A Review of Carbon Anode Materials for Sodium-Ion Batteries: Key Materials, Sodium-Storage Mechanisms, Applications, and Large-Scale Design Principles
Abstract
:1. Introduction
2. Carbon Anode Materials for SIBs
2.1. Hard Carbon Material
2.1.1. Definition and Characteristics
- Nanopores: Hard carbon generally features nanopores at the nanoscale level, which enhance its specific surface area and offers additional active sites for sodium ion storage. The size and arrangement of these nanopores significantly impact the diffusion and storage efficiency of sodium ions [38]. Proper nanopore design can significantly improve the storage and release dynamics of sodium ions [30].
- Defects: In hard carbon, defects like vacancies, edge dislocations, and grain boundaries serve as adsorption sites for sodium ions. These defects further enhance electron and ion mobility, leading to enhanced electrochemical performance in batteries [35].
- Structural Attributes: Hard carbon’s distinctive structural features encompass a highly disordered carbon atom arrangement that provides numerous channels for sodium ion implantation and withdrawal, thus augmenting its Na-storage capacity. Moreover, the material’s layered architecture and expanded interlayer spacing promote swift migration and the efficient storage of sodium ions [39].
2.1.2. Sodium-Storage Mechanism of HC
“Insertion-Adsorption” Model
- (1)
- The region with a gradual voltage change exhibits a hysteresis effect during the insertion and removal of sodium ions;
- (2)
- The low potential plateau area is associated with the embedding of sodium or lithium ions into the nanopores between disordered layers, akin to an adsorption process [55].
“Adsorption-Intercalation” Model
“Three-Stage” Model
“Adsorption Filling” Model
- (1)
- The adsorption phase, where Na+ is held on the surface defects of the material during this stage (such as edges and vacancies);
- (2)
- The insertion phase, where sodium ions insert into the pseudo-graphitic layers of the carbon material;
- (3)
- The pore-filling phase, which occurs after the intercalation sites are saturated, and is characterized by the incorporation of Na+ into the closed pores [61].
2.1.3. Application and Performance
2.2. Soft Carbon Materials
2.2.1. Definition and Characteristics of SC
2.2.2. Sodium Intercalation Mechanism
2.2.3. Application of Soft Carbon in SIBs
2.3. Graphite and Graphene Materials
2.3.1. Structure and Properties of Graphite and Graphene
2.3.2. Sodium-Storage Mechanism of Graphite and Graphene
2.3.3. Application of Graphene and Graphite
2.4. Other Carbon-Based Materials
3. The Current Status and Development of SIBs Industrialization
4. Design Principles of Carbon Materials for Large Scale-Up
4.1. Design Principles
4.1.1. Electrochemical Performance Optimization
4.1.2. Cost–Benefit Analysis of Carbon Materials
4.1.3. Environmental and Sustainability Considerations
4.2. Challenges of Scaling Applications
5. Conclusions and Prospects
- ICE
- 2.
- Rate/Cycle Performance
- 3.
- SEI
Funding
Conflicts of Interest
References
- Nocera, D.G. Solar Fuels and Solar Chemicals Industry. Acc. Chem. Res. 2017, 50, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Zhou, J.; Miao, L.; Liu, C.; Peng, Y.; Sun, L.; Tanemura, S.; Deng, Z. The Emergence of Solar Thermal Utilization: Solar-Driven Steam Generation. J. Mater. Chem. A 2017, 5, 7691–7709. [Google Scholar] [CrossRef]
- Date, A.; Date, A.; Akbarzadeh, A. Investigating the Potential for Using a Simple Water Reaction Turbine for Power Production from Low Head Hydro Resources. Energy Convers. Manag. 2013, 66, 257–270. [Google Scholar] [CrossRef]
- Lima, G.M.; Belchior, F.N.; Villena, J.E.N.; Domingos, J.L.; Freitas, M.A.V.; Hunt, J.D. Hybrid Electrical Energy Generation from Hydropower, Solar Photovoltaic and Hydrogen. Int. J. Hydrog. Energy 2024, 53, 602–612. [Google Scholar] [CrossRef]
- Pennock, S.; Coles, D.; Angeloudis, A.; Bhattacharya, S.; Jeffrey, H. Temporal Complementarity of Marine Renewables with Wind and Solar Generation: Implications for GB System Benefits. Appl. Energy 2022, 319, 119276. [Google Scholar] [CrossRef]
- Wang, Z.; Smith, A.T.; Wang, W.; Sun, L. Versatile Nanostructures from Rice Husk Biomass for Energy Applications. Angew. Chem. Int. Ed. 2018, 57, 13722–13734. [Google Scholar] [CrossRef]
- Obaideen, K.; Nooman AlMallahi, M.; Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A.G. On the Contribution of Solar Energy to Sustainable Developments Goals: Case Study on Mohammed Bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate Change Impacts on Renewable Energy Generation. A Review of Quantitative Projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Gribble, D.A.; McCulfor, E.; Li, Z.; Parekh, M.; Pol, V.G. Enhanced Capacity and Thermal Safety of Lithium-Ion Battery Graphite Anodes with Conductive Binder. J. Power Sources 2023, 553, 232204. [Google Scholar] [CrossRef]
