Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives
Abstract
:1. Introduction
2. Synthesis Strategy for Hydroxylamine
2.1. Alkylation or Arylation of Hydroxylamine
2.2. Hydrolysis of Hydroxamic Acid, Oxime, or Nitrone
2.3. Oxidation of Amines
2.4. Reduction of Nitro Compounds, Nitroso Compounds, Oximes, and Oxime Ethers
2.5. Cycloaddition of Nitrones, Oximes, and Nitroso Compounds
3. Survey of Reducing Agents and Hydrogen Sources
3.1. Survey of Reducing Agents
3.1.1. Metal Reducing Agents
3.1.2. Hydrazine Reducing Agent
3.1.3. Borohydride Reducing Agent
3.1.4. Hydrogen Reducing Agent
3.1.5. Other Reducing Agents
3.2. Survey of Hydrogen Source
4. Non-Catalytic Synthesis of PHAs
4.1. Metal Reducing Agent
4.2. Other Reducing Agents
5. Catalytic Synthesis of PHAs
5.1. Noble-Metal Catalyst
5.1.1. H2 Reducing Agent
5.1.2. N2H4 Reducing Agent
5.1.3. Borohydride Reducing Agent
5.2. Non-Noble-Metal Catalysts
5.2.1. H2 Reducing Agent
5.2.2. N2H4 Reducing Agent
5.2.3. Borohydride Reducing Agent
5.3. Non-Metallic Catalysts
5.3.1. N2H4 Reducing Agent
5.3.2. Borohydride Reducing Agent
5.4. Biological Catalysis
6. Investigation of the Reduction Mechanism
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Tutton, A.E. The Preparation and properties of free hydroxylamine. Nature 1893, 49, 105–106. [Google Scholar] [CrossRef]
- Paudyal, M.P.; Adebesin, A.M.; Burt, S.R.; Ess, D.H.; Ma, Z.; Kürti, L.; Falck, J.R. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 2016, 353, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Feldmann, J.; Wiedemann, S.; Okamura, H.; Schneider, C.; Iwan, K.; Crisp, A.; Rossa, M.; Amatov, T.; Carell, T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 2019, 366, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dong, X.; Lin, J.; Zeng, Y.; Jiao, G.; Gu, Q.; Guo, X.; Ma, C.; Liu, X. Catalytic asymmetric radical diamination of alkenes. Chem 2017, 3, 979–990. [Google Scholar] [CrossRef]
- Tang, Y.; Mitchell, L.A.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Ammonia oxide as a building block for high-performance and insensitive energetic materials. Angew. Chem. Int. Ed. 2017, 56, 5894–5898. [Google Scholar] [CrossRef]
- Quienne, B.; Poli, R.; Pinaud, J.; Caillol, S. Enhanced aminolysis of cyclic carbonates by β-hydroxylamines for the production of fully biobased polyhydroxyurethanes. Green Chem. 2021, 23, 1678–1690. [Google Scholar] [CrossRef]
- Bamberger, E. Ueber das phenylhydroxylamin. Ber. Dtsch. Chem. Ges. 1894, 27, 1548–1557. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L.; Zhang, L. Au-catalyzed synthesis of 2-alkylindoles from N-arylhydroxylamines and terminal alkynes. Chem. Commun. 2011, 47, 7815–7817. [Google Scholar] [CrossRef]
- Johansson, E.; Parkinson, G.N.; Denny, W.A.; Neidle, S. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form. J. Med. Chem. 2003, 46, 4009–4020. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, S.; Liao, P.; Xie, F.; Kang, J.; Li, S.; Xian, J.; Guo, L.; Li, G. Electrocatalytic synthesis of pyridine oximes using in situ generated NH2OH from NO species on nanofiber membranes derived from NH2-MIL-53(Al). Angew. Chem. Int. Ed. 2023, 62, e202312239. [Google Scholar] [CrossRef]
- Kato, K.; Ide, H.; Hirohata, I.; Fishman, W.H. Biosynthetic preparation of the NO-glucosiduronic acid of N-acetyl-N-phenylhydroxylamine. Biochem. J. 1967, 103, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, T.; Jia, K.; Ma, W.; Tung, C.-H.; Liu, L. Catalytic asymmetric oxidation of amines to hydroxylamines. J. Am. Chem. Soc. 2023, 145, 22276–22283. [Google Scholar] [CrossRef]
