Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics
Abstract
:1. Introduction
2. Results
2.1. Illustration of the Preparation Process
2.2. Surface Morphology Analysis of Microcapsules
2.3. Analysis of the Chemical Structure of the Microcapsules
2.4. Analysis of the Thermal Properties of the Microcapsules
2.5. Analysis of the Magnetic Properties of the PCMs
2.6. Performance Analysis of the Thermal Regulation Fabrics
3. Materials and Methods
3.1. Materials
3.2. Preparation of PW@CaCO3@Fe3O4 PCMs
3.3. Preparation of Thermal Regulation Fabrics
3.4. Characterizations
4. Conclusions
- (1)
- The appearance, phase transformation, and magnetic properties of the obtained microcapsules were assessed to determine their thermal performance. The XRD and FTIR results confirmed the successful preparation of the target magnetic microcapsules. The SEM and TEM images showed that the microcapsules were spherical and uniformly distributed, measuring approximately 2 μm in diameter. When the Fe3O4 nanoparticle mass fraction was 8%, the microcapsules exhibited a melting enthalpy of 94.25 J·g−1 and a saturation magnetization of 2.50 emu·g−1 according to DSC and VSM analyses.
- (2)
- Cotton fabric, serving as the base material, was impregnated and finished with a solution comprising an adhesive and microcapsules to create functional thermal regulation fabrics. The structure and properties of the obtained fabrics were measured and analyzed in succession. The impregnated fabrics demonstrated good appearance and softness properties, together with thermal performance.
- (3)
- Under optimal processing conditions, the tempering fabric’s phase-change enthalpy reached 25.81 J·g−1, maintaining phase-change behavior for 8 min during heating. Additionally, the enthalpy retention rate was 82.06% after five washing cycles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, S.; Zhu, S.; Newton, M.A.; Cai, J.; Feng, H.; Xin, B.; Xing, W. Ultra-light, ultra-resilient and ultra-flexible, multifunctional composite carbon nanofiber aerogel for physiological signal monitoring and hazard warning in extreme environments. Chem. Eng. J. 2024, 495, 153017. [Google Scholar] [CrossRef]
- Dong, X.X.; Cao, Y.M.; Wang, C.; Wu, B.; Zheng, M.; Xue, Y.B.; Li, W.; Han, B.; Zheng, M.; Wang, Z.S.; et al. MXene-decorated smart textiles with the desired mid-infrared emissivity for passive personal thermal management. ACS Appl. Mater. Interfaces 2023, 9, 12032–12040. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yang, S.; Ren, J.S. Electroassisted core-spun triboelectric nanogenerator fabrics for intelligence and artificial intelligence perception. ACS Nano 2022, 16, 4415–4425. [Google Scholar] [CrossRef]
- Hossain, M.M.; Lubna, M.M.; Bradford, P.D. Multifunctional and washable carbon nanotube-wrapped textile yarns for wearable E-textiles. ACS Appl. Mater. Interfaces 2023, 2, 3365–3376. [Google Scholar] [CrossRef] [PubMed]
- Alicja, N.; Ewa, G.; Irena, K.; Malgorzata, C. Assessment of thermal performance of textile materials modified with PCM microcapsules using combination of DSC and infrared thermography methods. Molecules 2020, 25, 122. [Google Scholar]
- Abebe, M.G.; Rosolen, G.; Odent, J.; Raquez, J.M.; Maes, B. A dynamic passive thermoregulation fabric using metallic microparticles. Nanoscale 2022, 14, 1421–1431. [Google Scholar] [CrossRef]
- Wang, Z.; Bo, Y.; Bai, P.; Zhang, S.; Li, G.; Wan, X.; Chen, Y. Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science 2023, 382, 1291–1296. [Google Scholar] [CrossRef]
- Lei, L.; Shi, S.; Wang, D.; Meng, S.; Dai, J.G.; Fu, S.; Hu, J. Recent advances in thermoregulatory clothing: Materials, mechanisms, and perspectives. ACS Nano 2023, 17, 1803–1830. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Wang, J.-F.; Xie, H.-Q.; Guo, Z.-X. Concurrent magnetic and thermal energy storage using a novel phase-change microencapsulated-nanoparticles fluid. J. Energy Storage 2022, 56, 105973. [Google Scholar] [CrossRef]
- Kumar, S.S.A.; Ramesh, K.; Ramesh, S.; Bang, L.T. A study on hybrid composite coatings: The significance of its surface wettability, dispersibility and thermal degradation performances. Prog. Org. Coat. 2024, 189, 108351. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Q.; Liu, L.; Ma, R. Thermochromic conductive fibers with modifiable solar absorption for personal thermal management and temperature visualization. ACS Nano 2023, 17, 20299–20307. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Gao, L.; Wang, J.; Li, D. MOF-integrated hierarchical composite fiber for efficient daytime radiative cooling and antibacterial protective textiles. ACS Appl. Mater. Interfaces 2023, 15, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guo, Z. Fabric-based superhydrophobic MXene@polypyrrole heater with superior dual-driving energy conversion. J. Colloid Interface Sci. 2023, 629, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Xu, C.Z.; Yao, W.D.; Wen, J.Y.; Wei, Q.f.; Li, Y.G.; Feng, X.Q. Study on the controllable preparation of Nd3+ doped in Fe3O4 nanoparticles for magnetic protective fabrics. Molecules 2023, 28, 3175. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.K.S.; Shukla, S.K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Constr. Build. Mater. 2019, 225, 723–744. [Google Scholar] [CrossRef]
