The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Organic Compounds (VOCs) Profile
2.2. Drying Kinetics
2.3. Dry Matter (DM), Water Activity (AW) and Density (ρb)
2.4. Color
2.5. Pearson Correlation of Drying Kinetics and Selected Celery Quality Attributes
2.6. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Plant Materials
3.2. Vacuum Impregnation (VI)
3.3. Drying Methods
3.3.1. Freeze Drying (FD)
3.3.2. Vacuum Drying (VD)
3.3.3. Convection Drying (CD)
3.4. Mathematical Modeling
3.5. Volatile Organic Compounds (VOCs)
Headspace Solid-Phase Microextraction (HS-SPME Arrow)—GC-MS
3.6. Physical Properties
3.6.1. Dry Weight, Water Activity, Bulk Density
3.6.2. Color
3.7. Statistical Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Betoret, N.; Puente, L.; Díaz, M.; Pagán, M.; García, M.; Gras, M.; Martínez-Monzó, J.; Fito, P. Development of probiotic-enriched dried fruits by vacuum impregnation. J. Food Eng. 2003, 56, 273–277. [Google Scholar] [CrossRef]
- Kręcisz, M.; Stępień, B.; Łyczko, J.; Kamiński, P. The Influence of the Vacuum Impregnation, Beetroot Juice, and Various Drying Methods on Selected Properties of Courgette and Broccoli Snacks. Foods 2023, 12, 4294. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.; Martín, M.E.; Martínez-Navarrete, N.; Chiralt, A. Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT—Food Sci. Technol. 2005, 38, 471–477. [Google Scholar] [CrossRef]
- Bylok, F. “Healthy” lifestyle as a determinant of consumer behavior. Econ. Probl. (PL). 2011, 78, 33–46. [Google Scholar]
- Bronkowska, M.; Orzeł, D.; Wyka, J.; Habánová, M.; Jarossova, M.A. Organic food—A way to have a “healthy” diet? In Biopotraviny, Tradičné a Regionálne Potraviny na Slovensku av Zahraničí; Slovenskej Ekonomickej Knižnice: Bratislava, Slovakia, 2017; p. 16. [Google Scholar]
- Wang, N.; Xu, Y.; Chao, H.; Zhang, M.; Zhou, Y.; Wang, M. Effects of celery powder on wheat dough properties and textural, antioxidant and starch digestibility properties of bread. J. Food Sci. Technol. 2020, 57, 1710–1718. [Google Scholar] [CrossRef]
- Kosson, R.; Anyszka, Z.; Grzegorzewska, M.; Golian, J.; Kohut, M.; Badełek, E. Postharvest quality of celeriac (Apium graveolens L. var. rapaceum (Mill.) Gaud.) depending on weed control methods. Prog. Plant Prot. 2014, 54, 77–83. [Google Scholar] [CrossRef]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L.). J. Evid.—Based Integr. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef]
- Turner, L.; Lignou, S.; Gawthrop, F.; Wagstaff, C. Investigating the factors that influence the aroma profile of Apium graveolens: A review. Food Chem. 2021, 345, 128673. [Google Scholar] [CrossRef]
- Bassey, E.J.; Cheng, J.H.; Sun, D.W. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends Food Sci. Technol. 2021, 112, 137–148. [Google Scholar] [CrossRef]
- Su, W.H.; Bakalis, S.; Sun, D.W. Chemometric determination of time series moisture in both potato and sweet potato tubers during hot air and microwave drying using near/mid-infrared (NIR/MIR) hyperspectral techniques. Dry. Technol. 2020, 38, 806–823. [Google Scholar] [CrossRef]
- Srimagal, A.; Mishra, S.; Pradhan, R.C. Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. J. Food Sci. Technol. 2017, 54, 1192–1198. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kidoń, M. Applicability of Vacuum Impregnation to Modify Phys-ico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review. Int. J. Mol. Sci. 2014, 15, 16577–16610. [Google Scholar] [CrossRef] [PubMed]
- Kręcisz, M.; Stępień, B.; Pasławska, M.; Popłoński, J.; Dulak, K. Physicochemical and Quality Properties of Dried Courgette Slices: Impact of Vacuum Impregnation and Drying Methods. Molecules 2021, 26, 4597. [Google Scholar] [CrossRef] [PubMed]
- Kręcisz, M.; Kolniak-Ostek, J.; Łyczko, J.; Stępień, B. Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chem. 2023, 413, 135490. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Stępień, B.; Łyczko, J.; Pasławska, M.; Musiałowska, J. Influence of Drying Methods and Vacuum Impregnation on Selected Quality Factors of Dried Sweet Potato. Agriculture 2021, 11, 858. [Google Scholar] [CrossRef]
- Chungcharoen, T.; Prachayawarakorn, S.; Soponronnarit, S.; Tungtrakul, P. Effect of drying temperature on drying characteristics and quality of germinated rices prepared from paddy and brown rice. Dry. Technol. 2012, 30, 1844–1853. [Google Scholar] [CrossRef]