- Irabuena, C.; Posada, L.; Rey, L.; Scarone, L.; Davyt, D.; Villalba, J.; Serra, G. Synthesis of cyclotetrapeptides analogues to natural products as herbicides. Molecules 2022, 27, 7350. [Google Scholar] [CrossRef] [PubMed]
- Nöteberg, D.; Brånalt, J.; Kvarnström, I.; Linschoten, M.; Musil, D.; Nyström, J.E.; Zuccarello, G.; Samuelsson, B. New proline mimetics: Synthesis of thrombin inhibitors incorporating cyclopentane- and cyclopentenedicarboxylic acid templates in the P2 position. Binding conformation investigated by X-ray crystallography. J. Med. Chem. 2000, 43, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Parveen, I.; Rose, M.; Phillips, H.C.; Flower, S.E.; Woodman, T.J.; Garty, C.A.; Threadgill, M.D. Two-step synthesis of paracetamol (acetaminophen), a practical illustration of carbonyl reactivity for year-one biosciences students. J. Chem. Educ. 2023, 100, 3955–3959. [Google Scholar] [CrossRef]
- Zhao, F.; You, K.; Peng, C.; Tan, S.; Li, R.; Liu, P.; Wu, J.; Luo, H.A. A simple and efficient approach for preparation of hydroxylamine sulfate from the acid-catalyzed hydrolysis reaction of cyclohexanone oxime. Chem. Eng. J. 2015, 272, 102–107. [Google Scholar] [CrossRef]
- Mathieu, G.; Azek, E.; Lai, C.; Lebel, H. Hydroxylamine umpolung in copper-catalyzed cross-coupling reactions to synthesize N-arylhydroxylamine derivatives. ACS Catal. 2024, 14, 4675–4682. [Google Scholar] [CrossRef]
- Hill, J.; Beckler, T.D.; Crich, D. Recent advances in the synthesis of di- and trisubstituted Hydroxylamines. Molecules 2023, 28, 2816. [Google Scholar] [CrossRef]
- Matute, R.; García-Viñuales, S.; Hayes, H.; Ghirardello, M.; Darù, A.; Tejero, T.; Delso, I.; Merino, P. Recent advances in the preparation of enantiomerically pure hydroxylamines from nitrones. Curr. Org. Synth. 2016, 13, 669–686. [Google Scholar] [CrossRef]
- Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed. 2007, 119, 7404–7407. [Google Scholar] [CrossRef]
- Gao, M.; Kou, J.; Xu, M.; Yuan, K.; Li, M.; Dong, Z. Electron-rich Pt anchored on covalent triazine frameworks for the selective hydrogenation of halogenated nitrobenzenes. Green Chem. 2024, 26, 3884–3902. [Google Scholar] [CrossRef]
- Rylander, P.N.; Karpenko, I.M.; Pond, G.R. Selectivity in hydrogenation over platinum metal catalysts: Nitroaromatics. Ann. N. Y. Acad. Sci. 1970, 172, 266–275. [Google Scholar] [CrossRef]
- Dhanju, S.; Blazejewski, B.W.; Crich, D. Synthesis of trialkylhydroxylamines by stepwise reduction of O-acyl N,N-disubstituted hydroxylamines: Substituent effects on the reduction of O-(1-acyloxyalkyl)hydroxylamines and on the conformational dynamics of N-alkoxypiperidines. J. Org. Chem. 2017, 82, 5345–5353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, S.; Hou, S.; Xu, J. Diverse and chemoselective sigmatropic shift rearrangements of multisubstituted N,O-diarylhydroxylamines. Org. Biomol. Chem. 2022, 20, 5470–5480. [Google Scholar] [CrossRef]
- Doleschall, G. An efficient synthesis of N-monoalkylated hydroxylamines. Tetrahedron Lett. 1987, 28, 2993–2994. [Google Scholar] [CrossRef]
- Khlestkin, V.K.; Mazhukin, D.G.; Tikhonov, A.Y.; Rybalova, T.V.; Bagryanskaya, I.Y.; Gatilov, Y.V. Intramolecular cyclization of 1,2-bis(N-alkoxy-N-nitrosoamino)alkanes: A unique route to 4,5-dihydro-1,2,3-triazole 2-oxides. Synthesis 2000, 2000, 681–690. [Google Scholar] [CrossRef]
