Regulation of Cecal Microbiota and Improvement of Blood Lipids Using Walnut Non-Dairy Creamer in High-Fat Mice: Replacing Traditional Non-Dairy Creamer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Non-Dairy Creamers on Body Weight and Food Intake in High-Fat Mice
2.2. Effect of Different Non-Dairy Creamers on Glucose Tolerance in High-Fat Mice
2.3. Effect of Different Non-Dairy Creamers on TC, TG, HDL-C, and LDL-C Content in High-Fat Mice
2.4. Effect of Different Non-Dairy Creamers on Antioxidant Indices in High-Fat Mice
2.5. Effect of Different Non-Dairy Creamers on ALT and AST Levels in High-Fat Mice
2.6. Effect of Different Non-Dairy Creamesr on Liver Cells in High-Fat Mice
2.7. Effect of Different Non-Dairy Creamers on the Structure of Intestinal Flora in High-Fat Mice
2.7.1. Venn Diagram Analysis Based on ASV/OUT Data
2.7.2. Alpha Diversity Analysis
2.7.3. Beta Diversity Analysis
2.7.4. Phylum Level Analysis
2.7.5. Genus Level Analysis
2.7.6. Analysis of Interspecific Differences in Microbial Communities
2.7.7. Correlation Analysis of Microorganisms with Lipid Metabolism Indicators
3. Materials and Methods
3.1. Materials and Reagents
3.2. Fatty Acid Composition
3.3. Animals and Experimental Design
3.4. Glucose Tolerance Test
3.5. Biochemical Assays
3.6. Histopathological Observation of Liver Tissue
3.7. DNA Extraction and 16s rRNA Gene Sequencing
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wanthong, T.; Klinkesorn, U. Rambutan (Nephelium lappaceum) kernel olein as a non-hydrogenated fat component for developing model non-dairy liquid creamer: Effect of emulsifier concentration, sterilization, and pH. J. Food Sci. Technol. 2020, 57, 4404–4413. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.L. Study on Physicochemical Properties of Diglycerin Oil of Coconut and Its Application in Plant Fat Powder. Master’s Thesis, South China University of Technology, Guangdong, China, 2022. [Google Scholar]
- Liu, X.R.; Wang, W.Q.; Liu, Y.F.; Zhang, J.W.; Xing, Z.Q. Performance analysis of milk tea powder oil emulsion. J. Food Biotechnol. 2022, 41, 96102. [Google Scholar]
- Liu, X.; Xu, W.L.; Wang, W.F.; Luo, R.M.; Yang, B.; Lan, D.M.; Wang, Y.H. Physicochemical properties and feasibility of coconut oil-based diacylglycerol as an alternative fat for healthy non-dairy creamer. Food Chem. X 2023, 19, 100749. [Google Scholar] [CrossRef] [PubMed]
- Do, G.Y.; Kwon, E.Y.; Kim, Y.J.; Han, Y.; Kim, S.B.; Kim, Y.H.; Choi, M.S. Supplementation of Non-Dairy Creamer-Enriched High-Fat Diet with D-Allulose Ameliorated Blood Glucose and Body Fat Accumulation in C57BL/6J Mice. Appl. Sci. 2019, 9, 2750. [Google Scholar] [CrossRef]
- Wu, N.; Kang, Y.M.; Li, C.B. Research progress on the correlation between fatty acid mediated sleep deficiency and dyslipidemia. Dis. Surveill. Control. 2023, 17, 330–336. [Google Scholar] [CrossRef]
- Soo, Y.N.; Tan, C.P.; Tan, P.Y.; Khalid, N.M.; Tan, T.B. Fabrication of Oil-in-Water Emulsions as Shelf-Stable Liquid Non-Dairy Creamer: Effects of Homogenization Pressure, Oil Type and Emulsifier Concentration. J. Sci. Food Agric. 2020, 101, 10871. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisoryfrom the American Heart Association. Circulation 2017, 136, 1–23. [Google Scholar] [CrossRef]
- Xing, J.Y.; Tian, Y.; Cheng, Q.; Lin, Q.; Bao, Y.Y. Effects of Camellia oleifera flavonoids on the oxidative stability of Walnut oil. Chin. J. Cereals Oils 2023, 38, 101–107. [Google Scholar]
