Cyano-Substituted Oligo(p-phenylene vinylene) Derivatives with Aggregation-Induced Enhanced Emissions and Mechanofluorochromic Luminescence
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis and Characterization
2.2. UV–Vis Absorption and Fluorescent Emission Spectra in Solutions
2.3. Theoretical Calculation
2.4. Aggregation-Induced Enhanced Emission (AIEE)
2.5. Mechanofluorochromic (MFC) Properties
3. Materials and Methods
3.1. General Methods
3.2. General Procedure for Preparation of 2,5-Dibromoterephthalaldehyde 1
3.3. General Procedure for Preparation of Compound 2
3.4. General Procedure for Preparation of Compounds 3
3.5. General Procedure for Preparation of the Compounds DCFOPV-TPA and SCFOPV-TPA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagara, Y.; Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 2009, 1, 605–610. [Google Scholar] [CrossRef]
- Chi, Z.-G.; Zhang, X.-Q.; Xu, B.-J.; Zhou, X.; Ma, C.-P.; Zhang, Y.; Liu, S.-W.; Xu, J.-R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, C. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials. Adv. Mater. 2016, 28, 1073–1095. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.-Y.; Bose, P.; Gao, Q.; Li, Y.-X.; Ganguly, R.; Zhao, Y.-L. Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory. J. Am. Chem. Soc. 2017, 139, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-B.; Liu, S.-J.; Lin, W.-P.; Zhang, K.-Y.; Lv, W.; Huang, X.; Huo, F.-W.; Yang, H.-R.; Jenkins, G.; Zhao, Q.; et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-Y.; Chen, X.-J.; Sun, G.-L.; Zhang, T.-W.; Liu, S.-J.; Zhao, Q.; Huang, W. Utilization of Electrochromically Luminescent Transition-Metal Complexes for Erasable Information Recording and Temperature-Related Information Protection. Adv. Mater. 2016, 28, 7137–7142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, X.; Zhang, Y.-M.; Zhu, S.-Y.; Zhang, L.-A.; Yu, B.-H.; Wang, K.; Yang, B.; Li, M.-J.; Zou, B.; et al. Dynamic Behavior of Molecular Switches in Crystal under Pressure and Its Reflection on Tactile Sensing. J. Am. Chem. Soc. 2015, 137, 931–939. [Google Scholar] [CrossRef]
- Ma, J.; Sun, R.; Xia, K.; Xia, Q.; Liu, Y.; Zhang, X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem. Rev. 2024, 124, 1738–1861. [Google Scholar] [CrossRef]
- Pan, C.-F.; Chen, M.-X.; Yu, R.-M.; Yang, Q.; Hu, Y.-F.; Zhang, Y.; Wang, Z.-L. Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging. Adv. Mater. 2016, 28, 1535–1552. [Google Scholar] [CrossRef]
- Xiao, G.-J.; Cao, Y.; Qi, G.-Y.; Wang, L.-R.; Liu, C.; Ma, Z.-W.; Yang, X.-Y.; Sui, Y.-M.; Zheng, W.-T.; Zou, B. Pressure Effects on Structure and Optical Properties in Cesium Lead Bromide Perovskite Nanocrystals. J. Am. Chem. Soc. 2017, 139, 10087–10094. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Chi, Z.-G.; Zhang, Y.; Liu, S.-W.; Xu, J.-R. Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 2013, 1, 3376–3390. [Google Scholar] [CrossRef]
- Xue, P.-C.; Ding, J.-P.; Wang, P.-P.; Lu, R. Recent progress in the mechanochromism of phosphorescent organic molecules and metal complexes. J. Mater. Chem. C 2016, 4, 6688–6706. [Google Scholar] [CrossRef]
- Sagara, Y.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Kato, T.; Nagano, T. Covalent Attachment of Mechanoresponsive Luminescent Micelles to Glasses and Polymers in Aqueous Conditions. J. Am. Chem. Soc. 2014, 136, 4273–4280. [Google Scholar] [CrossRef]
- Ciardelli, F.; Ruggeri, G.; Pucci, A. Dye-containing polymers: Methods for preparation of mechanochromic materials. Chem. Soc. Rev. 2013, 42, 857–870. [Google Scholar] [CrossRef]
