4620. [Google Scholar] [CrossRef]
- Cao, W.; Wu, N.; Zhang, S.; Qi, Y.; Guo, R.; Wang, Z.; Qu, R. Photodegradation of Polychlorinated Biphenyls in Water/Nitrogen-Doped Silica and Air/Nitrogen-Doped Silica Systems: Kinetics, Mechanism and Quantitative Structure Activity Relationship (QSAR) Analysis. Sci. Total Environ. 2024, 924, 171586. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Zhang, M.; Wang, L.; Kang, G.; Wu, S.; She, Y. Ultrasonically Activated Persulfate Process for the Degradation of Phenanthrene in Soil-Washing Effluent: Experimental, DFT Calculation and Toxicity Evaluation. J. Environ. Chem. Eng. 2024, 12, 113035. [Google Scholar] [CrossRef]
- Dang, J.; Shi, X.; Zhang, Q.; Wang, W. Theoretical Perspectives on the Mechanism and Kinetics of the OH Radical-Initiated Gas-Phase Oxidation of PCB126 in the Atmosphere. Sci. Total Environ. 2015, 517, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Wu, N.; Pan, X.; Feng, J.; Al-Basher, G.; Allam, A.A.; Qu, R.; Wang, Z. Photochemical Formation of Hydroxylated Polychlorinated Biphenyls (OH-PCBs) from Decachlorobiphenyl (PCB-209) on Solids/Air Interface. J. Hazard. Mater. 2019, 378, 120758. [Google Scholar] [CrossRef]
- Mishra, B.K.; Lily, M.; Chakrabartty, A.K.; Deka, R.C.; Chandra, A.K. A DFT Study on Kinetics of the Gas Phase Reactions of CH3CH2OCF3 with OH Radicals and Cl Atoms. J. Fluor. Chem. 2014, 159, 57–64. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision A.02; Gaussian. Inv.: Wallingford, CT, USA, 2009; pp. 270–271. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, S.; Cao, W.; Wu, N.; Wei, Z.; Wang, Z.; Qu, R. Photocatalytic Degradation of Decabromodiphenyl Ethane (DBDPE) by Wide Solar Spectrum-Responsive Nitrogen Doped Silica. J. Clean. Prod. 2024, 458, 142556. [Google Scholar] [CrossRef]
Sequence | Bond | Bond Orders | Charge Distribution | HOMO | LUMO | 2FED2HOMO | FED2HOMO + FED2LUMO |
---|---|---|---|---|---|---|---|
C1 | C-C | 2.0 | 0.036 | 0.13134 | 0.12659 | 0.26268 | 0.25793 |
C2 | C-C | 1.5 | −0.060 | 0.08247 | 0.09041 | 0.16494 | 0.17288 |
C3 | C-C | 2.0 | −0.063 | 0.01969 | 0.07948 | 0.03938 | 0.09917 |
C4 | C-C | 1.5 | −0.093 | 0.14295 | 0.12651 | 0.2859 | 0.26946 |
C5 | C-C | 1.5 | 0.132 | 0.02539 | 0.03534 | 0.05078 | 0.06073 |
C6 | C-C | 2.0 | −0.098 | 0.11724 | 0.11836 | 0.23448 | 0.2356 |
C7 | C-C | 1.5 | −0.055 | 0.06314 | 0.08009 | 0.12628 | 0.14323 |
C8 | C-C | 2.0 | −0.046 | 0.07201 | 0.08315 | 0.14402 | 0.15516 |
C9 | C-C | 1.5 | −0.109 | 0.11869 | 0.11774 | 0.23738 | 0.23643 |
C10 | C-C | 1.5 | 0.071 | 0.02577 | 0.03584 | 0.05154 | 0.06161 |