- Li, J.; Fan, W.; Qin, W.; Ma, C.; Yan, L.; Guo, Y.; Samadiy, M.; Alimov, U.; Deng, T. The Regeneration Process of FePO4 in Electrochemical Lithium Extraction: The Role of Alkali Ions. Chem. Eng. J. 2024, 493, 152476. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, J.; Gao, Y.; Hou, Q.; Ren, Z.; Qi, Y.; Zhang, K.; Shen, C.; Zhang, J.; Xie, K. A Multifunctional Electrolyte with Highly-Coordinated Solvation Structure-in-Nonsolvent for Rechargeable Lithium Batteries. J. Energy Chem. 2020, 51, 362–371. [Google Scholar] [CrossRef]
- Du, M.; Du, K.-D.; Guo, J.-Z.; Liu, Y.; Aravindan, V.; Yang, J.-L.; Zhang, K.-Y.; Gu, Z.-Y.; Wang, X.-T.; Wu, X.-L. Direct Reuse of Oxide Scrap from Retired Lithium-Ion Batteries: Advanced Cathode Materials for Sodium-Ion Batteries. Rare Met. 2023, 42, 1603–1613. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Wang, X.; Xia, X.; Xie, D.; Gu, C.; Tu, J. Sodium-Storage Behavior of Electron-Rich Element-Doped Amorphous Carbon. Appl. Phys. Rev. 2021, 8, 011402. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Wang, Y.; Xu, T.; Chang, P. Research Progress on Carbon Materials as Negative Electrodes in Sodium- and Potassium-ion Batteries. Carbon Energy 2022, 4, 1182–1213. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, Z.; Xie, F.; Jiang, J.; Zheng, K.; Alabidun, S.; Crespo-Ribadeneyra, M.; Hu, Y.; Au, H.; Titirici, M. Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared With Lithium- and Potassium-Ion Batteries. Adv. Mater. 2023, 35, 2304091. [Google Scholar] [CrossRef]
- Arjunan, P.; Kouthaman, M.; Kannan, K.; Diwakar, K.; Priyanka, V.; Subadevi, R.; Sivakumar, M. Study on Efficient Electrode from Electronic Waste Renewed Carbon Material for Sodium Battery Applications. J. Environ. Chem. Eng. 2021, 9, 105024. [Google Scholar] [CrossRef]
- Yao, Y.F.Y.; Kummer, J.T. Ion Exchange Properties of and Rates of Ionic Diffusion in Beta-Alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453–2475. [Google Scholar] [CrossRef]
- Armand, M.B. Intercalation Electrodes. In Materials for Advanced Batteries; Murphy, D.W., Broadhead, J., Steele, B.C.H., Eds.; Springer: Boston, MA, USA, 1980; pp. 145–161. [Google Scholar] [CrossRef]
- Lee, J.M.; Singh, G.; Cha, W.; Kim, S.; Yi, J.; Hwang, S.-J.; Vinu, A. Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Lett. 2020, 5, 1939–1966. [Google Scholar] [CrossRef]
- Igarashi, D.; Tanaka, Y.; Kubota, K.; Tatara, R.; Maejima, H.; Hosaka, T.; Komaba, S. New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na- and K-Ion Batteries. Adv. Energy Mater. 2023, 13, 2302647. [Google Scholar] [CrossRef]
- Wu, W.; Wang, A.; Xu, D.; Huang, C.; Liu, X.; Hu, Z.; Luo, J. A Soft Carbon Materials with Engineered Composition and Microstructure for Sodium Battery Anodes. Nano Energy 2024, 128, 109880. [Google Scholar] [CrossRef]
- Chen, J. Intercalation of Bi Nanoparticles into Graphite Results in an Ultra-Fast and Ultra-Stable Anode Material for Sodium-Ion Batteries. Environ. Sci. 2018, 11, 1218–1225. [Google Scholar] [CrossRef]
- Xu, W. SnS2@Graphene Nanosheet Arrays Grown on Carbon Cloth as Freestanding Binder-Free Flexible Anodes for Advanced Sodium Batteries. J. Alloys Compd. 2016, 654, 357–362. [Google Scholar] [CrossRef]
- Yang, J.; Liu, N.; Jiang, G.; Sheng, W.; Zheng, X.; Bai, Z.; Jiang, X. Synthesis and Investigation of Sodium Storage Properties in Na3V1.9Fe0.1(PO4)2F3@N-CNTs Cathode Material for Sodium Ion Batteries. Chem. Eng. J. 2024, 485, 149834. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Liu, J.; Zuo, S.; Li, X.; Li, F.; Gan, Y.; He, H.; Xu, X.; Zhang, X.; et al. Pomegranate-like Structured Nb2O5/Carbon@N-Doped Carbon Composites as Ultrastable Anode for Advanced Sodium/Potassium-Ion Batteries. J. Colloid Interface Sci. 2022, 613, 84–93. [Google Scholar] [CrossRef]
- Wang, J.; Xi, L.; Peng, C.; Song, X.; Wan, X.; Sun, L.; Liu, M.; Liu, J. Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries. Adv. Eng. Mater. 2024, 26, 2302063. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, X.; Wang, C.; Zhong, L.; Zhang, Z.; Yang, S.; Sun, S.; Yang, D.; Zhang, W. Biomass-Derived Carbon Anodes for Sodium-Ion Batteries. New Carbon Mater. 2023, 38, 40–66. [Google Scholar] [CrossRef]
- El Moctar, I.; Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Hard Carbon Anode Materials for Sodium-Ion Batteries. Funct. Mater. Lett. 2018, 11, 1830003. [Google Scholar] [CrossRef]
- Cheng, D.; Zhou, X.; Hu, H.; Li, Z.; Chen, J.; Miao, L.; Ye, X.; Zhang, H. Electrochemical Storage Mechanism of Sodium in Carbon Materials: A Study from Soft Carbon to Hard Carbon. Carbon 2021, 182, 758–769. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Liu, C.; Chen, L.; Wu, X.-Z.; Zhou, P.-F.; Shen, X.-Y.; Zhou, J. Multi-Layered Fluorinated Graphene Cathode Materials for Lithium and Sodium Primary Batteries. Rare Met. 2023, 42, 940–953. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Liu, C.; Wang, S.; Zhou, P.; Zhou, T.; Miao, Z.; Xing, W.; Zhuo, S.; Zhou, J. Fluorinated Multi-Walled Carbon Nanotubes as Cathode Materials of Lithium and Sodium Primary Batteries: Effect of Graphitization of Carbon Nanotubes. J. Mater. Chem. A 2019, 7, 7128–7137. [Google Scholar] [CrossRef]