- Kaushal, P.; Sharma, H.K. Osmo-convective dehydration kinetics of jackfruit (Artocarpus heterophyllus). J. Saudi Soc. Agric. Sci. 2016, 15, 118–126. [Google Scholar] [CrossRef]
- Krzykowski, A.; Dziki, D.; Rudy, S.; Gawlik-Dziki, U.; Janiszewska-Turak, E.; Biernacka, B. Wild Strawberry Fragaria vesca L.: Kinetics of Fruit Drying and Quality Characteristics of the Dried Fruits. Processes 2020, 8, 1265. [Google Scholar] [CrossRef]
- Łyczko, J.; Masztalerz, K.; Lipan, L.; Iwiński, H.; Lech, K.; Carbonell-Barrachina, Á.A.; Szumny, A. Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods 2021, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Şahin, U.; Öztürk, H.K. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L.). Innov. Food Sci. Emerg. Technol. 2016, 36, 104–111. [Google Scholar] [CrossRef]
- An, K.; Li, H.; Zhao, D.; Ding, S.; Tao, H.; Wang, Z. Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry. Technol. 2013, 31, 698–706. [Google Scholar] [CrossRef]
- Singh, S.; Kawade, S.; Dhar, a.; Powar, S. Analysis of mango drying methods and effect of blanching process based on energy consumption, drying time using multi-criteria decision-making. Clean. Eng. Technol. 2022, 8, 100500. [Google Scholar] [CrossRef]
- Kian-Pour, N.; Akdeniz, E.; Toker, O.S. Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. LWT—Food Sci. Technol. 2022, 160, 113262. [Google Scholar] [CrossRef]
- Drying and Dehydration of Fruits and Vegetabeles Indian Institute of Food Processing Technology. Ministry of Food Processing Industries, Govt. of India Thanjavur 2020 Tamil Nadu. Available online: https://niftem-t.ac.in/curmetmg.pdf (accessed on 28 December 2023).
- Schulze, B.; Hubbermann, E.M.; Schwarz, K. Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT—Food Sci. Technol. 2014, 57, 426–433. [Google Scholar] [CrossRef]
- da Cunha, R.M.C.; Brandão, S.C.R.; de Medeiros, R.A.B.; da Silva Júnior, E.V.; Fernandes da Silva, J.H.; Azoubel, P.M. Effect of ethanol pretreatment on melon convective drying. Food Chem. 2020, 333, 127502. [Google Scholar] [CrossRef]
- Masztalerz, K.; Łyczko, J.; Lech, K. Effect of filtrated osmotic solution based on concentrated chokeberry juice and mint extract on the drying kinetics, energy consumption and physicochemical properties of dried apples. Molecules 2021, 26, 3274. [Google Scholar] [CrossRef] [PubMed]
- Rudy, S.; Dziki, D.; Biernacka, B.; Polak, R.; Krzykowski, A.; Krajewska, A.; Stanisławczyk, R.; Rudy, M.; Żurek, J.; Rudzki, G. Impact of Drying Process on Grindability and Physicochemical Properties of Celery. Foods 2024, 13, 2585. [Google Scholar] [CrossRef]
- Feng, Y.; Tan, C.P.; Yagoub, A.E.A.; Xu, B.; Sun, Y.; Ma, H.; Xu, X.; Yu, X. Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices. Food Chem. 2020, 324, 126883. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, A.; Dziki, D.; Yilmaz, M.A.; Özdemir, F.A. Physicochemical Properties of Dried and Powdered Pear Pomace. Molecules 2024, 29, 742. [Google Scholar] [CrossRef]
- Pasławska, M.; Nawirska-Olszańska, A.; Stępień, B.; Klim, A. The Influence of Vacuum Impregnation on Nutritional Properties of Fluidized Bed Dried Kale (Brassica oleracea L. Var. Acephala) Leaves. Molecules 2018, 23, 2764. [Google Scholar] [CrossRef]
- Jałoszyński, K.; Szarycz, M.; Jarosz, B. The effect of convective and microwave-vacuum drying on the activity of aromatic substances in parsley (PL). Inżynieria Rol. 2006, 12, 209–215. [Google Scholar]
- Sarimeseli, A. Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers. Manag. 2011, 52, 1449–1453. [Google Scholar] [CrossRef]
- Henderson, S.M.; Pabis, S. Grain Drying Theory II: Temperature Effect on Drying Coefficient. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Demir, V.; Gunhan, T.; Yagcioglu, A.K.; Degrmencioglu, A. Mathematical modeling and the determination of some quality parameters of air-dried bay leaves. Biosyst. Eng. 2004, 88, 325–335. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M.; Okyay Menges, H. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.). Energy Convers. Manag. 2010, 51, 2769–2775. [Google Scholar] [CrossRef]
- Soysal, Y.; Öztekin, S.; Eren, Ö. Microwave drying of parsley: Modeling, kinetics, and energy aspects. Biosyst. Eng. 2006, 93, 403–413. [Google Scholar] [CrossRef]
- ASAE S269.3; ASAE Standard. Wafers, Pellet, and Crumbles—Definitions and Methods for Determining Density, Dura-Bility and Moisture Content. ASTM International: West Conshohocken, PA, USA, 1989.