- Xu, L.H.; Li, X.L. Changes of functional components of Walnut oil during storage. Econ. For. Res. 2023, 41, 71–85. [Google Scholar] [CrossRef]
- Yang, Z.H.; Nill, K.; Takechi-Haraya, Y.; Playford, M.P.; Nguyen, D.; Yu, Z.-X.; Pryor, M.; Tang, J.; Rojulpote, K.V.; Mehta, N.N.; et al. Differential Effect of Dietary Supplementation with a Soybean Oil Enriched in Oleic Acid versus Linoleic Acid on Plasma Lipids and Atherosclerosis in LDLR-Deficient Mice. Int. J. Mol. Sci. 2022, 23, 8385. [Google Scholar] [CrossRef]
- Katsri, K.; Noitup, P.; Junsangsree, P.; Singanusong, R. Physical, chemical and microbiological properties of mixed hydrogenated palm kernel oil and cold-pressed rice bran oil as ingredients in non-dairy creamer. Songklanakarin J. Sci. Technol. 2014, 36, 73–81. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, J.; Sun, L.; Lyu, X.; Chang, X.Y.; Mi, X.; Hu, M.G.; Wu, C.M.; Chen, X. Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia. Biomed. Pharmacother. 2021, 133, 111014. [Google Scholar] [CrossRef]
- Guo, C.; Han, L.; Li, M.; Yu, L. Seabuckthorn (Hippophaë rhamnoides) Freeze-Dried Powder Protects against High-Fat Diet-Induced Obesity, Lipid Metabolism Disorders by Modulating the Gut Microbiota of Mice. Nutrients 2020, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhao, Y.; Chen, X.; Zhou, H.; Xiao, M. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res. Int. 2021, 144, 110360. [Google Scholar] [CrossRef]
- Miao, F.; Shan, C.; Ma, T.; Geng, S.; Ning, D. Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb. Pathog. 2021, 154, 104866. [Google Scholar] [CrossRef]
- Miao, F.; Shan, C.; Shah, S.A.H.; Akhtar, R.W.; Wang, X.; Ning, D. Effect of walnut (Juglans sigillata) oil on intestinal antioxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice. J. Food Biochem. 2021, 45, 13567. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Huang, J.Y.; Wang, Z.Y.; Xie, L.H.; Du, B.; Li, P. Research progress of main active components and their functional mechanisms in different parts of Meto fruit. Mod. Food Sci. Technol. 2024, 41, 1–13. [Google Scholar] [CrossRef]
- Meng, X.J.; Yang, X.; Meng, D.S.; Wang, M.H.; Wang, L.; Liu, Z.H. Research progress on structure, bioactivity and mechanism of secondary metabolites of soybean. Food Sci. 2024, 1–21. [Google Scholar]
- Zhou, D.; Zeng, J.X.; He, R.F.; Zhou, X.; Shi, Q.L.; Ge, F.H. Study on extraction of tea seed oil, walnut oil and Ganoderma spore oil by high pressure supercritical CO(2) and their effects on quality. Chin. J. Grain Oil 2024, 1–17. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Zhang, F.; Duan, Y.F.; Dong, Z.B.; Wang, G.X. Evaluation on nutritional quality of red kernel walnut and its oil. Chin. J. Grain Oil 2024, 1–12. [Google Scholar] [CrossRef]
- Fu, J.; Jiang, C.L.; Wang, T.G.; Zhao, L.; Jin, X.N.; Li, Z. Effects of Chaihuang Qingyi Huoxue Recipe on hepatic oxidative stress in mice with severe acute pancreatitis. J. Southwest Med. Univ. 2021, 44, 189–196. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, Z.X.; Zhang, W.J.; Yi, J.; Chen, B.W.; Sheng, W.; Li, Y.X.; Liu, B.Y.; Wang, X.Q. Effects of Sanbu Decoction on cognitive function and lipid peroxidation injury in natural aging mice. J. Hunan Univ. Chin. Med. 2024, 44, 357–364. [Google Scholar]