- Pang, Z.; Wang, L.; Wan, S.; Liu, M.; Niu, X.; Wang, K.; Li, H. Wedelia Chinensis-Derived Biomass Porous Carbon as Anode Material for High Performance Sodium/Potassium-Ion Batteries. Ionics 2024, 30. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, X.; Bai, Y.; Yang, H.; Dong, R.; Wang, X.; Xu, H.; Wang, Q.; Li, H.; Gao, H.; et al. Probing the Energy Storage Mechanism of Quasi-Metallic Na in Hard Carbon for Sodium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003854. [Google Scholar] [CrossRef]
- Zeng, Z.; Mao, Y.; Hu, Z.; Chen, K.; Huang, Q.; Song, Y.; Wu, Z.; Zhang, P.; Chen, T.; Guo, X. Research Progress and Commercialization of Biologically Derived Hard Carbon Anode Materials for Sodium-Ion Batteries. Ind. Eng. Chem. Res. 2023, 62, 15343–15359. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. J. Electrochem. Soc. 2000, 147, 1271. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Z.; Zhang, Y.; Zhang, Y.; Li, J.; Wang, H.; Jiang, Y.; Xing, G.; Liu, H.; Tang, Y. Revitalizing Sodium-Ion Batteries via Controllable Microstructures and Advanced Electrolytes for Hard Carbon. eScience 2024, 4, 100181. [Google Scholar] [CrossRef]
- Borchardt, L.; Zhu, Q.-L.; Casco, M.E.; Berger, R.; Zhuang, X.; Kaskel, S.; Feng, X.; Xu, Q. Toward a Molecular Design of Porous Carbon Materials. Mater. Today 2017, 20, 592–610. [Google Scholar] [CrossRef]
- Gao, Y.; Piao, S.; Jiang, C.; Zou, Z. Navel Orange Peel-Derived Hard Carbons as High Performance Anode Materials of Na and Li-Ion Batteries. Diam. Relat. Mater. 2022, 129, 109329. [Google Scholar] [CrossRef]
- Naik, P.B.; Reddy, N.S.; Nataraj, S.K.; Narayan, U.; Beere, H.K.; Yadav, P.; Young, H.; Ghosh, D. Optimizing Hard Carbon Anodes from Agricultural Biomass for Superior Lithium and Sodium Ion Battery Performance. ChemSusChem 2024, e202400970. [Google Scholar] [CrossRef]
- Arie, A.A.; Kristianto, H.; Muljana, H.; Stievano, L. Rambutan Peel Based Hard Carbons as Anode Materials for Sodium Ion Battery. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 953–960. [Google Scholar] [CrossRef]
- Feng, S.; Chen, J.; Niu, X.; Feng, X.; Zhao, J. Coaxial Hard Carbon-coated Carbon Nanotubes as Anodes for Sodium-ion Batteries. ChemNanoMat 2022, 8, e202200348. [Google Scholar] [CrossRef]
- Wang, J. Hard Carbon Derived from Hazelnut Shell with Facile HCl Treatment as High-Initial-Coulombic-Efficiency Anode for Sodium Ion Batteries. Sustain. Mater. Technol. 2022, 33, e00446. [Google Scholar] [CrossRef]
- Wan, H.; Ju, X.; He, T.; Chen, T.; Zhou, Y.; Zhang, C.; Wang, J.; Xu, Y.; Yao, B.; Zhuang, W.; et al. Sulfur-Doped Porous Carbon as High-Capacity Anodes for Lithium and Sodium Ions Batteries. J. Alloys Compd. 2021, 863, 158078. [Google Scholar] [CrossRef]
- Matei Ghimbeu, C.; Beda, A.; Réty, B.; El Marouazi, H.; Vizintin, A.; Tratnik, B.; Simonin, L.; Michel, J.; Abou-Rjeily, J.; Dominko, R. Review: Insights on Hard Carbon Materials for Sodium-Ion Batteries (SIBs): Synthesis—Properties—Performance Relationships. Adv. Energy Mater. 2024, 14, 2303833. [Google Scholar] [CrossRef]
- Wang, J.; Li, F.; Duan, Y.; Tao, H.; Yang, X. Sawdust-Derived Hard Carbon as a High-Performance Anode for Sodium-Ion Batteries. Ionics 2023, 29, 2311–2318. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Xu, H.; Zhao, F.; Gong, S.; Wang, H.; Qi, J.; Wang, Z.; Hu, Y.; Peng, W.; et al. Hierarchical Accordion-like Manganese Oxide@carbon Hybrid with Strong Interaction Heterointerface for High-Performance Aqueous Zinc Ion Batteries. J. Colloid Interface Sci. 2022, 628, 553–561. [Google Scholar] [CrossRef]
- Saju, S.K.; Chattopadhyay, S.; Xu, J.; Alhashim, S.; Pramanik, A.; Ajayan, P.M. Hard Carbon Anode for Lithium-, Sodium-, and Potassium-Ion Batteries: Advancement and Future Perspective. Cell Rep. Phys. Sci. 2024, 5, 101851. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Fang, Y.; Ai, X.; Zhong, F.; Yang, H.; Cao, Y. Understanding of the Sodium Storage Mechanism in Hard Carbon Anodes. Carbon Energy 2022, 4, 1133–1150. [Google Scholar] [CrossRef]
- Alvin, S.; Cahyadi, H.S.; Hwang, J.; Chang, W.; Kwak, S.K.; Kim, J. Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon. Adv. Energy Mater. 2020, 10, 2000283. [Google Scholar] [CrossRef]
- Hou, L.; Liu, T.; Wang, H.; Bai, M.; Tang, X.; Wang, Z.; Zhang, M.; Li, S.; Wang, T.; Zhou, K.; et al. Boosting the Reversible, High-Rate Na + Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation. Small 2023, 19, 2207638. [Google Scholar] [CrossRef] [PubMed]