- Huo, F.; Lu, Y. Homogeneous synthesis of hydroxylamine hydrochloride via acid-catalyzed hydrolysis of nitromethane. React. Chem. Eng. 2020, 5, 387–394. [Google Scholar] [CrossRef]
- Tokuyama, H.; Kuboyama, T.; Fukuyama, T. Transformation of primary amines to N-monoalkylhydroxylamines: N-hydroxy-(S)-1-phenylethylamine oxalate. Org. Synth. 2003, 80, 207–218. [Google Scholar]
- Heydari, A.; Aslanzadeh, S. Oxidation of primary amines to N-monoalkylhydroxylamines using sodium tungstate and hydrogen peroxide-urea complex. Adv. Synth. Catal. 2005, 347, 1223–1225. [Google Scholar] [CrossRef]
- Davies, J.; Angelini, L.; Alkhalifah, M.; Sanz, L.; Sheikh, N.; Leonori, D. Photoredox synthesis of arylhydroxylamines from carboxylic acids and nitrosoarenes. Synthesis 2018, 50, 821–830. [Google Scholar]
- Wang, T.; Liu, C.; Xu, D.; Xu, J.; Yang, Z. Iridium-catalyzed and pH-dependent reductions of nitroalkenes to ketones. Molecules 2022, 27, 7822. [Google Scholar] [CrossRef] [PubMed]
- McNally, A. Mitsunobu gets a makeover. Nat. Chem. 2019, 11, 966–967. [Google Scholar] [CrossRef]
- Li, B.; Chen, J.; Liu, D.; Gridnev, I.D.; Zhang, W. Nickel-catalysed asymmetric hydrogenation of oximes. Nat. Chem. 2022, 14, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, H. Asymmetric 1,3-dipolar cycloadditions. ChemInform 2007, 38, chin.200727225. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Martel, A.; Dhal, R.; Dujardin, G. A large-scale low-cost preparation of N-benzylhydroxylamine hydrochloride. Synthesis 2009, 2009, 3174–3176. [Google Scholar]
- Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680. [Google Scholar] [CrossRef]
- Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu Alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem. Int. Ed. 2015, 54, 841–845. [Google Scholar] [CrossRef]
- Sharma, D.; Choudhary, P.; Kumar, S.; Krishnan, V. Interfacial nanoarchitectonics of nickel phosphide supported on activated carbon for transfer hydrogenation of nitroarenes under mild conditions. J. Colloid Interface Sci. 2024, 657, 449–462. [Google Scholar] [CrossRef]
- Neal, R.D.; Inoue, Y.; Hughes, R.A.; Neretina, S. Catalytic reduction of 4-nitrophenol by gold catalysts: The influence of borohydride concentration on the induction time. J. Phys. Chem. C 2019, 123, 12894–12901. [Google Scholar] [CrossRef]
- Xie, W.; Grzeschik, R.; Schlücker, S. Metal nanoparticle-catalyzed reduction using borohydride in aqueous media: A kinetic analysis of the surface reaction by microfluidic SERS. Angew. Chem. Int. Ed. 2016, 55, 13729–13733. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, W.; Huang, B.; Shao, Q.; Xu, L.; Yang, S.; Huang, X. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd–Cd nanocubes. J. Am. Chem. Soc. 2020, 142, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, Y.; Zhao, Y.; Liu, R.; Zhao, Y.; Dai, X.; Ma, N.; Streb, C.; Chen, X. Hydrogenation catalysis by hydrogen spillover on platinum-functionalized heterogeneous boronic acid-polyoxometalates. Angew. Chem. Int. Ed. 2023, 62, e202314999. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, X.; Xiong, J.; Mi, L.; Song, X.; Li, Y. Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: A review. J. Mater. Chem. A. 2022, 10, 6927–6949. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Q.; Xu, Z.; Chen, R.; Liu, T.; Luo, J.; Wu, Y.; Huang, Y.; Lu, Q. Tunable mono- and di-methylation of amines with methanol over bimetallic CuCo nanoparticle catalysts. Green Chem. 2022, 24, 5965–5977. [Google Scholar] [CrossRef]