- Huang, X.Y.; Yu, H.L.; Zheng, M.S.; Liu, X.W.; Zhang, Y. Effects of yeast extract combined with curcumin on intestinal flora in mice with acute alcoholic liver injury. Food Ind. Technol. 2024, 45, 25–33. [Google Scholar] [CrossRef]
- Zhang, W. Study on Preparation of Hazelnut Oil Microcapsules and Its Hypolipidemic Function. Master’s Thesis, Changchun University of Science and Technology, Jilin, China, 2021. [Google Scholar] [CrossRef]
- Liu, X.F.; Chi, X.X.; Wang, H.L.; Dai, A.N.; Li, M.; Zhang, D.J. Effect of corn and buckwheat compound powder on lowering blood lipids in hyperlipidemia rats. Sci. Technol. Food Ind. 2024, 1–13. [Google Scholar] [CrossRef]
- Zhu, R.W. Study on Physicochemical Properties and Hypolipidemic Function of Dietary Fiber from Rice Bran Meal by Three Oil Production Processes. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2023. [Google Scholar] [CrossRef]
- Zhu, H.; Hou, T. Modulatory Effects of Lactarius hatsudake on Obesity and Gut Microbiota in High-Fat Diet-Fed C57BL/6 Mice. Foods 2024, 13, 948. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Zhang, N.; Fu, Y.; Zhang, Z.; Li, Y.; Wang, W.Q.; Li, Y.Y.; Shen, P.; Cao, Y. Ripened Pu-erh Tea Extract Protects Mice from Obesity by Modulating Gut Microbiota Composition. J Agric Food Chem. 2019, 67, 6978–6994. [Google Scholar] [CrossRef]
- Shemtov, S.J.; Emani, R.; Bielska, O.; Covarrubias, A.J.; Verdin, E.; Andersen, J.K.; Winer, D.A. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J. 2023, 17, 4163–4186. [Google Scholar] [CrossRef]
- Song, X.L. Structural Analysis of Polysaccharide from Mycelium of Xiuzhen Mushroom and Its Mechanism for Improving Alcohol-Induced Liver Injury in Mice. Ph.D. Thesis, Shandong Agricultural University, Shandong, China, 2022. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Chen, H.B.; Jin, X.L.; Huang, D.W.; Yu, X.M.; Zheng, S.Y. Research progress of fucoidan in improving obesity and its complications. Sci. Technol. Food Ind. 2024, 1–15. [Google Scholar] [CrossRef]
- Grigor’eva, I.N. Gallstone disease, obesity and the Firmicutes/Bacteroidetes ratio as a possible biomarker of gut dysbiosis. J. Pers. Med. 2020, 11, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Wang, L.; Qin, L.; Jia, Y. Effect of camellia seed oil microcapsules on lipid reduction in high-fat diet mouse model. Food Ferment. Technol. 2022, 58, 56–63. [Google Scholar] [CrossRef]
- Xia, X.L.; Wang, L.; Zhou, Y.Q.; Tan, B.M.; Dong, C.K.; Zhang, Y.M.; Pei, H.L.; Ding, J. Effects of norfloxacin on structural and functional characteristics of intestinal flora of Stichopus japonicus. J. Ecotoxicol. 2024, 19, 1–16. [Google Scholar] [CrossRef]
- Ma, X.Y.; Wan, X.; Chen, Y.S.; Zhang, M.K.; Wang, C.; Deng, Q.C. Research and application progress of plant-based fermented milk. Food Sci. 2024, 1–26. [Google Scholar]
- Zhang, Y.P.; Lin, M.; Xiao, Y.H.; Weng, L.F. Effects of turmeric Extract and pomegranate peel extract on Growth Performance, Serum immune indexes and cecum microorganisms of Wenchang chickens. J. Anim. Nutr. 2023, 35, 7086–7098. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, D.L.; Xue, Z.L.; Zhang, T.L.; Feng, S.B.; Zhao, c.; Wang, X.C.; Li, Y. Effects of fermented milk on liver lipid metabolism and intestinal flora in obese mice. J. China Agric. Univ. 2024, 29, 120–133. [Google Scholar] [CrossRef]
