Oxidation of Small Phenolic Compounds by Mn(IV)
Abstract
:1. Introduction
2. Results
2.1. NMR
2.2. Reverse-Phase HPLC
2.3. CO2 Released
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. NMR Experiments
4.3. Reverse-Phase HPLC Experiments
4.4. CO2 Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Madritch, M.D.; Bailey, J.K.; LeRoy, C.J.; Fischer, D.G.; Rehill, B.J.; Lindroth, R.L.; Hagerman, A.E.; Wooley, S.C.; Hart, S.C.; et al. From genes to ecosystems: The genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 2008, 11, 1005–1020. [Google Scholar] [CrossRef]
- Linic, I.; Samec, D.; Grúz, J.; Bok, V.V.; Strnad, M.; Salopek-Sondi, B. Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef]
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, C.R.; Wang, Q.K.; Wang, H.T.; Duan, B.L.; Zhang, G.C. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J. Soils Sediments 2016, 16, 1858–1870. [Google Scholar] [CrossRef]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L.; et al. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 1–25. [Google Scholar] [CrossRef]
- Kaal, J.; Nierop, K.G.J.; Verstraten, J.M. Interactions between tannins and goethite- or ferrihydrite-coated quartz sand: Influence of pH and evaporation. Geoderma 2007, 139, 379–387. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Halvorson, J.J.; Hagerman, A.E.; Gonzalez, J.M. Macronutrients and metals released from soils by solutions of naturally occurring phenols. J. Plant Nutr. Soil Sci. 2017, 180, 544–553. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Santos, F.; Butler, K.; Herndon, E. A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environ. Sci. Technol. 2021, 55, 12136–12152. [Google Scholar] [CrossRef] [PubMed]
- Berg, B.; Steffen, K.T.; McClaugherty, C. Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 2007, 82, 29–39. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.; Harmon, M.E.; Mao, J.D.; Pett-Ridge, J.; Kleber, M. Long-term litter decomposition controlled by manganese redox cycling. Proc. Natl. Acad. Sci. USA 2015, 112, E5253–E5260. [Google Scholar] [CrossRef] [PubMed]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Cai, P.; Cheng, G.H.; Zhang, Y.Q. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Lin, J.; Quan, W.X.; Li, C.C. Distribution of six phenolic acids and soil nutrient relationships during litter decomposition in Rhododendron forests. Front. For. Glob. Chang. 2023, 6, 1142510. [Google Scholar] [CrossRef]
- Rahman, A.; Alam, M.U.; Hossain, M.S.; Mahmud, J.A.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous Gallic Acid Confers Salt Tolerance in Rice Seedlings: Modulation of Ion Homeostasis, Osmoregulation, Antioxidant Defense, and Methylglyoxal Detoxification Systems. Agronomy 2023, 13, 16. [Google Scholar] [CrossRef]
- Gao, J.Y.; Hu, J.X.; Hu, D.Y.; Yang, X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod. Commun. 2019, 14, 1934578X19874174. [Google Scholar] [CrossRef]
- Halvorson, J.; Jin, V.; Liebig, M.; Luciano, R.; Hagerman, A.; Schmidt, M. Rapid Formation of Abiotic CO2 Results from Additions of a Simple Phenolic, Gallic Acid, to Soil. Authorea Preprints. 2022. Available online: https://d197for5662m48.cloudfront.net/documents/publicationstatus/111169/preprint_pdf/ec4cf64b712d19c8e17566eb950a9a86.pdf (accessed on 8 August 2024).
- An, S.; Wei, Y.; Li, H.; Zhao, Z.; Hu, J.; Philp, J.; Ryder, M.; Toh, R.; Li, J.; Zhou, Y.; et al. Long-Term Monocultures of American Ginseng Change the Rhizosphere Microbiome by Reducing Phenolic Acids in Soil. Agriculture 2022, 12, 640. [Google Scholar] [CrossRef]
- Bao, L.M.; Liu, Y.Y.; Ding, Y.F.; Shang, J.J.; Wei, Y.L.; Tan, Y.; Zi, F.T. Interactions Between Phenolic Acids and Microorganisms in Rhizospheric Soil from Continuous Cropping of Panax notoginseng. Front. Microbiol. 2022, 13, 791603. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kang, L.; Wang, H.W.; Yang, T.; Dai, C.C. Liquid laccase production by Phomopsis liquidambari B3 accelerated phenolic acids degradation in long-term cropping soil of peanut. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 683–693. [Google Scholar]
- Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Effect of Soil Type: Qualitative and Quantitative Analysis of Phytochemicals in Some Browse Species Leaves Found in Savannah Biome of South Africa. Molecules 2022, 27, 1462. [Google Scholar] [CrossRef] [PubMed]
- Inderjit. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil 2005, 274, 227–236. [Google Scholar] [CrossRef]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
NMR Integration a | HPLC | ||||||||
---|---|---|---|---|---|---|---|---|---|
Aromatic 1H | Hydroxyl 1H | Carboxyl 1H | Aromatic: Hydroxyl 1H | % Remaining after Reaction b | |||||
Compound | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
Gallic acid | 0.11 | 0.011 | 0.15 | 0.015 | 0.050 | 0.005 | 1:1.5 | 1:1.5 | 84.9 (1.8) |
Pyrogallol | 1.02 | 0.055 | 1.00 | 0.040 | N/A | N/A | 1:1 | 1:1.4 | 21.8 (1.2) |
Benzoic acid | 0.23 | 0.11 | N/A | N/A | 0.036 | 0.018 | N/A | N/A | 97.7 (0.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruenberg, M.G.; Halvorson, J.J.; Hagerman, A.E.; Enoma, I.G.; Schmidt, M.A. Oxidation of Small Phenolic Compounds by Mn(IV). Molecules 2024, 29, 4320. https://doi.org/10.3390/molecules29184320
Gruenberg MG, Halvorson JJ, Hagerman AE, Enoma IG, Schmidt MA. Oxidation of Small Phenolic Compounds by Mn(IV). Molecules. 2024; 29(18):4320. https://doi.org/10.3390/molecules29184320
Chicago/Turabian StyleGruenberg, Madeline G., Jonathan J. Halvorson, Ann E. Hagerman, Ikponmwosa G. Enoma, and Michael A. Schmidt. 2024. "Oxidation of Small Phenolic Compounds by Mn(IV)" Molecules 29, no. 18: 4320. https://doi.org/10.3390/molecules29184320