- Mercer, M.P.; Nagarathinam, M.; Gavilán-Arriazu, E.M.; Binjrajka, A.; Panda, S.; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; Leiva, E.P.M.; Hoster, H.E. Sodiation Energetics in Pore Size Controlled Hard Carbons Determined via Entropy Profiling. J. Mater. Chem. A 2023, 11, 6543–6555. [Google Scholar] [CrossRef]
- Sun, F.; Wang, K.; Wang, L.; Pei, T.; Gao, J.; Zhao, G.; Lu, Y. Hierarchical Porous Carbon Sheets with Compressed Framework and Optimized Pore Configuration for High-Rate and Long-Term Sodium and Lithium Ions Storage. Carbon 2019, 155, 166–175. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. The Main Problems and Solutions in Practical Application of Anode Materials for Sodium Ion Batteries and the Latest Research Progress. Int. J. Energy Res. 2021, 45, 9753–9779. [Google Scholar] [CrossRef]
- Fan, X.; Kong, X.; Zhang, P.; Wang, J. Research Progress on Hard Carbon Materials in Advanced Sodium-Ion Batteries. Energy Storage Mater. 2024, 69, 103386. [Google Scholar] [CrossRef]
- Lu, H.; Ai, F.; Jia, Y.; Tang, C.; Zhang, X.; Huang, Y.; Yang, H.; Cao, Y. Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. Small 2018, 14, 1802694. [Google Scholar] [CrossRef]
- Anji Reddy, M.; Helen, M.; Groß, A.; Fichtner, M.; Euchner, H. Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon. ACS Energy Lett. 2018, 3, 2851–2857. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, S.; Ou, M.; Liu, Y.; Fan, C.; Sun, X.; Peng, J.; Li, Y.; Qiu, Y.; Wei, P.; et al. High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism. ACS Appl. Energy Mater. 2018, 1, 2295–2305. [Google Scholar] [CrossRef]
- Song, M.; Yi, Z.; Xu, R.; Chen, J.; Cheng, J.; Wang, Z.; Liu, Q.; Guo, Q.; Xie, L.; Chen, C. Towards Enhanced Sodium Storage of Hard Carbon Anodes: Regulating the Oxygen Content in Precursor by Low-Temperature Hydrogen Reduction. Energy Storage Mater. 2022, 51, 620–629. [Google Scholar] [CrossRef]
- Ma, R. Oxygen-Driven Closing Pore Formation in Coal-Based Hard Carbon for Low-Voltage Rapid Sodium Storage. Chem. Eng. J. 2024, 493. [Google Scholar] [CrossRef]
- Ding, C.; Huang, L.; Lan, J.; Yu, Y.; Zhong, W.; Yang, X. Superresilient Hard Carbon Nanofabrics for Sodium-Ion Batteries. Small 2020, 16, 1906883. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hu, Z.; Yuan, C.; Dai, P.; Zhang, T.; Dong, L.; Jin, T.; Shen, C.; Xie, K. Locally Curved Surface with CoN 4 Sites Enables Hard Carbon with Superior Sodium-Ion Storage Performances at −40 °C. Adv. Energy Mater. 2024, 14, 2304537. [Google Scholar] [CrossRef]
- Atwater, M.A. Multiscale Design of Nanofibrous Carbon Aerogels: Synthesis, Properties and Comparisons with Other Low-Density Carbon Materials. Carbon 2017, 124, 588–598. [Google Scholar] [CrossRef]
- Zhao, H.; Shang, W.; Zhang, C.; Song, H.; Lai, C.; Zhang, C.; Fu, N. High Thiophene-S Doped Soft Carbons for Sodium Storage. Chem. Eng. J. 2024, 493, 152505. [Google Scholar] [CrossRef]
- Manawi, Y.M.; Ihsanullah; Samara, A.; Al-Ansari, T.; Atieh, M.A. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials 2018, 11, 822. [Google Scholar] [CrossRef]
- Miao, Y.; Zong, J.; Liu, X. Phosphorus-Doped Pitch-Derived Soft Carbon as an Anode Material for Sodium Ion Batteries. Mater. Lett. 2017, 188, 355–358. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. J. Electrochem. Soc. 2001, 148, A803. [Google Scholar] [CrossRef]
- Jian, Z.; Bommier, C.; Luo, L.; Li, Z.; Wang, W.; Wang, C.; Greaney, P.A.; Ji, X. Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chem. Mater. 2017, 29, 2314–2320. [Google Scholar] [CrossRef]
- Tang, J.; Etacheri, V.; Pol, V.G. Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2016, 4, 2624–2631. [Google Scholar] [CrossRef]
- Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. Mesoporous Soft Carbon as an Anode Material for Sodium Ion Batteries with Superior Rate and Cycling Performance. J. Mater. Chem. A 2016, 4, 6472–6478. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Q.; Chen, S.; Xu, Z.; Lu, B. Soft Carbon as Anode for High-Performance Sodium-Based Dual Ion Full Battery. Adv. Energy Mater. 2017, 7, 1602778. [Google Scholar] [CrossRef]
- Mishra, R.; Panigrahy, S.; Barman, S. Single-Source-Derived Nitrogen-Doped Soft Carbons for Application as Anode for Sodium-Ion Storage. Energy Fuels 2022, 36, 6483–6491. [Google Scholar] [CrossRef]
- Irisarri, E.; Ponrouch, A.; Palacin, M.R. Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2476. [Google Scholar] [CrossRef]
- Heubner, C.; Matthey, B.; Lein, T.; Wolke, F.; Liebmann, T.; Lämmel, C.; Schneider, M.; Herrmann, M.; Michaelis, A. Insights into the Electrochemical Li/Na-Exchange in Layered LiCoO2 Cathode Material. Energy Storage Mater. 2020, 27, 377–386. [Google Scholar] [CrossRef]
- Xu, J.; Dou, Y.; Wei, Z.; Ma, J.; Deng, Y.; Li, Y.; Liu, H.; Dou, S. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries. Adv Sci 2017, 4, 1700146. [Google Scholar] [CrossRef]