- Xu, L.M.; Gao, J.; Li, Y.; Liu, L.D. Relationship between intestinal microbiota structure and metabolic function in obese and non-obese PCOS patients. Guangdong Med. 2024, 45, 145–151. [Google Scholar] [CrossRef]
- Jian, H.; Liu, Y.; Wang, X.; Dong, X.; Zou, X. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: A role mediated by gut–liver–brain axes? Int. J. Mol. Sci. 2023, 24, 3900. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Li, R. An investigation into the correlation of intestinal flora with obesity and gestational diabetes mellitus. Comput. Math. Methods Med. 2022, 2022, 5677073. [Google Scholar] [CrossRef]
- Wang, M.M.; Sheng, J.; Zhang, F.; Tan, C.L.; Huang, S.; Mu, H.Y.; Wu, K.; Chen, Y.Y.; Tian, Y.; Fang, C.Y.; et al. Effects of adding different sources of oil powder to the diet on the quality and cecal gut microbesof white feather broilers. J. Funct. Foods 2024, 116, 106151. [Google Scholar] [CrossRef]
- Qi, D.F.; Zhang, R.G.; Pan, J.L.; Yang, T.; Zhang, Y.L. Preparation and physiological function evaluation of walnut oil microcapsules. Chin. Oils Fats 2021, 46, 24–31+47. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.H.; Wu, G.B.; Li, H.J.; Li, S.J.; Huang, P.T.; Yu, Z.J. Effect of pomegranate peel polyphenol extract combined with metformin on the treatment of type 2 diabetic mice. Sichuan Med. 2023, 44, 683–688. [Google Scholar] [CrossRef]
Group | Initial Weight (g) | Final Weight (g) | Food Intake (g/w) |
---|---|---|---|
CK | 21.77 ± 0.33 | 26.70 ± 0.52 d | 140 ± 8.84 a |
HDF | 21.63 ±0.33 | 31.15 ± 0.41 b | 103.98 ± 8.55 b |
L-MCC | 21.90 ± 0.21 | 28.95 ± 0.24 c | 98.33 ± 7.16 b |
H-MCC | 21.85 ± 0.36 | 28.63 ± 0.28 c | 100.19 ± 13.02 b |
L-NDC | 21.68 ± 0.45 | 29.32 ± 0.38 c | 102.33 ± 6.18 b |
H-NDC | 21.40 ± 0.21 | 33.55 ± 0.72 a | 100.95 ± 11.24 b |
Number | Groups | Quantities | Gavage Program |
---|---|---|---|
CK | CK | 10 | Normal saline |
HDF | HDF | 10 | Normal saline |
L-MCC | L-MCC | 10 | MCC (250 mg/kg) |
H-MCC | H-MCC | 10 | MCC (1000 mg/kg) |
L-NDC | L-NDC | 10 | NDC (250 mg/kg) |
H-NDC | H-NDC | 10 | NDC (1000 mg/kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, F.; Tan, C.; Huang, S.; Mu, H.; Wu, K.; Chen, Y.; Sheng, J.; Tian, Y.; Wang, Y.; et al. Regulation of Cecal Microbiota and Improvement of Blood Lipids Using Walnut Non-Dairy Creamer in High-Fat Mice: Replacing Traditional Non-Dairy Creamer. Molecules 2024, 29, 4469. https://doi.org/10.3390/molecules29184469
Wang M, Zhang F, Tan C, Huang S, Mu H, Wu K, Chen Y, Sheng J, Tian Y, Wang Y, et al. Regulation of Cecal Microbiota and Improvement of Blood Lipids Using Walnut Non-Dairy Creamer in High-Fat Mice: Replacing Traditional Non-Dairy Creamer. Molecules. 2024; 29(18):4469. https://doi.org/10.3390/molecules29184469
Chicago/Turabian StyleWang, Mingming, Feng Zhang, Chunlei Tan, Si Huang, Hongyu Mu, Kuan Wu, Yinyan Chen, Jun Sheng, Yang Tian, Ya Wang, and et al. 2024. "Regulation of Cecal Microbiota and Improvement of Blood Lipids Using Walnut Non-Dairy Creamer in High-Fat Mice: Replacing Traditional Non-Dairy Creamer" Molecules 29, no. 18: 4469. https://doi.org/10.3390/molecules29184469
APA StyleWang, M., Zhang, F., Tan, C., Huang, S., Mu, H., Wu, K., Chen, Y., Sheng, J., Tian, Y., Wang, Y., & Zhao, C. (2024). Regulation of Cecal Microbiota and Improvement of Blood Lipids Using Walnut Non-Dairy Creamer in High-Fat Mice: Replacing Traditional Non-Dairy Creamer. Molecules, 29(18), 4469. https://doi.org/10.3390/molecules29184469