- Wang, D.; Deraedt, C.; Ruiz, J.; Astruc, D. Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor. J. Mol. Catal. A: Chem. 2015, 400, 14–21. [Google Scholar] [CrossRef]
- Sharma, D.; Choudhary, P.; Mittal, P.; Kumar, S.; Gouda, A.; Krishnan, V. Nanoarchitectonics of non-noble-metal-based heterogeneous catalysts for transfer hydrogenation reactions: Detailed insights on different hydrogen sources. ACS Catal. 2024, 14, 4211–4248. [Google Scholar] [CrossRef]
- Ung, S.; Falguières, A.; Guy, A.; Ferroud, C. Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines. Tetrahedron Lett. 2005, 46, 5913–5917. [Google Scholar] [CrossRef]
- Shi, Q.X.; Lu, R.W.; Jin, K.; Zhang, Z.X.; Zhao, D.F. Ultrasound-promoted highly chemoselective reduction of aromatic nitro compounds to the corresponding N-arylhydroxylamines using Zinc and HCOONH4 in CH3CN. Chem. Lett. 2006, 35, 226–227. [Google Scholar] [CrossRef]
- Shi, Q.; Lu, R.; Hao, X.; Lu, L.; Zhang, S. Ultrasound-assisted highly efficient reduction of nitroarenes to corresponding N-arylhydroxylamines. Chem. Res. Chin. Univ. 2009, 25, 183–188. [Google Scholar]
- Keenan, C.S.; Murphree, S.S. Rapid and convenient conversion of nitroarenes to anilines under microwave conditions using nonprecious metals in mildly acidic medium. Synth. Commun. 2017, 47, 1085–1089. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Jiang, J.; Jin, Z. The selective reduction of nitroarenes to N-arylhydroxylamines using Zn in a CO2/H2O system. Green Chem. 2009, 11, 1397–1400. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Hao, Y.; Jiang, J. Promoting effect of ethanol on the synthesis of N-(2-methylphenyl) hydroxylamine from o-nitrotoluene in Zn/H2O/CO2 system. Chin. Chem. Lett. 2011, 22, 221–224. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yang, X.; Jiang, J. Selective reduction of nitroarenes to N-arylhydroxylamines by use of Zn in a CO2–H2O system, promoted by ultrasound. Res. Chem. Intermed. 2012, 38, 2471–2478. [Google Scholar] [CrossRef]
- Mourad, M.S.; Varma, R.S.; Kabalka, G.W. Reduction of .alpha.,.beta.-unsaturated nitro compounds with boron hydrides: A new route to N-substituted hydroxylamines. J. Org. Chem. 1985, 50, 133–135. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Xia, C.; Wu, L. Visible-light-promoted oxidative dehydrogenation of hydrazobenzenes and transfer hydrogenation of azobenzenes. Green Chem. 2019, 21, 4189–4193. [Google Scholar] [CrossRef]
- Kaneko, C.; Yamada, S.; Yokoe, I.; Hata, N.; Ubukata, Y. Photochemical reduction of 4-nitropyridine 1-oxide and its methyl-substituted derivatives in ethanol. Tetrahedron Lett. 1966, 7, 4729–4733. [Google Scholar] [CrossRef]
- Kallitsakis, M.G.; Ioannou, D.I.; Terzidis, M.A.; Kostakis, G.E.; Lykakis, I.N. Selective photoinduced reduction of nitroarenes to N-arylhydroxylamines. Org. Lett. 2020, 22, 4339–4343. [Google Scholar] [CrossRef]
- Kong, X.D.; Ni, J.; Song, Z.M.; Yang, Z.W.; Zheng, J.N.; Xu, Z.F.; Qin, L.; Li, H.L.; Geng, Z.G.; Zeng, J. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway. Nat. Sustain. 2024, 7, 652–660. [Google Scholar] [CrossRef]
- Frederiksen, F.M. Electrochemical synthesis of phenylhydroxylamine. J. Phys. Chem. C. 1915, 19, 696–701. [Google Scholar] [CrossRef]