- Doeff, M.M.; Ma, Y.; Visco, S.J.; De Jonghe, L.C. Electrochemical Insertion of Sodium into Carbon. J. Electrochem. Soc. 1993, 140, L169. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.J.; Ryu, W.-H. Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 24070–24080. [Google Scholar] [CrossRef] [PubMed]
- The Graphene Times. Nat. Nanotechnol. 2019, 14, 903. [CrossRef]
- Thomale, R. Electronics Tuned in Twisted Bilayer Graphene. Nature 2020, 583, 364–365. [Google Scholar] [CrossRef]
- Zhang, J. Novel Preparation of High-Yield Graphene and Graphene/ZnO Composite. J. Alloys Compd. 2021, 875, 160024. [Google Scholar] [CrossRef]
- Lv, P.; Li, X.; Zhang, Z.; Nie, B.; Wu, Y.; Deng, N.; Tian, H.; Ren, T.-L.; Wang, G. Industrial-Scale Production of High-Quality Graphene Sheets by Millstone Grinders. Appl. Phys. 2022, 55, 164002. [Google Scholar] [CrossRef]
- Zhang, S.-W. High-Performance Graphene/Disodium Terephthalate Electrodes with Ether Electrolyte for Exceptional Cooperative Sodiation/Desodiation. Nano Energy 2020, 77, 105203. [Google Scholar] [CrossRef]
- Beda, A. Hard Carbon Key Properties Allow for the Achievement of High Coulombic Efficiency and High Volumetric Capacity in Na-Ion Batteries. J. Mater. Chem. A 2021, 9, 1743–1758. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kavalsky, L.; Chattopadhyay, K.; Singh, C.V. Dramatic Improvement in the Performance of Graphene as Li/Na Battery Anodes with Suitable Electrolytic Solvents. Carbon 2020, 161, 570–576. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Gao, C. Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. ACS Mater. Lett. 2021, 3, 1221–1237. [Google Scholar] [CrossRef]
- Zhou, H. Overview of Electrochemical Competing Process of Sodium Storage and Metal Plating in Hard Carbon Anode of Sodium Ion Battery. Energy Storage Mater. 2024, 71. [Google Scholar] [CrossRef]
- Li, S.; Qiu, J.; Lai, C.; Ling, M.; Zhao, H.; Zhang, S. Surface Capacitive Contributions: Towards High Rate Anode Materials for Sodium Ion Batteries. Nano Energy 2015, 12, 224–230. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, M. MOF-Derived Carbon and Composites as Advanced Anode Materials for Potassium Ion Batteries: A Review. Sustain. Mater. Technol. 2020, 26, e00217. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Bai, P.; Xu, Y. Storage Mechanism of Alkali Metal Ions in the Hard Carbon Anode: An Electrochemical Viewpoint. ACS Appl. Mater. Interfaces 2021, 13, 38441–38449. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, Y.H.; Park, J.; Susanto, D.; Kim, J.; Han, J.; Jun, S.C.; Chung, K.Y. Mechanical Activation of Graphite for Na-Ion Battery Anodes: Unexpected Reversible Reaction on Solid Electrolyte Interphase via X-Ray Analysis. Adv. Sci. 2024, 11, 2401022. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.; Kim, H.; Park, I.; Kang, K. Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host. Adv. Energy Mater. 2017, 7, 1601519. [Google Scholar] [CrossRef]
- Wang, J. Degradation of Sodium Co-Intercalation Chemistry and Ether-Derived Interphase on Graphite Anodes during Calendar Aging. Environ. Sci. 2024, 17, 3202–3209. [Google Scholar] [CrossRef]
- Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Na-Ion Battery Anodes: Materials and Electrochemistry. Acc. Chem. Res. 2016, 49, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, S.; Zhang, W.; Quadrelli, A.; Jarvis, S.; Chen, J.; Lu, H.; Mangayarkarasi, N.; Niu, Y.; Tao, J.; et al. Operando Nano-Mapping of Sodium-Diglyme Co-Intercalation and SEI Formation in Sodium Ion Batteries’ Graphene Anodes. Appl. Phys. Rev. 2024, 11, 021422. [Google Scholar] [CrossRef]
- Dursun, B.; Topac, E.; Alibeyli, R.; Ata, A.; Ozturk, O.; Demir-Cakan, R. Fast Microwave Synthesis of SnO2@graphene/N-Doped Carbons as Anode Materials in Sodium Ion Batteries. J. Alloys Compd. 2017, 728, 1305–1314. [Google Scholar] [CrossRef]
- Asher, R.C.; Wilson, S.A. Lamellar Compound of Sodium with Graphite. Nature 1958, 181, 409–410. [Google Scholar] [CrossRef]
- Liu, Y.; Merinov, B.V.; Goddard, W.A. Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg among Alkali and Alkaline Earth Metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Q.; Yang, M.; Wang, Y.; Chen, T.; Chen, Q.; Zhu, X.; Xia, Q.; Li, S.; Xia, H. Highly Doped Graphene with Multi-Dopants for High-Capacity and Ultrastable Sodium-Ion Batteries. Energy Storage Mater. 2018, 13, 134–141. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, S.; Li, T.; Xu, F. Poly(Anthraquinonylimide)/Graphene Composite Cathode for Sodium-Ion Batteries. Mater. Lett. 2020, 268, 127596. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Mi, L.; Liu, C.; Zhang, J.; Cui, S.; Feng, X.; Cao, Y.; Shen, C. High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries. Adv. Mater. 2019, 31, 1806664. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. On the Road to the Frontiers of Lithium-Ion Batteries: A Review and Outlook of Graphene Anodes. Adv. Mater. 2023, 35, 2210734. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yuan, S.; Bao, D.; Yin, Y.; Zhong, H.; Zhang, X.; Yan, J.; Jiang, Q. Decorating Waste Cloth via Industrial Wastewater for Tube-type Flexible and Wearable Sodium-ion Batteries. Adv. Mater. 2017, 29, 1603719. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Qian, T.; Wang, M.; Shen, X.; Xu, N.; Sun, Z.; Yan, C. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-doped Carbon Sheets for Efficient Sodium Ion Batteries. Adv. Mater. 2016, 28, 539–545. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, H.; Guan, C.; Cheng, C. Ultrathin MoS2 Nanosheets@ Metal Organic Framework-derived N-doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Adv. Funct. Mater. 2017, 27, 1702116. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Von Lim, Y.; Huang, S.; Zhang, J.; Liu, B.; Chen, T.; Yang, H.Y. 3D Hierarchical Defect-Rich NiMo3S4 Nanosheet Arrays Grown on Carbon Textiles for High-Performance Sodium-Ion Batteries and Hydrogen Evolution Reaction. Nano Energy 2018, 49, 460–470. [Google Scholar] [CrossRef]
- Ruan, J.; Yuan, T.; Pang, Y.; Luo, S.; Peng, C.; Yang, J.; Zheng, S. Nitrogen and Sulfur Dual-Doped Carbon Films as Flexible Free-Standing Anodes for Li-Ion and Na-Ion Batteries. Carbon 2018, 126, 9–16. [Google Scholar] [CrossRef]
- He, J.; Wang, N.; Cui, Z.; Du, H.; Fu, L.; Huang, C.; Yang, Z.; Shen, X.; Yi, Y.; Tu, Z. Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries. Nat. Commun. 2017, 8, 1172. [Google Scholar] [CrossRef]
- Li, S. A Nanoarchitectured Na6Fe5(SO4)8/CNTs Cathode for Building a Low-Cost 3.6 V Sodium-Ion Full Battery with Superior Sodium Storage. J. Mater. Chem. A 2019, 7, 14656–14669. [Google Scholar] [CrossRef]
- Li, X.; Qu, J.; Hu, Z.; Xie, H.; Yin, H. Electrochemically Converting Sb2S3/CNTs to Sb/CNTs Composite Anodes for Sodium-Ion Batteries. Int. J. Hydrog. Energy 2021, 46, 17071–17083. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, G.; Zhang, H.; Zhang, Z.; Liu, Y.; Gao, F.; Shang, Z.; Gao, C.; Zhou, Y.; Fu, S.; et al. Soft Template-Induced Self-Assembly Strategy for Sustainable Production of Porous Carbon Spheres as Anode towards Advanced Sodium-Ion Batteries. Chem. Eng. J. 2024, 495, 153646. [Google Scholar] [CrossRef]
- Dong, W.; Yu, D.; Liu, R.; Hu, P.; Zhang, Q.; Wang, F.; Yao, J.; Yu, C.; Yao, J.; Cui, J.; et al. Hollow Core–Shell Metal–Organic Framework-Derived Porous Carbon Hybrid for Electrochemical Na+ Storage. ACS Appl. Nano Mater. 2023, 6, 19037–19047. [Google Scholar] [CrossRef]
- Song, P.; Yang, J.; Wang, C.; Wang, T.; Gao, H.; Wang, G.; Li, J. Interface Engineering of Fe7S8/FeS2 Heterostructure in Situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries. Nano-Micro Lett. 2023, 15, 118. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, Y.; Zhong, F.; Yu, H.; Yan, Y.; Wu, S. Carbon Materials for High-Performance Potassium-Ion Energy-Storage Devices. Chem. Eng. J. 2021, 407, 126991. [Google Scholar] [CrossRef]
- Sun, M.; Qu, Y.; Zeng, F.; Yang, Y.; Xu, K.; Yuan, C.; Lu, Z.-H. Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. Ind. Eng. Chem. Res. 2022, 61, 2126–2135. [Google Scholar] [CrossRef]
- Qiu, R.; Ma, D.; Zheng, H.; Liu, M.; Cai, J.; Yan, W.; Zhang, J. Performance Degradation Mechanisms and Mitigation Strategies of Hard Carbon Anode and Solid Electrolyte Interface for Sodium-Ion Battery. Nano Energy 2024, 128, 109920. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Z.; Yu, H.; Zhang, X.; Liu, T.; Xia, M.; Zheng, R.; Shui, M.; Shu, J. Heteroatom-Doped Carbon-Based Materials for Lithium and Sodium Ion Batteries. Energy Storage Mater. 2020, 32, 65–90. [Google Scholar] [CrossRef]
- Qin, F.; Tian, X.; Guo, Z.; Shen, W. Asphaltene-Based Porous Carbon Nanosheet as Electrode for Supercapacitor. ACS Sustain. Chem. Eng. 2018, 6, 15708–15719. [Google Scholar] [CrossRef]
- Saurel, D.; Segalini, J.; Jauregui, M.; Pendashteh, A.; Daffos, B.; Simon, P.; Casas-Cabanas, M. A SAXS Outlook on Disordered Carbonaceous Materials for Electrochemical Energy Storage. Energy Storage Mater. 2019, 21, 162–173. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Shlyakhova, E.V.; Vorfolomeeva, A.A.; Grebenkina, M.A.; Sysoev, V.I.; Stolyarova, S.G.; Maksimovskiy, E.A.; Makarova, A.A.; Okotrub, A.V.; Bulusheva, L.G. Tuning Nitrogen-Doped Carbon Electrodes via Synthesis Temperature Adjustment to Improve Sodium- and Lithium-Ion Storage. Batteries 2023, 9, 45. [Google Scholar] [CrossRef]
- Kang, J.; Kim, D.-Y.; Chae, S.-A.; Saito, N.; Choi, S.-Y.; Kim, K.-H. Maximization of Sodium Storage Capacity of Pure Carbon Material Used in Sodium-Ion Batteries. J. Mater. Chem. A 2019, 7, 16149–16160. [Google Scholar] [CrossRef]