- Wang, M.; Jeon, S.; Su, C.; Yu, T.; Tan, L.S.; Chiang, L.Y. Synthesis of photoswitchable magnetic Au-fullerosome hybrid nanomaterials for permittivity enhancement applications. Molecules 2015, 20, 14746–14760. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Wu, C.; Yan, X.; Zhao, W.; Peng, C. Low-cost and highly thermally conductive lauric acid–paraffin–expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery. Energy Rep. 2023, 9, 2538–2547. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wu, D. Silica encapsulation of n-octadecane via sol–gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 2010, 343, 246–255. [Google Scholar] [CrossRef]
- Li, C.; Fu, J.F.; Zhu, H.Z.; Si, T. Controlled latent heat phase-change microcapsules for temperature regulation. ACS Appl. Mater. Interfaces 2023, 15, 30383–30393. [Google Scholar] [CrossRef]
- Wang, T.; Lu, W.; He, Z.; Liang, Y.; Sun, Y.; Song, S.; Sun, W.; Wang, L. Tetradecyl octadecanoate phase change microcapsules incorporated with hydroxylated boron nitrides for reliable and durable heat energy storage. Solar Energy 2022, 245, 127–135. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, H. Liu, and X. Wang. Highly efficient, antibacterial, and salt-resistant strategy based on carbon black/chitosan-decorated phase-change microcapsules for solar-powered seawater desalination. ACS Appl. Mater. Interfaces 2023, 15, 16640–16653. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wu, X.; Hu, X.; Zheng, S.; Cao, Z. Enhanced thermal conductivity of phase change microcapsules based on boron nitride/graphene oxide composite sheets. ACS Appl. Polym. Mater. 2023, 5, 3835–3847. [Google Scholar] [CrossRef]
- Soares, S.F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A.L. Trimethyl Chitosan/Siloxane-hybrid coated Fe3O4 nanoparticles for the uptake of sulfamethoxazole from water. Molecules 2019, 24, 1958. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, S.; Park, M.; Kim, Y.; Lee, K.M.; Lee, O.M.; Son, H.J. Characterization of a novel CaCO3-forming alkali-tolerant rhodococcus erythreus S26 as a filling agent for repairing concrete cracks. Molecules 2021, 26, 2967. [Google Scholar] [CrossRef]
- Li, A.Q. Morphology-controlled synthesis of Cu2O encapsulated phase change materials: Photo thermal conversion and storage performance in visible light regime. Chem. Eng. J. 2023, 454, 140089. [Google Scholar]
- Shao, J.Y. Study on Absorption-Phase Change Microcapsules Infrared Microwave Compatible Stealth Composites. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2017. [Google Scholar]
- Wei, H.; He, F.; Li, Y.; Zhang, Q.; Zhou, Y.; Yan, H.; He, R.; Fan, J.; Yang, W. Bifunctional paraffin@CaCO3: Ce3+ phase change microcapsules for thermal energy storage and photoluminescence. ACS Sustain. Chem. Eng. 2019, 7, 18854–18862. [Google Scholar] [CrossRef]
- Liu, H.; Tian, X.; Ouyang, M.; Wang, X.; Wu, D.; Wang, X. Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy. Renew. Energy 2021, 179, 47–64. [Google Scholar] [CrossRef]
- Jiang, Z.N.; Yang, W.B.; He, F.F.; Xie, C.Q.; Fan, J.H.; Wu, J.Y.; Zhang, K. Modified phase change microcapsules with calcium carbonate and graphene oxide shells for enhanced energy storage and leakage prevention. ACS Sustain. Chem. Eng. 2018, 6, 5182–5191. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. Appl. Energy 2017, 201, 20–33. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Li, L.; Li, Y.; Cheng, X. Binary nitrate molten salt magnetic microcapsules modified with Fe3O4-functionalized carbon nanotubes for accelerating thermal energy storage. J. Energy Storage 2023, 74, 109394. [Google Scholar] [CrossRef]
- Wang, X.; Lei, W.; Zou, F.; Zhang, C.; Zhu, J. Synthesis and characterization of nano-Fe3O4 hybrid phase change microcapsules for infrared stealth and microwave absorption. J. Mater. Res. 2022, 37, 2335–2346. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Truong, T.A.N.; Dat, N.D.; Phan, T.A.D.; Bui, T.H. Polyethylene glycol confined in SiO2–modified expanded graphite as novel form–stable phase change materials for thermal energy storage. ACS Omega 2023, 8, 38160–38169. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Yuan, T.; Wang, F.; Hu, J.Q.; Tu, W.P. Magnetically separable Fe3O4@TiO2 nanospheres: Preparation and photocatalytic activity. J. Mater. Sci. Mater. Electron. 2016, 27, 9983–9988. [Google Scholar] [CrossRef]