- Xie, Y.-X.; Li, Z. The development of mechanoluminescence from organic compounds: Breakthrough and deep insight. Mater. Chem. Front. 2020, 4, 317–331. [Google Scholar] [CrossRef]
- Ma, X.-F.; Sun, R.; Cheng, J.-H.; Liu, J.-H.; Gou, F.; Xiang, H.-F.; Zhou, X.-G. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students. J. Chem. Educ. 2016, 93, 345–350. [Google Scholar] [CrossRef]
- Watson, M.-D.; Fechtenkötter, A.; Müllen, K. Big Is Beautiful—“Aromaticity” Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry. Chem. Rev. 2001, 101, 1267–1300. [Google Scholar] [CrossRef]
- Luo, J.-D.; Xie, Z.-L.; Lam, J.-W.Y.; Cheng, L.; Chen, H.-Y.; Qiu, C.-F.; Kwok, H.-S.; Zhan, X.-W.; Liu, Y.-Q.; Zhu, D.-B.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.-L.C.; Kwok, R.-T.K.; Lam, J.-W.Y.; Tang, B.-Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Chi, Z.-G.; Li, H.-Y.; Xu, B.-J.; Li, X.-F.; Zhou, W.; Liu, S.-W.; Zhang, Y.; Xu, J.-R. Piezofluorochromism of an Aggregation-Induced Emission Compound Derived from Tetraphenylethylene. Chem. Asian J. 2011, 6, 808–811. [Google Scholar] [CrossRef]
- Zhao, J.; Chi, Z.-C.; Zhang, Y.; Mao, Z.; Yang, Z.-Y.; Ubba, E.; Chi, Z.-G. Recent progress in the mechanofluorochromism of cyanoethylene derivatives with aggregation-induced emission. J. Mater. Chem. C 2018, 6, 6327–6353. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Lei, Z.-Q.; Ma, H.-C. Twisted aggregation-induced emission luminogens (AIEgens) contribute to mechanochromism materials: A review. J. Mater. Chem. C 2022, 10, 14834. [Google Scholar] [CrossRef]
- Löwe, C.; Weder, C. Oligo(p-phenylene vinylene) Excimers as Molecular Probes: Deformation-Induced Color Change in Photoluminescent Polymer Blends. Adv. Mater. 2002, 14, 1625–1629. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Chung, J.-W.; Gierschner, J.; Kim, K.-S.; Choi, M.-G.; Kim, D.; Park, S.-Y. Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets. J. Am. Chem. Soc. 2010, 132, 13675–13683. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.-K.; Vijayakumar, S.; Mal, A.; Karunakaran, V.; Janardhanan, J.-C.; Maiti, K.-K.; Praveen, V.-K.; Ajayaghosh, A. Bimodal detection of carbon dioxide using fluorescent molecular aggregates. Chem. Commun. 2019, 55, 6046–6049. [Google Scholar] [CrossRef] [PubMed]
- Gierschner, J.; Park, S.-Y. Luminescent distyrylbenzenes: Tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 2013, 1, 5818–5832. [Google Scholar] [CrossRef]
- Zhu, L.-L.; Zhao, Y.-L. Cyanostilbene-based intelligent organic optoelectronic materials. J. Mater. Chem. C 2013, 1, 1059–1065. [Google Scholar] [CrossRef]
- Martínez-Abadía, M.; Giménez, R.; Ros, M.-B. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials. Adv. Mater. 2018, 30, 1704161. [Google Scholar] [CrossRef]
- Gao, A.-P.; Wang, Q.-Q.; Wu, H.-J.; Zhao, J.-W.; Cao, X.-H. Research progress on AIE cyanostilbene-based self-assembly gels: Design, regulation and applications. Coord. Chem. Rev. 2022, 471, 214753. [Google Scholar] [CrossRef]
- Mahalingavelar, P.; Kanvah, S. a-Cyanostilbene: A multifunctional spectral engineering motif. Phys. Chem. Chem. Phys. 2022, 24, 23049–23075. [Google Scholar] [CrossRef]
- Shimizu, M.; Kaki, R.; Takeda, Y.-H.; Hiyama, T.; Nagai, N.; Yamagish, H.; Furutani, H. 1,4-Bis(diarylamino)-2,5-bis(4-cyanophenylethenyl)benzenes: Fluorophores Exhibiting Efficient Red and Near-Infrared Emissions in Solid State. Angew. Chem. Int. Ed. 2012, 51, 4095. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-W.; Lv, X.-J.; Wang, P.-J.; Zhang, Y.-J.; Dai, Y.-Y.; Wu, Q.-C.; Yang, M.-Y.; Zhang, C. A donor-acceptor cruciform π-system: High contrast mechanochromic properties and multicolour electrochromic behavior. J. Mater. Chem. C 2014, 2, 5365–5371. [Google Scholar] [CrossRef]