- Li, M.; Wang, B.; Lv, W.; Zhao, D. Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying. Food Chem. 2022, 397, 133806. [Google Scholar] [CrossRef]
Compounds | LRI Exp 1 | LRI Lit 2 | Match 3 | C | C VD | C CD50 | C CD60 | C CD70 | C FD |
---|---|---|---|---|---|---|---|---|---|
Hexanal | 800 | 806 | 97 | 0.44 ± 0.13 | 0.21 ± 0.01 | 0.48 ± 0.12 | 0.15 ± 0.00 | 0.15 ± 0.02 | 0.28 ± 0.01 |
1-Hexanol | 864 | 860 | 91 | 0.02 ± 0.02 | 0.41 ± 0.02 | 0.36 ± 0.04 | 0.37 ± 0.08 | 0.25 ± 0.03 | 0.95 ± 0.05 |
Nonane | 899 | 900 | 97 | 2.99 ± 0.32 | 3.62 ± 0.31 | 4.00 ± 0.32 | 3.58 ± 1.09 | 4.94 ± 0.06 | 1.37 ± 0.41 |
Butyrolactone | 912 | 941 | 92 | 0.00 ± 0.00 | 0.39 ± 0.02 | 0.37 ± 0.01 | 0.04 ± 0.01 | 0.44 ± 0.10 | 0.03 ± 0.02 |
α-Pinene | 933 | 933 | 94 | 0.44 ± 0.06 | 0.37 ± 0.02 | 0.25 ± 0.00 | 0.21 ± 0.03 | 0.43 ± 0.01 | 0.13 ± 0.01 |
1-Heptanol | 967 | 970 | 90 | 0.03 ± 0.00 | 0.12 ± 0.02 | 0.05 ± 0.01 | 0.10 ± 0.01 | 0.05 ± 0.01 | 0.93 ± 0.05 |
β-Pinene | 976 | 978 | 99 | 11.78 ± 2.12 | 9.94 ± 0.57 | 5.87 ± 0.09 | 5.51 ± 0.68 | 9.45 ± 0.18 | 2.39 ± 0.35 |
Myrcene | 990 | 991 | 98 | 3.77 ± 0.49 | 3.44 ± 0.10 | 2.68 ± 0.16 | 2.37 ± 0.01 | 5.37 ± 0.58 | 0.92 ± 0.13 |
Decane | 999 | 1000 | 95 | 0.13 ± 0.03 | 0.94 ± 0.02 | 0.43 ± 0.04 | 0.39 ± 0.18 | 0.55 ± 0.14 | 2.75 ± 1.46 |
Octanal | 1002 | 1005 | 95 | 1.80 ± 0.21 | 0.16 ± 0.01 | 0.25 ± 0.03 | 0.13 ± 0.01 | 0.18 ± 0.03 | 0.33 ± 0.06 |
p-Cymen | 1024 | 1025 | 98 | 5.55 ± 1.32 | 2.03 ± 0.09 | 1.44 ± 0.03 | 1.53 ± 0.16 | 1.40 ± 0.13 | 1.05 ± 0.11 |
Limonene | 1028 | 1030 | 98 | 43.91 ± 3.09 | 32.56 ± 0.60 | 32.91 ± 0.45 | 27.35 ± 0.01 | 46.38 ± 0.49 | 9.80 ± 1.49 |
β-(E)-Ocimene | 1036 | 1046 | 95 | 6.61 ± 1.01 | 9.02 ± 0.40 | 5.62 ± 0.02 | 6.23 ± 0.40 | 9.36 ± 0.58 | 2.26 ± 0.38 |
γ-Terpinene | 1058 | 1058 | 97 | 3.64 ± 0.66 | 4.09 ± 0.24 | 2.48 ± 0.12 | 2.43 ± 0.28 | 3.69 ± 0.23 | 0.96 ± 0.14 |
1-Octanol | 1069 | 1076 | 91 | 0.13 ± 0.03 | 0.19 ± 0.03 | 0.07 ± 0.02 | 0.16 ± 0.04 | 0.04 ± 0.01 | 0.76 ± 0.07 |
Undecane | 1098 | 1100 | 94 | 0.23 ± 0.12 | 0.50 ± 0.12 | 0.28 ± 0.01 | 0.40 ± 0.03 | 0.26 ± 0.03 | 0.63 ± 0.11 |
Pentyl cyclohexa-1,3-diene | 1157 | 1160 | 92 | 5.72 ± 0.86 | 8.69 ± 0.02 | 19.64 ± 1.17 | 28.51 ± 1.08 | 6.47 ± 0.44 | 2.38 ± 0.10 |
α-Thujene | 1198 | 1200 | 96 | 0.48 ± 0.04 | 0.52 ± 0.26 | 1.14 ± 0.01 | 1.26 ± 0.11 | 0.37 ± 0.05 | 0.21 ± 0.03 |