- Cyr, A.; Huot, P.; Marcoux, J.-F.; Belot, G.; Laviron, E.; Lessard, J. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes. Electrochim. Acta 1989, 34, 439–445. [Google Scholar] [CrossRef]
- Abdollahi, S. Electrochemical synthesis of aniline, a model for synthesis of more related compounds. Orient. J. Chem. 1998, 15, 217–222. [Google Scholar]
- Seshadri, G.; Kelber, J.A. A study of the electrochemical reduction of nitrobenzene at molybdenum Eelectrodes. J. Electrochem. Soc. 1999, 146, 3762. [Google Scholar] [CrossRef]
- Taya, K. Hydrogenating activity of an iridium catalyst. Chem. Commun. 1966, 14, 464–465. [Google Scholar] [CrossRef]
- Karwa, S.L.; Rajadhyaksha, R.A. Selective catalytic hydrogenation of nitrobenzene to phenylhydroxylamine. Ind. Eng. Chem. Res. 1987, 26, 1746–1750. [Google Scholar] [CrossRef]
- Takenaka, Y.; Kiyosu, T.; Choi, J.-C.; Sakakura, T.; Yasuda, H. Selective synthesis of N-aryl hydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts. Green Chem. 2009, 11, 1385–1390. [Google Scholar] [CrossRef]
- Takenaka, Y.; Kiyosu, T.; Choi, J.-C.; Sakakura, T.; Yasuda, H. Selective synthesis of N-alkyl hydroxylamines by hydrogenation of nitroalkanes using supported palladium catalysts. ChemSusChem 2010, 3, 1166–1168. [Google Scholar] [CrossRef]
- Takenaka, Y.; Kiyosu, T.; Mori, G.; Choi, J.-C.; Sakakura, T.; Yasuda, H. Selective hydrogenation of nitroalkane to N-alkyl hydroxylamine over supported palladium catalysts. Catal. Today 2011, 164, 580–584. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Xu, F.; Chai, K.; Ren, M.; Yu, Z.; Su, W.; Liu, F. An efficient continuous flow synthesis for the preparation of N-arylhydroxylamines: Via a DMAP-mediated hydrogenation process. Molecules 2023, 28, 2968. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Mao, S.; Wang, Z.; Gong, Y.; Wang, Y. Study of the role of alkaline sodium additive in selective hydrogenation of phenol. Chin. J. Catal. 2019, 40, 1516–1524. [Google Scholar] [CrossRef]
- He, D.; Li, T.; Dai, X.; Liu, S.; Cui, X.; Shi, F. Construction of highly active and selective molecular imprinting catalyst for hydrogenation. J. Am. Chem. Soc. 2023, 145, 20813–20824. [Google Scholar] [CrossRef]
- Cherkasov, N.; Expósito, A.J.; Aw, M.S.; Fernández-García, J.; Huband, S.; Sloan, J.; Paniwnyk, L.; Rebrov, E.V. Active site isolation in bismuth-poisoned Pd/SiO2 catalysts for selective hydrogenation of furfural. Appl. Catal. A 2019, 570, 183–191. [Google Scholar] [CrossRef]
- Motoyama, Y.; Lee, Y.; Tsuji, K.; Yoon, S.-H.; Mochida, I.; Nagashima, H. Platinum nanoparticles supported on nitrogen-doped carbon nanofibers as efficient poisoning catalysts for the hydrogenation of nitroarenes. ChemCatChem 2011, 3, 1578–1581. [Google Scholar] [CrossRef]
- Li, D.D.; Lu, G.P.; Cai, C. Modified cellulose with tunable surface hydrophilicity/hydrophobicity as a novel catalyst support for selective reduction of nitrobenzene. Catal. Commun. 2020, 137, 105949. [Google Scholar] [CrossRef]
- Chen, G.; Xu, C.; Huang, X.; Ye, J.; Gu, L.; Li, G.; Tang, Z.; Wu, B.; Yang, H.; Zhao, Z.; et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Gao, Y.; Hu, L.; Yang, X. Highly efficient and selective hydrogenation of biomass-derived furfural using interface-active rice husk-based porous carbon-supported NiCu alloy catalysts. Molecules 2024, 29, 2638. [Google Scholar] [CrossRef] [PubMed]
- Galvagno, S.; Donato, A.; Neri, G.; Pietropaolo, R.; Poltarzewski, Z. Nitrobenzene hydrogenation on Pt-Sn catalysts. J. Mol. Catal. 1987, 42, 379–387. [Google Scholar] [CrossRef]