- Shao, H.; Wu, Y.-C.; Lin, Z.; Taberna, P.-L.; Simon, P. Nanoporous Carbon for Electrochemical Capacitive Energy Storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Jiang, J.; Zhu, J.; Pan, Z.; Li, C.; Yu, M.; Key, J.; Shen, P.K. A Facile and Cost Effective Synthesis of Nitrogen and Fluorine Co-Doped Porous Carbon for High Performance Sodium Ion Battery Anode Material. J. Power Sources 2020, 448, 227568. [Google Scholar] [CrossRef]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Alam, F.; Sharma, A.K.; Dutta, V.; Dhawan, S.K. Role of Zinc Oxide and Carbonaceous Nanomaterials in Non-Fullerene-Based Polymer Bulk Heterojunction Solar Cells for Improved Cost-to-Performance Ratio. J. Mater. Chem. A 2015, 3, 22227–22238. [Google Scholar] [CrossRef]
- Chen, S.; Kuang, Q.; Fan, H.J. Dual-Carbon Batteries: Materials and Mechanism. Small 2020, 16, 2002803. [Google Scholar] [CrossRef]
- Jhabli, O. New Insights into Carbonaceous Materials and Lead/Carbon Composites in Lead Carbon Battery. J. Energy Storage 2022, 56, 106019. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Wang, S.; Guan, X.; Guan, X.; Wang, G. Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance. Energy Fuels 2020, 34, 5032–5043. [Google Scholar] [CrossRef]
- Li, Y.; Zou, X.; Li, S.; Chen, Y.; Wang, G.; Yang, H.; Tian, H. Biomass-Derived B/N/P Co-Doped Porous Carbons as Bifunctional Materials for Supercapacitors and Sodium-Ion Batteries. J. Mater. Chem. A 2024, 12, 18324–18337. [Google Scholar] [CrossRef]
- Baldinelli, A.; Dou, X.; Buchholz, D.; Marinaro, M.; Passerini, S.; Barelli, L. Addressing the Energy Sustainability of Biowaste-Derived Hard Carbon Materials for Battery Electrodes. Green Chem. 2018, 20, 1527–1537. [Google Scholar] [CrossRef]
- Egun, I.L.; Liu, Z.; Zheng, Y.; Wang, Z.; Song, J.; Hou, Y.; Lu, J.; Wang, Y.; Chen, Z. Turning Waste Tyres into Carbon Electrodes for Batteries: Exploring Conversion Methods, Material Traits, and Performance Factors. Carbon Energy 2024, e571. [Google Scholar] [CrossRef]
- Wu, B.; Liu, B.; Yuwen, C.; Bao, R.; Zhang, T.; Zhang, L. Microwave Preparation of Porous Graphene from Wasted Tires and Its Pyrolysis Behavior. Waste Biomass Valorization 2023, 14, 1969–1978. [Google Scholar] [CrossRef]
- Pothaya, S.; Poochai, C.; Tammanoon, N.; Chuminjak, Y.; Kongthong, T.; Lomas, T.; Sriprachuabwong, C.; Tuantranont, A. Bamboo-Derived Hard Carbon/Carbon Nanotube Composites as Anode Material for Long-Life Sodium-Ion Batteries with High Charge/Discharge Capacities. Rare Met. 2024, 43, 124–137. [Google Scholar] [CrossRef]
- Lee, K.-T.; Chen, W.-H.; Sarles, P.; Park, Y.-K.; Ok, Y.S. Recover Energy and Materials from Agricultural Waste via Thermochemical Conversion. One Earth 2022, 5, 1200–1204. [Google Scholar] [CrossRef]
- Puntillo, P.; Gulluscio, C.; Huisingh, D.; Veltri, S. Reevaluating Waste as a Resource under a Circular Economy Approach from a System Perspective: Findings from a Case Study. Bus. Strategy Environ. 2021, 30, 968–984. [Google Scholar] [CrossRef]
- Wang, Z.; Qie, L.; Yuan, L.; Zhang, W.; Hu, X.; Huang, Y. Functionalized N-Doped Interconnected Carbon Nanofibers as an Anode Material for Sodium-Ion Storage with Excellent Performance. Carbon 2013, 55, 328–334. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost Sodium-Ion Batteries to Commercialization: Strategies to Enhance Initial Coulombic Efficiency of Hard Carbon Anode. Nano Energy 2021, 82, 105738. [Google Scholar] [CrossRef]
- Zurutuza, A.; Marinelli, C. Challenges and Opportunities in Graphene Commercialization. Nat. Nanotechnol. 2014, 9, 730–734. [Google Scholar] [CrossRef]
- Choi, S.H.; Yun, S.J.; Won, Y.S.; Oh, C.S.; Kim, S.M.; Kim, K.K.; Lee, Y.H. Large-Scale Synthesis of Graphene and Other 2D Materials towards Industrialization. Nat. Commun. 2022, 13, 1484. [Google Scholar] [CrossRef]
- Jia, X.; Wei, F. Advances in Production and Applications of Carbon Nanotubes. Top. Curr. Chem. 2017, 375, 18. [Google Scholar] [CrossRef]
- Tatarova, E.; Dias, A.; Henriques, J.; Abrashev, M.; Bundaleska, N.; Kovacevic, E.; Bundaleski, N.; Cvelbar, U.; Valcheva, E.; Arnaudov, B.; et al. Towards Large-Scale in Free-Standing Graphene and N-Graphene Sheets. Sci. Rep. 2017, 7, 10175. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, W.; Xiong, Y.; Long, Y.; Shao, Q.; Wu, L.; Wang, J.; Tian, P.; Khan, A.U.; Yang, W.; et al. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large-Scale Fabrication, and Performance Optimization. Small 2024, 2400179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, D.; Li, A.; Pan, E.; Liu, H.; Chen, X.; Jia, M.; Song, H. Three-Dimensional Porous Carbon Doped with N, O and P Heteroatoms as High-Performance Anode Materials for Sodium Ion Batteries. Chem. Eng. J. 2020, 380, 122457. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Dong, P.; Wu, G.; Xiao, J.; Zeng, X.; Zhang, Y.; Sun, X. Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 42796–42803. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Liu, S.; Wu, J.; Zhu, J. Review of Cathode Materials for Sodium-Ion Batteries. Prog. Solid State Chem. 2024, 74, 100452. [Google Scholar] [CrossRef]