- Gayathri, P.; Pannipara, M.; Al-Sehemi, A.-G.; Anthony, S.-P. Triphenylamine-based stimuli-responsive solid state fluorescent materials. New J. Chem. 2020, 44, 8680–8696. [Google Scholar] [CrossRef]
- Feng, C.-F.; Wang, K.; Xu, Y.-X.; Liu, L.-Q.; Zou, B.; Lu, P. Unique piezochromic fluorescence behavior of organic crystal of carbazole-substituted CNDSB. Chem. Commun. 2016, 52, 3836–3839. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-F.; Hao, J.-Y.; Gao, H.-Z.; Wang, Y.-H.; Wang, Y.; Liu, X.-L.; Han, A.-X.; Zhang, C. Twisted donor-acceptor cruciform fluorophores exhibiting strong solid emission, efficient aggregation-induced emission and high contrast mechanofluorochromism. Dye. Pigment. 2018, 150, 293–300. [Google Scholar]
- Kwon, M.-S.; Gierschner, J.; Yoon, S.-J.; Park, S.-Y. Unique Piezochromic Fluorescence Behavior of Dicyanodistyrylbenzene Based Donor-Acceptor-Donor Triad: Mechanically Controlled Photo-Induced Electron Transfer (eT) in Molecular Assemblies. Adv. Mater. 2012, 24, 5487–5492. [Google Scholar] [CrossRef]
- Kwon, M.-S.; Gierschner, J.; Seo, J.; Park, S.-Y. Rationally designed molecular D–A–D triad for piezochromic and acidochromic fluorescence on–off switching. J. Mater. Chem. C 2014, 2, 2552–2557. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Xu, D.-F.; Gao, H.-Z.; Wang, Y.; Liu, X.-L.; Han, A.-X.; Zhang, C.; Zang, L. Mechanofluorochromic properties of aggregation-induced emission-active tetraphenylethene-containing cruciform luminophores. Dye. Pigment. 2018, 156, 291–298. [Google Scholar] [CrossRef]
- Kunzelman, J.; Kinami, M.; Crenshaw, B.-R.; Protasiewicz, J.-D.; Weder, C. Oligo(p-phenylene vinylene)s as a “New” Class of Piezochromic Fluorophores. Adv. Mater. 2008, 20, 119–122. [Google Scholar] [CrossRef]
- Kim, H.-J.; Gierschner, J.; Park, S.-Y. Tricolor fluorescence switching in a single component mechanochromic molecular material. J. Mater. Chem. C 2020, 8, 7417–7421. [Google Scholar] [CrossRef]
- Li, P.-Y.; Wang, J.-X.; Li, P.-F.; Lai, L.-M.; Yin, M.-Z. Minor alkyl modifications for manipulating the fluorescence and photomechanical properties in molecular crystals. Mater. Chem. Front. 2021, 5, 1355–1363. [Google Scholar] [CrossRef]
- Ramya, N.-K.; Femina, C.; Suresh, S.; Mohanakumari, D.S.; Krishnan, R.; Thomas, R. Dicyanodistyrylbenzene based positional isomers: A comparative study of AIEE and stimuli responsive multicolour fluorescence switching. New J. Chem. 2022, 46, 1339–1346. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Varghese, S.; Park, S.-K.; Wannemacher, R.; Gierschner, J.; Park, S.Y. Color-Tuned, Highly Emissive Dicyanodistyrylbenzene Single Crystals: Manipulating Intermolecular Stacking Interactions for Spontaneous and Stimulated Emission Characteristics. Adv. Opt. Mater. 2013, 1, 232–237. [Google Scholar] [CrossRef]
- Park, S.-K.; Cho, I.; Gierschner, J.; Kim, J.-H.; Kim, J.-H.; Kwon, J.-E.; Kwon, O.-K.; Whang, D.-R.; Park, J.-H.; An, B.-K.; et al. Stimuli-Responsive Reversible Fluorescence Switching in a Crystalline Donor-Acceptor Mixture Film: Mixed Stack Charge-Transfer Emission versus Segregated Stack Monomer Emission. Angew. Chem. Int. Ed. 2016, 55, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Zeng, Q.-X.; Zou, B.; Liu, Y.; Xu, B.; Tian, W.-J. Piezochromic Luminescence of Donor-Acceptor Cocrystals: Distinct Responses to Anisotropic Grinding and Isotropic Compression. Angew. Chem. Int. Ed. 2018, 57, 15670–15674. [Google Scholar] [CrossRef] [PubMed]