Dodecane | 1262 | 97 | 0.29 ± 0.03 | 8.08 ± 0.06 | 3.23 ± 0.54 | 2.78 ± 0.03 | 3.41 ± 0.18 | 31.98 ± 1.51 | |
2-Methyldodecane | 1262 | 1249 | 92 | 0.01 ± 0.00 | 0.34 ± 0.01 | 0.17 ± 0.03 | 0.13 ± 0.01 | 0.14 ± 0.04 | 1.52 ± 0.12 |
Tridecane | 1298 | 1300 | 94 | 0.45 ± 0.57 | 0.29 ± 0.00 | 0.18 ± 0.03 | 0.14 ± 0.03 | 0.15 ± 0.03 | 0.98 ± 0.09 |
Tetradec-1-ene | 1392 | 1392 | 95 | 0.03 ± 0.00 | 0.14 ± 0.38 | 0.22 ± 0.01 | 0.15 ± 0.03 | 0.09 ± 0.03 | 0.24 ± 0.02 |
Tetradecane | 1399 | 1400 | 96 | 0.27 ± 0.02 | 4.07 ± 0.02 | 2.80 ± 0.55 | 1.79 ± 0.26 | 2.49 ± 0.53 | 15.28 ± 1.62 |
(E)-Caryophyllene | 1426 | 1424 | 96 | 0.12 ± 0.00 | 0.60 ± 0.02 | 0.90 ± 0.06 | 0.38 ± 0.13 | 0.43 ± 0.18 | 0.12 ± 0.02 |
α-trans-Bergamotene | 1441 | 1432 | 96 | 0.07 ± 0.02 | 0.29 ± 0.00 | 0.45 ± 0.01 | 0.75 ± 0.02 | 0.11 ± 0.03 | 0.06 ± 0.01 |
β-(E)-Farnesene + Humulene | 1461 | 1452/1454 | 91/90 | 0.02 ± 0.00 | 0.13 ± 0.02 | 0.22 ± 0.03 | 0.12 ± 0.05 | 0.10 ± 0.04 | 0.03 ± 0.01 |
β-Selinene | 1493 | 1492 | 94 | 0.15 ± 0.03 | 0.30 ± 0.02 | 0.66 ± 0.03 | 0.24 ± 0.09 | 0.35 ± 0.12 | 0.07 ± 0.00 |
α-Selinene | 1501 | 1501 | 90 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.10 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.02 | 0.02 ± 0.00 |
unknown sesquiterpene or sesquiterpenoid | 1522 | 0.05 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.00 | ||
Hexadecane | 1599 | 1600 | 97 | 0.11 ± 0.02 | 0.49 ± 0.06 | 0.37 ± 0.08 | 0.24 ± 0.03 | 0.39 ± 0.10 | 1.99 ± 0.22 |
unknown sesquiterpene or sesquiterpenoid | 1602 | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.15 ± 0.02 | ||
unknown sesquiterpene or sesquiterpenoid | 1607 | 0.06 ± 0.01 | 0.03 ± 0.00 | 0.13 ± 0.02 | 0.12 ± 0.01 | 0.01 ± 0.00 | 0.06 ± 0.01 | ||
3-Butyl hexahydro phthalide | 1647 | 1631 | 90 | 0.33 ± 0.09 | 0.13 ± 0.00 | 0.66 ± 0.05 | 0.35 ± 0.04 | 0.09 ± 0.03 | 0.22 ± 0.02 |
3-Butyl phthalide | 1650 | 1648 | 90 | 2.63 ± 0.61 | 1.06 ± 0.10 | 1.93 ± 0.07 | 1.70 ± 0.16 | 0.60 ± 0.01 | 2.59 ± 0.33 |
(3Z)-Butylidene phthalide | 1683 | 1673 | 90 | 0.34 ± 0.07 | 0.17 ± 0.03 | 0.20 ± 0.02 | 0.14 ± 0.02 | 0.08 ± 0.00 | 0.36 ± 0.04 |
Fenipentol | 1740 | nd 4 | tr 5 | 1.63 ± 0.20 | 2.57 ± 0.38 | 1.92 ± 0.12 | 1.23 ± 0.19 | 0.82 ± 0.00 | 7.28 ± 1.07 |
3-Isobutylidene phthalide | 1746 | 1722 | 97 | 2.30 ± 0.21 | 2.26 ± 0.27 | 5.85 ± 0.63 | 4.86 ± 0.02 | 0.47 ± 0.08 | 4.98 ± 0.67 |