- Carr-Wilson, S.; Pattanayak, S.K.; Weinthal, E. Critical Mineral Mining in the Energy Transition: A Systematic Review of Environmental, Social, and Governance Risks and Opportunities. Soc. Sci. 2024, 116, 103672. [Google Scholar] [CrossRef]
- Deberdt, R.; Billon, P.L. Green Transition Mineral Supply Risks: Comparing Artisanal and Deep-Sea Cobalt Mining in a Time of Climate Crisis. Extr. Ind. Soc. 2023, 14, 101232. [Google Scholar] [CrossRef]
- Rastegar, H.; Eweje, G.; Sajjad, A. The Impact of Environmental Policy on Renewable Energy Innovation: A Systematic Literature Review and Research Directions. Sustain. Dev. 2024, 32, 3859–3876. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y.; Yuan, F.; Liu, Q.; Sun, L.; Zhang, P.; Wang, Q.; Li, Z.; Wu, Y.A. A Comprehensive Review of Carbons Anode for Potassium-Ion Battery: Fast Kinetic, Structure Stability and Electrochemical. J. Power Sources 2021, 484, 229244. [Google Scholar] [CrossRef]
- Liu, R.; Luo, F.; Zeng, L.; Liu, J.; Xu, L.; He, X.; Xu, Q.; Huang, B.; Qian, Q.; Wei, M.; et al. Dual Carbon Decorated Germanium-Carbon Composite as a Stable Anode for Sodium/Potassium-Ion Batteries. J. Colloid Interface Sci. 2021, 584, 372–381. [Google Scholar] [CrossRef]
- Park, S.; Jin, H.-J.; Yun, Y.S. Effects of Carbon-Based Electrode Materials for Excess Sodium Metal Anode Engineered Rechargeable Sodium Batteries. ACS Sustain. Chem. Eng. 2020, 8, 17697–17706. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, J.; Zhang, Y.; Qu, W.; Wang, W.; Yao, M.; Zhang, Y.; Wang, Q.; Tang, Y. Revealing Na+-coordination Induced Failure Mechanism of Metal Sulfide Anode for Sodium Ion Batteries. Angew. Chem. Int. Ed. 2024, e202403463. [Google Scholar]
- Wang, W.-C. Two-Dimensional Monolayer C5-10-16: A Metallic Carbon Allotrope as an Anode Material for High-Performance Sodium/Potassium-Ion Batteries. Phys. Chem. Chem. Phys. 2024, 26, 13395–13404. [Google Scholar] [CrossRef]
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef] [PubMed]
Model Name | Core Concept | Main Processes | Features | Distinctions |
---|---|---|---|---|
Insertion–Adsorption Model | Adsorption and intercalation of sodium ions on the surface and in nanopores of hard carbon |
| Describes the adsorption and intercalation of sodium ions on the surface and within nanopores of hard carbon | Emphasizes the adsorption role of sodium ions on the surface and within nanopores |
Adsorption–Intercalation Model | Adsorption and intercalation of sodium ions within defects and microcrystalline sizes of hard carbon |
| Describes the adsorption and intercalation of sodium ions within defects and microcrystalline sizes of hard carbon | Highlights the impact of defects and microcrystalline sizes on sodium ion storage |
Three-Stage Model | Chemical/physical adsorption, intercalation between layers, and pore filling of sodium ions in hard carbon |
| Proposes three distinct stages of sodium ion storage | Clearly distinguishes between chemical/physical adsorption, interlayer intercalation, and pore filling |
Adsorption Filling Model | Optimizing hard carbon material structure by adjusting oxygen content to enhance sodium ion storage performance |
| Describes the adsorption, intercalation, and pore filling of sodium ions in hard carbon materials | Focuses on optimizing hard carbon material structure through oxygen content adjustment to improve sodium ion storage performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Li, Z.; Ruan, H.; Luo, D.; Wang, J.; Ding, Z.; Chen, L. A Review of Carbon Anode Materials for Sodium-Ion Batteries: Key Materials, Sodium-Storage Mechanisms, Applications, and Large-Scale Design Principles. Molecules 2024, 29, 4331. https://doi.org/10.3390/molecules29184331
Jia Q, Li Z, Ruan H, Luo D, Wang J, Ding Z, Chen L. A Review of Carbon Anode Materials for Sodium-Ion Batteries: Key Materials, Sodium-Storage Mechanisms, Applications, and Large-Scale Design Principles. Molecules. 2024; 29(18):4331. https://doi.org/10.3390/molecules29184331
Chicago/Turabian StyleJia, Qixing, Zeyuan Li, Hulong Ruan, Dawei Luo, Junjun Wang, Zhiyu Ding, and Lina Chen. 2024. "A Review of Carbon Anode Materials for Sodium-Ion Batteries: Key Materials, Sodium-Storage Mechanisms, Applications, and Large-Scale Design Principles" Molecules 29, no. 18: 4331. https://doi.org/10.3390/molecules29184331
APA StyleJia, Q., Li, Z., Ruan, H., Luo, D., Wang, J., Ding, Z., & Chen, L. (2024). A Review of Carbon Anode Materials for Sodium-Ion Batteries: Key Materials, Sodium-Storage Mechanisms, Applications, and Large-Scale Design Principles. Molecules, 29(18), 4331. https://doi.org/10.3390/molecules29184331