- Lavrenova, A.; Balkenende, D.-W.R.; Sagara, Y.; Schrettl, S.; Simon, Y.-C.; Weder, C. Mechano- and Thermoresponsive Photoluminescent Supramolecular Polymer. J. Am. Chem. Soc. 2017, 139, 4302–4305. [Google Scholar] [CrossRef] [PubMed]
- Gierschner, J.; Shi, J.; Milián-Medina, B.; Roca-Sanjuán, D.; Varghese, S.; Park, S.-Y. Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Adv. Opt. Mater. 2021, 9, 2002251. [Google Scholar] [CrossRef]
- Xu, Y.-X.; Wang, K.; Zhang, Y.-J.; Xie, Z.-Q.; Zou, B.; Ma, Y. Fluorescence mutation and structural evolution of a p-conjugated molecular crystal during phase transition. J. Mater. Chem. C 2016, 4, 1257–1262. [Google Scholar] [CrossRef]
- Sagara, Y.; Kubo, K.; Nakamura, T.; Tamaoki, N.; Weder, C. Temperature-Dependent Mechanochromic Behavior of Mechanoresponsive Luminescent Compounds. Chem. Mater. 2017, 29, 1273–1278. [Google Scholar] [CrossRef]
- Pauk, K.; Luňák, S., Jr.; Růžička, A.; Marková, A.; Mausová, A.; Kratochvíl, M.; Melánová, K.; Weiter, M.; Imramovský, A.; Vala, M. Green-, Red-, and Infrared-Emitting Polymorphs of Sterically Hindered Push–Pull Substituted Stilbenes. Chem. Eur. J. 2021, 27, 4341–4348. [Google Scholar] [CrossRef]
- Sagara, Y.; Lavrenova, A.; Crochet, A.; Simon, Y.-C.; Fromm, K.-M.; Weder, C. A Thermo- and Mechanoresponsive Cyano-Substituted Oligo(p-phenylene vinylene) Derivative with Five Emissive States. Chem. Eur. J. 2016, 22, 4374–4378. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-W.; Dai, Y.-Y.; Ouyang, M.; Zhang, Y.-J.; Zhan, L.-L.; Zhang, C. Unique torsional cruciform p-architectures composed of donor and acceptor axes exhibiting mechanochromic and electrochromic properties. J. Mater. Chem. C 2015, 3, 3356–3363. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wang, K.; Zhuang, G.-L.; Xie, Z.-A.; Zhang, C.; Cao, F.; Pan, G.-X.; Chen, H.-F.; Zou, B.; Ma, Y.-G. Multicolored-Fluorescence Switching of ICT-Type Organic Solids with Clear Color Difference: Mechanically Controlled Excited State. Chem. Eur. J. 2015, 21, 2474–2479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Zhang, J.-X.; Shen, J.-H.; Sun, J.-W.; Wang, K.; Xie, Z.-G.; Gao, H.-W.; Zou, B. Solid-State TICT-Emissive Cruciform: Aggregation-Enhanced Emission, Deep-Red to Near-Infrared Piezochromism and Imaging In Vivo. Adv. Opt. Mater. 2018, 6, 1800956. [Google Scholar] [CrossRef]
- Zhu, C.-F.; Li, C.-J.; Wen, L.; Song, Q.-B.; Wang, K.; Lv, C.-Y.; Zhang, Y.-J. Piezochromism of cyanostilbene derivatives: A small structural alteration makes a big photophysical difference. New J. Chem. 2021, 45, 12895–12901. [Google Scholar] [CrossRef]
- Lu, H.-G.; Zheng, Y.-D.; Zhao, X.-W.; Wang, L.-J.; Ma, S.-Q.; Han, X.-Q.; Xu, B.; Tian, W.-J.; Gao, H. Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications. Angew. Chem. Int. Ed. 2015, 54, 155–159. [Google Scholar]
- Zhu, X.-J.; Traub, M.-C.; Bout, D.-A.V.; Plunkett, K.-N. Well-Defifined Alternating Copolymers of Oligo(phenylenevinylene)s and Flexible Chains. Macromolecules 2012, 45, 5051–5057. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Plunkett, K.-N. Controlled Regioregularity in Oligo(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylenes. J. Org. Chem. 2014, 79, 7093–7102. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Shao, B.-Y.; Bout, D.-A.V.; Plunkett, K.-N. Directing the Conformation of Oligo(phenylenevinylene) Polychromophores with Rigid, Nonconjugatable Morphons. Macromolecules 2016, 49, 3838–3844. [Google Scholar] [CrossRef]