(Z)-Ligustilide | 1748 | 1733 | 94 | 0.24 ± 0.05 | 0.45 ± 0.07 | 0.20 ± 0.02 | 0.21 ± 0.06 | 0.10 ± 0.01 | 0.85 ± 0.11 |
Neocnidilide | 1750 | 1735 | 94 | 3.17 ± 0.67 | 1.25 ± 0.05 | 1.87 ± 0.33 | 4.03 ± 0.14 | 0.37 ± 0.06 | 3.08 ± 0.38 |
Compounds | LRI Exp 1 | LRI Lit 2 | Match 3 | CB | CB VD | CB CD50 | CB CD60 | CB CD70 | CB FD |
---|---|---|---|---|---|---|---|---|---|
Hexanal | 802 | 806 | 97 | 0.41 ± 0.04 | 1.25 ± 0.26 | 0.56 ± 0.18 | 0.18 ± 0.06 | 0.15 ± 0.02 | 0.98 ± 0.09 |
Nonane | 901 | 900 | 96 | 4.17 ± 0.28 | 3.81 ± 0.60 | 3.65 ± 0.15 | 4.54 ± 1.62 | 5.16 ± 0.06 | 2.37 ± 0.64 |
α-Pinene | 934 | 933 | 97 | 0.56 ± 0.04 | 0.39 ± 0.02 | 0.34 ± 0.02 | 0.37 ± 0.00 | 0.45 ± 0.01 | 0.22 ± 0.02 |
Sabinene | 972 | 972 | 97 | 0.27 ± 0.02 | 0.12 ± 0.01 | 0.15 ± 0.02 | 0.18 ± 0.00 | 0.15 ± 0.00 | 0.09 ± 0.01 |
β-Pinene | 977 | 978 | 98 | 15.86 ± 2.07 | 8.24 ± 0.26 | 8.52 ± 0.81 | 8.48 ± 0.16 | 9.86 ± 0.15 | 3.60 ± 0.66 |
Myrcene | 991 | 991 | 97 | 4.18 ± 0.54 | 3.88 ± 0.26 | 3.16 ± 0.33 | 4.34 ± 0.22 | 5.61 ± 0.62 | 1.21 ± 0.26 |
Octanal | 1003 | 1005 | 96 | 1.74 ± 0.08 | 0.44 ± 0.07 | 1.27 ± 0.28 | 0.34 ± 0.10 | 0.19 ± 0.03 | 0.71 ± 0.02 |
p-Cymene | 1024 | 1025 | 98 | 6.60 ± 1.60 | 1.80 ± 0.10 | 3.07 ± 0.42 | 2.23 ± 0.05 | 1.46 ± 0.13 | 2.06 ± 0.05 |
Limonene | 1030 | 1030 | 96 | 36.02 ± 4.47 | 42.34 ± 1.36 | 35.07 ± 1.73 | 45.31 ± 2.23 | 48.41 ± 0.65 | 13.16 ± 1.98 |
β-(E)-Ocimene | 1037 | 1045 | 95 | 7.47 ± 0.72 | 6.66 ± 0.20 | 5.84 ± 0.27 | 8.25 ± 1.06 | 9.77 ± 0.63 | 2.82 ± 0.50 |
γ-Terpinene | 1058 | 1058 | 97 | 3.71 ± 0.55 | 3.31 ± 0.31 | 2.85 ± 0.20 | 3.70 ± 0.49 | 3.85 ± 0.23 | 1.45 ± 0.22 |
(5Z)-Octen-1-ol | 1076 | 1073 | tr 4 | 0.25 ± 0.04 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.06 ± 0.04 |
Nonanal | 1103 | 1104 | 95 | 0.22 ± 0.03 | 0.27 ± 0.06 | 0.65 ± 0.26 | 0.24 ± 0.07 | 0.16 ± 0.03 | 0.63 ± 0.17 |
cis-Limonene oxide | 1133 | 1134 | 97 | 0.34 ± 0.06 | 0.03 ± 0.00 | 0.14 ± 0.12 | 0.09 ± 0.08 | 0.01 ± 0.01 | 0.03 ± 0.02 |
trans-Limonene oxide | 1137 | 1138 | 90 | 2.30 ± 0.40 | 0.05 ± 0.01 | 0.09 ± 0.01 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.12 ± 0.08 |
Pentyl cyclohexa-1,3-diene | 1158 | 1160 | 90 | 3.22 ± 0.79 | 7.32 ± 1.26 | 3.19 ± 0.11 | 5.77 ± 1.81 | 6.75 ± 0.47 | 3.81 ± 0.09 |