H11 | C-H | 1.0 | 0.050 | 0.0118 | 0.01322 | 0.0236 | 0.02502 |
H12 | C-H | 1.0 | 0.049 | 0.00953 | 0.0121 | 0.01906 | 0.02163 |
H13 | C-H | 1.0 | 0.054 | 0.00579 | 0.00902 | 0.01158 | 0.01481 |
H14 | C-H | 1.0 | 0.082 | 0.0108 | 0.01305 | 0.0216 | 0.02385 |
H15 | C-H | 1.0 | 0.077 | 0.00583 | 0.01034 | 0.01166 | 0.01617 |
H16 | C-H | 1.0 | 0.055 | 0.00626 | 0.00853 | 0.01252 | 0.01479 |
H17 | C-H | 1.0 | 0.053 | 0.00491 | 0.0086 | 0.00982 | 0.01351 |
Cl18 | C-Cl | 1.0 | −0.133 | 0.08638 | 0.03162 | 0.17276 | 0.118 |
Sequence | Bond | Bond Orders | Charge Distribution | HOMO | LUMO | 2FED2HOMO | FED2HOMO + FED2LUMO |
---|---|---|---|---|---|---|---|
C1 | C-C | 2.0 | −0.147 | 0.14654 | 0.12779 | 0.29308 | 0.27433 |
C2 | C-C | 1.5 | 0.091 | 0.09376 | 0.08161 | 0.18752 | 0.17537 |
C3 | C-C | 2.0 | −0.098 | 0.04642 | 0.08777 | 0.09284 | 0.13419 |
C4 | C-C | 1.5 | −0.106 | 0.1127 | 0.13552 | 0.2254 | 0.24822 |
C5 | C-C | 1.5 | 0.146 | 0.02653 | 0.03621 | 0.05306 | 0.06274 |
C6 | C-C | 2.0 | −0.107 | 0.12828 | 0.11779 | 0.25656 | 0.24607 |
C7 | C-C | 1.5 | −0.055 | 0.09626 | 0.07802 | 0.19252 | 0.17428 |
C8 | C-C | 2.0 | −0.050 | 0.05834 | 0.08388 | 0.11668 | 0.14222 |
C9 | C-C | 1.5 | −0.111 | 0.13813 | 0.11598 | 0.27626 | 0.25411 |
C10 | C-C | 1.5 | 0.146 | 0.03135 | 0.03532 | 0.0627 | 0.06667 |
H11 | C-H | 1.0 | 0.054 | 0.00928 | 0.01428 | 0.01856 | 0.02356 |
H12 | C-H | 1.0 | 0.049 | 0.01043 | 0.01206 | 0.02086 | 0.02249 |
H13 | C-H | 1.0 | 0.053 | 0.00425 | 0.00918 | 0.0085 | 0.01343 |
H14 | C-H | 1.0 | 0.050 | 0.01124 | 0.01180 | 0.02248 | 0.02304 |
H15 | C-H | 1.0 | 0.075 | 0.00352 | 0.00898 | 0.00704 | 0.0125 |
H16 | C-H | 1.0 | 0.052 | 0.00794 | 0.00835 | 0.01588 | 0.01629 |
Cl17 | C-Cl | 1.0 | −0.113 | 0.06386 | 0.02146 | 0.12772 | 0.08532 |
H18 | C-H | 1.0 | 0.072 | 0.01115 | 0.01398 | 0.0223 | 0.02513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liu, M.; Wang, S.; Zhang, C.; Zhang, X.; Liu, L.; Xue, S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024, 29, 4535. https://doi.org/10.3390/molecules29194535
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules. 2024; 29(19):4535. https://doi.org/10.3390/molecules29194535
Chicago/Turabian StyleYu, Yingtan, Mengdi Liu, Shimeng Wang, Chaoxing Zhang, Xue Zhang, Li Liu, and Shuang Xue. 2024. "Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation" Molecules 29, no. 19: 4535. https://doi.org/10.3390/molecules29194535
APA StyleYu, Y., Liu, M., Wang, S., Zhang, C., Zhang, X., Liu, L., & Xue, S. (2024). Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules, 29(19), 4535. https://doi.org/10.3390/molecules29194535