- Jiang, Z.; Shu, J.; Ge, Z.; Jiang, Z.; Wang, M.; Ge, X. Preparation and performance of magnetic phase change microcapsules with organic-inorganic double shell. Sol. Energy Mater. Sol. Cells 2022, 240, 111716. [Google Scholar] [CrossRef]
- Alvaro Javier Gómez Rodríguez, D.; Oyola Lozano, J. Trujillo Hernández. Production and characterization of nanostructured powders of Nd2Fe14B and Fe90Al10 by mechanical alloying. Molecules 2022, 27, 7190. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, W.; Liu, H.; Wang, X. Sustainable interfacial evaporation system based on hierarchical MXene/polydopamine/magnetic phase-change microcapsule composites for solar-driven seawater desalination. ACS Appl. Mater. Interfaces 2022, 14, 50966–50981. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Xie, H. Self-assembled synthesis of microencapsulated paraffin wax phase change materials with excellent thermal properties of calcium carbonate shell. J. Enhanc. Heat Transf. 2023, 30, 1–18. [Google Scholar] [CrossRef]
- Shi, J.; Wu, X.; Sun, R. Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage. Colloids Surf. A 2019, 571, 36–43. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, T.; Guo, C.; Jiao, S.; Rao, Z. Photo-thermal conversion and heat storage characteristics of multi-walled carbon nanotubes dispersed magnetic phase change microcapsules slurry. Int. J. Energy Res. 2020, 44, 6873–6884. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Wang, Y.; Hirtz, T.; Guo, Z.; Qiao, Y.; Cui, T.; Tian, H.; Yang, Y.; Ren, T.L. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021, 15, 17738–17747. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Z.; Mao, X.; Chen, X.L.; Li, H.H.; Wang, Y.Y. Multifunctional textiles/metal−organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl. Mater. Interfaces 2020, 12, 55316–55323. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Zou, H.; Yu, Y.; Li, X.; Li, Z.; Deng, G.; Chen, C.; Fang, M.; He, J.; Sun, X.; et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 2022, 16, 14490–14502. [Google Scholar] [CrossRef]
- Zheng, G.; Cui, Y.; Jiang, Z.; Zhou, M.; Wang, P.; Yu, Y.; Wang, Q. Multifunctional composite coatings with hydrophobic, UV-resistant, anti-oxidative, and photothermal performance for healthcare. Colloids Surf. A 2023, 667, 131367. [Google Scholar] [CrossRef] [PubMed]
- Ibili, H.; Daşdemir, M. AgCl-TiO2;/dendrimer-based nanoparticles for superhydrophobic and antibacterial multifunctional textiles. J. Text. Inst. 2023, 114, 861–873. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y.; Zhang, J.; Zhao, H.; Wang, Z. Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage. J. Energy Storage 2022, 46, 103928. [Google Scholar] [CrossRef]
- Hu, E.; Shang, S.; Chiu, K.L. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules 2019, 24, 2755. [Google Scholar] [CrossRef]
- Bie, Y.F.; Liu, Y.H.; Xu, H.Y.; Tian, Y.F.; Wang, X.; Qian, J. Conductive ink based on GNSs/MWCNTs for fabricating wearable wash-resistant electrothermal devices. ACS Appl. Electron. Mater. 2024, 6, 276–291. [Google Scholar] [CrossRef]
Samples | Bending Length (cm) | Bending Rigidity (mg·cm) |
---|---|---|
Cotton fabric | 1.56 | 57.696 |
Thermal regulation fabric | 1.57 | 75.301 |
Washing Times | Melting Process | Crystallization Process | ||
---|---|---|---|---|
Tm (°C) | △Hm (J·g−1) | Tc (°C) | △Hc (J·g−1) | |
0 | 31.1 | 25.81 | 27.9 | 25.79 |
3 | 31.2 | 22.74 | 27.7 | 21.63 |
5 | 31.1 | 21.18 | 27.7 | 20.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Xu, C.; Wei, H.; Li, Y.; Sun, R.; Wang, C.; Dong, J.; Feng, X. Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics. Molecules 2024, 29, 4151. https://doi.org/10.3390/molecules29174151
Song X, Xu C, Wei H, Li Y, Sun R, Wang C, Dong J, Feng X. Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics. Molecules. 2024; 29(17):4151. https://doi.org/10.3390/molecules29174151
Chicago/Turabian StyleSong, Xiaolei, Congzhu Xu, Hong Wei, Yonggui Li, Runjun Sun, Chunxia Wang, Jie Dong, and Xinqun Feng. 2024. "Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics" Molecules 29, no. 17: 4151. https://doi.org/10.3390/molecules29174151
APA StyleSong, X., Xu, C., Wei, H., Li, Y., Sun, R., Wang, C., Dong, J., & Feng, X. (2024). Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics. Molecules, 29(17), 4151. https://doi.org/10.3390/molecules29174151