Decanal | 1204 | 1204 | 92 | 0.18 ± 0.03 | 2.31 ± 0.47 | 0.18 ± 0.15 | 0.00 ± 0.00 | 0.42 ± 0.42 | 12.57 ± 0.22 |
trans-Carveol | 1219 | 1223 | 90 | 0.15 ± 0.03 | 0.00 ± 0.00 | 1.07 ± 0.30 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.01 ± 0.01 |
(2E)-Decenal | 1261 | 1265 | 96 | 0.15 ± 0.03 | 0.03 ± 0.02 | 0.07 ± 0.02 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.23 ± 0.22 |
Triacetin | 1356 | 1354 | 91 | 0.19 ± 0.09 | 0.36 ± 0.13 | 2.05 ± 1.84 | 0.50 ± 0.40 | 0.06 ± 0.03 | 0.69 ± 0.05 |
Tetradecene | 1392 | 1392 | 92 | 0.03 ± 0.00 | 0.19 ± 0.01 | 0.11 ± 0.04 | 0.15 ± 0.02 | 0.09 ± 0.03 | 0.39 ± 0.02 |
Tetradecane | 1399 | 1400 | 90 | 0.03 ± 0.00 | 6.25 ± 1.09 | 1.34 ± 0.21 | 3.25 ± 0.89 | 2.60 ± 0.55 | 26.73 ± 1.75 |
Methyl eugenol | 1406 | 1403 | 85 | 0.08 ± 0.05 | 0.01 ± 0.00 | 0.08 ± 0.02 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.00 ± 0.00 |
Dodecanal | 1409 | 1402 | 94 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.16 ± 0.01 |
(E)-Caryophyllene | 1426 | 1424 | 96 | 0.11 ± 0.02 | 0.78 ± 0.11 | 0.41 ± 0.29 | 0.51 ± 0.02 | 0.45 ± 0.19 | 0.20 ± 0.02 |
α-trans-Bergamotene | 1441 | 1432 | 96 | 0.09 ± 0.02 | 0.19 ± 0.02 | 0.22 ± 0.10 | 0.22 ± 0.05 | 0.12 ± 0.03 | 0.10 ± 0.02 |
trans-Geranylacetone | 1456 | 1450 | 92 | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.07 ± 0.02 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.12 ± 0.02 |
β-(E)-Farnesene | 1461 | 1452 | 90 | 0.02 ± 0.00 | 0.06 ± 0.00 | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.00 |
α-Humulene | 1462 | 1454 | 90 | 0.02 ± 0.01 | 0.17 ± 0.02 | 0.15 ± 0.12 | 0.15 ± 0.00 | 0.10 ± 0.04 | 0.05 ± 0.01 |
unknown sesquiterpene or sesquiterpenoid | 1469 | 0.17 ± 0.05 | 0.96 ± 0.17 | 1.87 ± 0.46 | 0.99 ± 0.27 | 0.58 ± 0.18 | 2.90 ± 0.08 | ||
Dodecanol | 1477 | 1476 | tr | 0.04 ± 0.02 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.01 |
unknown sesquiterpene or sesquiterpenoid | 1482 | 0.43 ± 0.13 | 1.05 ± 0.26 | 0.76 ± 0.91 | 0.42 ± 0.34 | 0.49 ± 0.46 | 0.62 ± 0.03 | ||
β-Selinene | 1494 | 1492 | 94 | 0.14 ± 0.03 | 0.57 ± 0.04 | 0.68 ± 0.60 | 0.60 ± 0.13 | 0.36 ± 0.12 | 0.10 ± 0.01 |
α-Selinene | 1502 | 1501 | 86 | 0.02 ± 0.00 | 0.09 ± 0.00 | 0.10 ± 0.10 | 0.10 ± 0.02 | 0.05 ± 0.02 | 0.01 ± 0.00 |
unknown sesquiterpene or sesquiterpenoid | 1523 | 0.04 ± 0.01 | 0.04 ± 0.00 | 0.06 ± 0.03 | 0.04 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 | ||