- Neri, G.; Rizzo, G.; Milone, C.; Galvagno, S.; Musolino, M.G.; Capannelli, G. Microstructural characterization of doped-Pd/C catalysts for the selective hydrogenation of 2,4-dinitrotoluene to arylhydroxylamines. Appl. Catal. A 2003, 249, 303–311. [Google Scholar] [CrossRef]
- Rong, Z.; Du, W.; Wang, Y.; Lu, L. Carbon supported Pt colloid as effective catalyst for selective hydrogenation of nitroarenes to arylhydroxylamines. Chem. Commun. 2010, 46, 1559–1561. [Google Scholar] [CrossRef]
- Shil, A.K.; Das, P. Solid supported platinum(0) nanoparticles catalyzed chemo-selective reduction of nitroarenes to N-arylhydroxylamines. Green Chem. 2013, 15, 3421–3428. [Google Scholar] [CrossRef]
- Jawale, D.V.; Gravel, E.; Boudet, C.; Shah, N.; Geertsen, V.; Li, H.; Namboothiri, I.N.N.; Doris, E. Selective conversion of nitroarenes using a carbon nanotube–ruthenium nanohybrid. Chem. Commun. 2015, 51, 1739–1742. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 2016, 138, 10104–10107. [Google Scholar] [CrossRef] [PubMed]
- Tyler, J.H.; Nazari, S.H.; Patterson, R.H.; Udumula, V.; Smith, S.J.; Michaelis, D.J. Synthesis of N-aryl and N-heteroaryl hydroxylamines via partial reduction of nitroarenes with soluble nanoparticle catalysts. Tetrahedron Lett. 2017, 58, 82–86. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, M. Polyvinylpyrrolidone-stabilized iridium nanoparticles catalyzed the transfer hydrogenation of nitrobenzene using formic acid as the source of hydrogen. Chemistry 2020, 2, 960–968. [Google Scholar] [CrossRef]
- Bhattacherjee, D.; Shaifali; Kumar, A.; Zyryanov, G.V.; Das, P. Polystyrene stabilized iridium nanoparticles catalyzed chemo- and regio-selective semi-hydrogenation of nitroarenes to N-arylhydroxylamines. Mol. Catal. 2021, 514, 111836. [Google Scholar] [CrossRef]
- Paterson, R.; Alharbi, A.A.; Wills, C.; Dixon, C.; Šiller, L.; Chamberlain, T.W.; Griffiths, A.; Collins, S.M.; Wu, K.; Simmons, M.D.; et al. Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Mol. Catal. 2022, 528, 112476. [Google Scholar] [CrossRef]
- Doherty, S.; Knight, J.G.; Backhouse, T.; Summers, R.J.; Abood, E.; Simpson, W.; Paget, W.; Bourne, R.A.; Chamberlain, T.W.; Stones, R.; et al. Highly selective and solvent-dependent reduction of nitrobenzene to N-phenylhydroxylamine, azoxybenzene, and aniline catalyzed by phosphino-modified polymer immobilized ionic liquid-stabilized AuNPs. ACS Catal. 2019, 9, 4777–4791. [Google Scholar] [CrossRef]
- Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Reduction of nitroarenes into aryl amines and N-Aryl hydroxylamines via activation of NaBH4 and ammonia-borane complexes by Ag/TiO2 catalyst. Nanomaterials 2016, 6, 54. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.H.; Yuan, T.Q.; Ren, X.; Rong, Z. Raney Ni as a versatile catalyst for biomass conversion. ACS Catal. 2021, 11, 10508–10536. [Google Scholar] [CrossRef]
- Xu, F.; Chen, J.; Jiang, Z.; Cheng, P.; Yu, Z.; Su, W. Selective hydrogenation of nitroaromatics to N-arylhydroxylamines in a micropacked bed reactor with passivated catalyst. RSC Adv. 2020, 10, 28585–28594. [Google Scholar] [CrossRef]
- Cammarota, R.C.; Vollmer, M.V.; Xie, J.; Ye, J.; Linehan, J.C.; Burgess, S.A.; Appel, A.M.; Gagliardi, L.; Lu, C. A bimetallic Nickel–Gallium complex catalyzes CO2 hydrogenation via the intermediacy of an anionic d10 Nickel hydride. J. Am. Chem. Soc. 2017, 139, 14244–14250. [Google Scholar] [CrossRef]