- Shao, B.-Y.; Zhu, X.-J.; Plunkett, K.-N.; Bout, D.-A.V. Controlling the folding of conjugated polymers at the single molecule level via hydrogen bonding. Polym. Chem. 2017, 8, 1188–1195. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, Y.; Ren, X.; Li, Y.; Shi, L.; Zhang, W.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Solvent-induced MultiStimuli-Responsive properties of cyano-substituted Oligo(p-phenylene vinylene) derivatives. Dye. Pigment. 2023, 214, 111195. [Google Scholar] [CrossRef]
- Ren, X.; Wang, W.; Meng, Z.; Li, Y.; Wang, Q.; Zhang, W.; Zhang, H.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Highly emissive tridentate fluorophores based on bis-imidazo [1,2-α]pyridine for deep-blue photoluminescence with CIE y ≤ 0.08. J. Lumin. 2023, 263, 120097. [Google Scholar] [CrossRef]
- Meng, Z.; Li, Y.; Liao, K.; Sun, Y.; Zhang, W.; Song, B.; Zhu, X.; Hao, X.-Q. Dual state emissive tridentate imidazopyridines with applications in acidochromism, metal ions detection, data encryption, and bioimaging. Dye. Pigment. 2024, 222, 111882. [Google Scholar] [CrossRef]
- Zhu, Y.; Liao, K.; Li, Y.; Zhang, W.; Song, B.; Hao, X.-Q.; Zhu, X. Dual-state emissive imidazo[1,2-α]pyridines with full color emission, acidochromism, viscosity-dependent fluorescence, and bioimaging applications. Dye. Pigment. 2024, 224, 112004. [Google Scholar] [CrossRef]
- Prusinowska, N.; Bardziński, M.; Janiak, A.; Skowronek, P.; Kwit, M. Sterically Crowded Trianglimines—Synthesis, Structure, Solid State Self-Assembly and Unexpected Chiroptical Properties. Chem. Asian J. 2018, 13, 2691–2699. [Google Scholar] [CrossRef]
- Xue, P.; Yao, B.; Sun, J.; Xu, Q.; Chen, P.; Zhang, Z.; Lu, R. Phenothiazine-based benzoxazole derivates exhibiting mechanochromic luminescence: The effect of a bromine atom. J. Mater. Chem. C 2014, 2, 3942–3950. [Google Scholar] [CrossRef]
- Xue, P.; Chen, P.; Jia, J.; Xu, Q.; Sun, J.; Yao, B.; Zhang, Z.; Lu, R. A triphenylamine-based benzoxazole derivative as a high-contrast piezofluorochromic material induced by protonation. J. Mater. Chem. C 2014, 2, 2569–2571. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, D.; Zhou, H.; Liu, X.; Wang, Y.; Han, A.; Zhang, C. Reversible solid-state mechanochromic luminescence originated from aggregation-induced enhanced emission-active Donor–Acceptor cruciform luminophores containing triphenylamine. Dye. Pigment. 2009, 171, 107689. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Pan, Y.; Zhao, X.; Yuan, Y.; Zhai, Z.; Yu, X.; Zhang, W.; Chang, Y.; Song, B.; Shi, L.; et al. Cyano-Substituted Oligo(p-phenylene vinylene) Derivatives with Aggregation-Induced Enhanced Emissions and Mechanofluorochromic Luminescence. Molecules 2024, 29, 4447. https://doi.org/10.3390/molecules29184447
Zhu X, Pan Y, Zhao X, Yuan Y, Zhai Z, Yu X, Zhang W, Chang Y, Song B, Shi L, et al. Cyano-Substituted Oligo(p-phenylene vinylene) Derivatives with Aggregation-Induced Enhanced Emissions and Mechanofluorochromic Luminescence. Molecules. 2024; 29(18):4447. https://doi.org/10.3390/molecules29184447
Chicago/Turabian StyleZhu, Xinju, Yaru Pan, Xinran Zhao, Yu Yuan, Zewen Zhai, Xiaoni Yu, Wenjing Zhang, Yuanyuan Chang, Bing Song, Linlin Shi, and et al. 2024. "Cyano-Substituted Oligo(p-phenylene vinylene) Derivatives with Aggregation-Induced Enhanced Emissions and Mechanofluorochromic Luminescence" Molecules 29, no. 18: 4447. https://doi.org/10.3390/molecules29184447
APA StyleZhu, X., Pan, Y., Zhao, X., Yuan, Y., Zhai, Z., Yu, X., Zhang, W., Chang, Y., Song, B., Shi, L., & Hao, X. (2024). Cyano-Substituted Oligo(p-phenylene vinylene) Derivatives with Aggregation-Induced Enhanced Emissions and Mechanofluorochromic Luminescence. Molecules, 29(18), 4447. https://doi.org/10.3390/molecules29184447