Caryophyllene oxide | 1596 | 1587 | 90 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.02 ± 0.01 |
Tetradecanal | 1615 | 1601 | 90 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.25 ± 0.32 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.01 |
Methyl trans-dihydrojasmonate | 1663 | 1648 | 94 | 0.11 ± 0.04 | 0.05 ± 0.00 | 0.24 ± 0.08 | 0.06 ± 0.03 | 0.04 ± 0.00 | 0.20 ± 0.05 |
3-Butyl phthalide | 1664 | 1648 | 91 | 1.72 ± 0.59 | 0.89 ± 0.59 | 3.31 ± 0.22 | 1.61 ± 0.54 | 0.32 ± 0.32 | 0.01 ± 0.00 |
cis-9-Tetradecen-1-ol | 1677 | 1664 | T | 0.23 ± 0.03 | 0.21 ± 0.04 | 0.50 ± 0.10 | 0.19 ± 0.04 | 0.10 ± 0.01 | 0.52 ± 0.08 |
(3Z)-Butylidene phthalide | 1689 | 1673 | 92 | 0.39 ± 0.06 | 0.18 ± 0.03 | 0.43 ± 0.04 | 0.12 ± 0.04 | 0.08 ± 0.00 | 0.48 ± 0.06 |
Fenipentol | 1740 | nd 5 | tr | 2.74 ± 0.56 | 2.49 ± 0.30 | 6.14 ± 1.75 | 2.41 ± 0.69 | 0.85 ± 0.01 | 8.64 ± 0.62 |
3-Isobutylidene phthalide | 1746 | 1722 | 97 | 2.40 ± 0.14 | 1.85 ± 0.17 | 5.07 ± 0.61 | 2.28 ± 0.16 | 0.49 ± 0.09 | 5.67 ± 0.01 |
(Z)-Ligustilide | 1748 | 1733 | 94 | 0.57 ± 0.14 | 0.17 ± 0.01 | 0.56 ± 0.09 | 0.27 ± 0.09 | 0.11 ± 0.02 | 0.95 ± 0.10 |
Neocnidilide | 1751 | 1735 | 94 | 2.07 ± 0.80 | 1.00 ± 0.22 | 3.88 ± 0.62 | 1.39 ± 0.03 | 0.38 ± 0.06 | 4.59 ± 029 |
Octyl caprylate | 1780 | 1779 | 91 | 0.06 ± 0.02 | 0.01 ± 0.00 | 0.06 ± 0.03 | 0.05 ± 0.01 | 0.01 ± 0.01 | 0.16 ± 0.14 |
Octadecane | 1799 | 1800 | 90 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.13 ± 0.03 | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.29 ± 0.02 |
Isopropyl tetradecanoate | 1826 | 1826 | 93 | 0.25 ± 0.08 | 0.03 ± 0.01 | 0.20 ± 0.02 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.15 ± 0.03 |
Methyl 14-methylhexadecanoate | 1928 | 1914 | T | 0.04 ± 0.02 | 0.01 ± 0.00 | 1.28 ± 0.31 | 0.41 ± 0.07 | 0.10 ± 0.01 | 0.10 ± 0.01 |
Isopropyl palmitate | 2025 | 2013 | 94 | 0.04 ± 0.02 | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.00 |
Drying Method | Material | Model Parameters | Statistical Parameters | Drying Time [min] | |||||
---|---|---|---|---|---|---|---|---|---|
k | a | b | RMSE | Ve [%] | R2 | χ2 | |||
Logistic Model | |||||||||
CD50 | CB | 0.0134 | 5.4908 | 6.4022 | 0.0099 | 0.0230 | 0.9992 | 0.0001 | 330 |
C | 0.0130 | 1.5099 | 2.4754 | 0.0108 | 0.0235 | 0.9991 | 0.0001 | 400 | |