- Studer, M.; Neto, S.; Blaser, H.U. Modulating the hydroxylamine accumulation in the hydrogenation of substituted nitroarenes using vanadium-promoted RNi catalysts. Top. Catal. 2000, 13, 205–212. [Google Scholar] [CrossRef]
- Sheng, T.; Qi, Y.; Lin, X.; Hu, P.; Sun, S.; Lin, W. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344. [Google Scholar] [CrossRef]
- Ayyangar, N.R.; Brahme, K.C.; Kalkote, U.R.; Srinivasan, K.V. Facile transfer-reduction of nitroarenes to N-arylhydroxylamines with hydrazine in the presence of Raney Nickel. Synthesis 1984, 1984, 938–941. [Google Scholar] [CrossRef]
- Pasha, M.A.; Nanjundaswamy, H.M. Green protocol for the rapid generation of arylhydroxylamines and hydrazoarenes in water. J. Org. Chem. 2006, 2, 5–6. [Google Scholar]
- Ren, P.D.; Dong, T.W.; Wu, S.H. Synthesis of N-arylhydroxylamines by antimony-catalyzed reduction of nitroarenes. Synth. Commun. 1997, 27, 1547–1552. [Google Scholar] [CrossRef]
- Ren, P.D.; Pan, X.W.; Jin, Q.H.; Yao, Z.P. Reduction of Nitroarenes to N-Arylhydroxylamines with KBH4/BiCl3 System. Synth. Commun. 1997, 27, 3497–3503. [Google Scholar] [CrossRef]
- Pei, L.; Tan, H.; Liu, M.; Wang, R.; Gu, X.; Ke, X.; Jia, J.; Zheng, Z. Hydroxyl-group-modified polymeric carbon nitride with the highly selective hydrogenation of nitrobenzene to N-phenylhydroxylamine under visible light. Green Chem. 2021, 23, 3612–3622. [Google Scholar] [CrossRef]
- Yanada, K.; Yamaguchi, H.; Meguri, H.; Uchida, S. Selenium-catalysed reduction of aromatic nitro compounds to N-arylhydroxylamines. Chem. Commun. 1986, 22, 1655–1656. [Google Scholar] [CrossRef]
- Li, F.; Cui, J.; Qian, X.; Zhang, R. A novel strategy for the preparation of arylhydroxylamines: Chemoselective reduction of aromatic nitro compounds using bakers’ yeast. Chem. Commun. 2004, 36, 2338–2339. [Google Scholar] [CrossRef]
- Li, F.; Cui, J.; Qian, X.; Zhang, R.; Xiao, Y. Highly chemoselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalysed by plant cells from a grape. Chem. Commun. 2005, 14, 1901–1903. [Google Scholar]
- Hollmann, F.; Arends, I.W.C.E.; Holtmann, D. Enzymatic reductions for the chemist. Green Chem. 2011, 13, 2285–2314. [Google Scholar] [CrossRef]
- Nguyen-Tran, H.; Zheng, G.; Qian, X.; Xu, J. Highly selective and controllable synthesis of arylhydroxylamines by the reduction of nitroarenes with an electron-withdrawing group using a new nitroreductase BaNTR1. Chem. Commun. 2014, 50, 2861–2864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bu, J.; Wang, J.; Sun, C.; Zhao, D.; Sheng, G.; Xie, X.; Sun, M.; Yu, L. Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: The shape effect of the support and key role of additional Ce3+ Sites. ACS Catal. 2020, 10, 10350–10363. [Google Scholar] [CrossRef]
- Çalışkan, M.; Akay, S.; Kayan, B.; Baran, T.; Kalderis, D. Preparation and application of a hydrochar-based palladium nanocatalyst for the reduction of nitroarenes. Molecules 2021, 26, 6859. [Google Scholar] [CrossRef]
- Jin, H.; Li, P.; Cui, P.; Shi, J.; Zhou, W.; Yu, X.; Song, W.; Cao, C. Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nat. Commun. 2022, 13, 723. [Google Scholar] [CrossRef]
No. | Method | Substrate | Catalysts | Reagents | Pressure | T (°C) | Solvent | Time | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Alkylation | 1-acetoxy-4-azidobutyl | n/a | Substitute: NH2OH | n/a | 0 | Dichloromethane | 3 h | 54 | [23] |
2 | Arylation | Alkenes | n/a | Substitute: NH2OH | n/a | rt | Hexafluoroisopropanol | 3 h | <70 | [24] |
3 | Hydrolysis | Nitromethane | n/a | Acidifier: HCl | n/a | <120 | H2O | 4 h | 90 | [27] |
4 | Hydrolysis | Nitrone | n/a | Acidifier: oxalate | n/a | rt | MeOH | n/a | 62 | [28] |
5 | Hydrolysis | Nitrone | n/a | Acidifier: HCl | n/a | n/a | H2O | n/a | 72 | [35] |
6 | Oxidation | Primary amines | n/a | Oxidant: MCPBA | n/a | 60 | CH3CN | 24 h | 82 | [28] |
7 | Oxidation | Primary amines | Sodium tungstate | Oxidant: UHP | n/a | rt | Et2O | 6 h | 80 | [29] |
8 | Oxidation | Nitrosoarenes | Mes-acridinium perchlorate | External light: blue LED | n/a | rt | CH2Cl2 | 1 h | 58 | [30] |
9 | Reduction | Oximes | n/a | Reductant: NaBH3CN | n/a | rt | n/a | n/a | 99 | [32] |
10 | Reduction | Oximes | Ni(OAc)4·4H2O | Reductant: H2 | 50 bar | 50 | TFE/AcOH | 24 h | 67 | [33] |
No. | Catalyst | Reducing Agent | Solvent | Additives | T (°C) | Time (min) | Sele. (PHAs, %) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 5%Pt-C | H2 | Ethanol | DMSO | 25 | 60 | 85.0 | [22] |
2 | Iridium | H2 | Ethanol | n/a | 60 | 25 | 58.0 | [63] |
3 | 5%Pt-C | H2 | Methanol | DMSO | 60 | 45 | 70.0 | [64] |
4 | 5%Pt-SiO2 | H2 | IPA | DMSO/TEA | rt | 105 | 98.7 | [65] |
5 | Pd-SIO-1 | H2 | IPA | n/a | rt | 120 | 96.0 | [67] |
6 | 5%Pt-C | H2 | THF | DMAP | 25 | - | 94.0 | [68] |
7 | Pt(1%)/N-CNF-H | H2 | Ethyl Acetate | n/a | rt | 360 | 90.0 | [72] |
8 | EDA-Pt NWs | H2 | Methanol | Sodium hydroxide | 25 | 120 | >99.9 | [74] |
9 | PdCa3 | H2 | Ethanol | n/a | rt | - | 88.0 | [77] |
10 | 2% Pt/C | H2 | THF | n/a | 10 | 70 | 92.3 | [78] |
11 | SS-Pt(0) | N2H4·H2O | PEG-400 | n/a | 60 | 190 | 92.0 | [79] |
12 | RuCNT | N2H4·H2O | THF | n/a | rt | 150 | 98.0 | [80] |
13 | Ru/PS | N2H4·H2O | CHCl3 | n/a | rt | 45 | 88.0 | [82] |
14 | Ir@PS | N2H4·H2O | PEG-400 | n/a | 85 | 30 | 87.0 | [84] |
15 | AuNP@PEG-PIILP | NaBH4 | Water | n/a | 25 | 40 | >99.9 | [86] |
16 | Ag/MTA | NH3BH3 | Ethanol | n/a | rt | 5 | 94.0 | [87] |
17 | Passivated-Reney Ni | H2 | THF | n/a | rt | 1920 | 93.7 | [89] |
18 | Raney Ni | N2H4·H2O | C2H4Cl2 | n/a | 10 | 120 | 88.0 | [93] |
19 | Mg | N2H4-H2SO4 | Water | n/a | 80 | 1.5 | 94.0 | [94] |
20 | Sb | NaBH4 | Methanol | n/a | rt | 60 | 88.0 | [95] |
21 | BiCI3 | KBH4 | Ethanol-H2O | n/a | rt | 15 | 81.0 | [96] |
22 | PCN-160 | IPA | IPA | Visible | 80 | 1080 | 80.0 | [97] |
23 | Se | NaBH4 | Ethanol | n/a | 25 | 15 | 81.0 | [98] |
24 | Grape-plant cells | n/a | H2O | n/a | 25 | 4 Day | 96.0 | [100] |
25 | BaNTR1 | n/a | H2O | Sodium phosphate buffer | 30 | 60 | 98.7 | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Ouyang, D.; Wang, L.; Liu, Y.-N. Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives. Molecules 2024, 29, 4353. https://doi.org/10.3390/molecules29184353
Yu M, Ouyang D, Wang L, Liu Y-N. Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives. Molecules. 2024; 29(18):4353. https://doi.org/10.3390/molecules29184353
Chicago/Turabian StyleYu, Min, Dachen Ouyang, Liqiang Wang, and You-Nian Liu. 2024. "Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives" Molecules 29, no. 18: 4353. https://doi.org/10.3390/molecules29184353
APA StyleYu, M., Ouyang, D., Wang, L., & Liu, Y. -N. (2024). Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives. Molecules, 29(18), 4353. https://doi.org/10.3390/molecules29184353