CD60 | CB | 0.0206 | 2.4017 | 3.3431 | 0.0109 | 0.0264 | 0.9989 | 0.0001 | 240 |
C | 0.0171 | 2.3372 | 3.2945 | 0.0084 | 0.0199 | 0.9994 | 0.0001 | 300 | |
CD70 | CB | 0.0236 | 2.9346 | 3.8320 | 0.0132 | 0.0338 | 0.9984 | 0.0002 | 210 |
C | 0.0209 | 1.0870 | 2.0494 | 0.0107 | 0.0236 | 0.9990 | 0.0001 | 240 | |
Logarithmic Model | |||||||||
CD50 | CB | 0.0111 | 1.0381 | - | 0.0157 | 0.0370 | 0.9978 | 0.0003 | 330 |
C | 0.0089 | 1.0546 | - | 0.0208 | 0.0451 | 0.9968 | 0.0005 | 400 | |
CD60 | CB | 0.0155 | 1.0708 | - | 0.0173 | 0.0419 | 0.9974 | 0.0003 | 240 |
C | 0.0125 | 1.0862 | - | 0.0311 | 0.0722 | 0.9920 | 0.001 | 300 | |
CD70 | CB | 0.0190 | 1.0827 | - | 0.0191 | 0.0493 | 0.9967 | 0.0004 | 210 |
C | 0.0138 | 1.0790 | - | 0.0235 | 0.0529 | 0.9956 | 0.0006 | 240 | |
Henderdon and Pabis Model | |||||||||
CD50 | CB | 0.0125 | 0.9945 | - | 0.0108 | 0.0256 | 0.9991 | 0.0001 | 330 |
C | 0.0101 | 1.0195 | - | 0.0190 | 0.0412 | 0.9976 | 0.0004 | 400 | |
CD60 | CB | 0.0174 | 1.0056 | - | 0.0154 | 0.0373 | 0.9982 | 0.0003 | 240 |
C | 0.0140 | 1.0325 | - | 0.0344 | 0.0800 | 0.9903 | 0.0014 | 300 | |
CD70 | CB | 0.0211 | 1.0007 | - | 0.0156 | 0.0404 | 0.9981 | 0.0003 | 210 |
C | 0.0154 | 1.0215 | - | 0.0239 | 0.0538 | 0.9956 | 0.0007 | 240 | |
Newton Model | |||||||||
CD50 | CB | 0.0126 | - | - | 0.0111 | 0.0261 | 0.9990 | 0.0001 | 330 |
C | 0.0098 | - | - | 0.0209 | 0.0452 | 0.9983 | 0.0005 | 400 | |
CD60 | CB | 0.0172 | - | - | 0.0155 | 0.0377 | 0.9984 | 0.0003 | 240 |
C | 0.0134 | - | - | 0.0370 | 0.0860 | 0.9912 | 0.0016 | 300 | |
CD70 | CB | 0.0211 | - | - | 0.0156 | 0.0404 | 0.9981 | 0.0003 | 210 |
C | 0.0150 | - | - | 0.0256 | 0.0576 | 0.9966 | 0.0008 | 240 | |
Page Model | |||||||||
CD50 | CB | 0.0124 | 1.0037 | - | 0.0110 | 0.0261 | 0.9990 | 0.0001 | 330 |
C | 0.0063 | 1.0991 | - | 0.0124 | 0.0268 | 0.9988 | 0.0002 | 400 | |
CD60 | CB | 0.0141 | 1.0496 | - | 0.0130 | 0.0316 | 0.9985 | 0.0002 | 240 |
C | 0.0072 | 1.1481 | - | 0.0285 | 0.0662 | 0.9929 | 0.0009 | 300 | |
CD70 | CB | 0.0183 | 1.0368 | - | 0.0143 | 0.0371 | 0.9982 | 0.0002 | 210 |
C | 0.0091 | 1.1202 | - | 0.0161 | 0.0362 | 0.9978 | 0.0003 | 240 |
Method | DM (%) | AW (-) | ρb (kg·m–3) |
---|---|---|---|
C | 9.89 ± 0.009 a | 0.925 ± 0.023 i | 221.32 ± 27.30 d |
C FD | 99.26 ± 0.005 f | 0.110 ± 0.010 a | 34.28 ± 6.12 a |
C VD | 98.22 ± 0.019 e,f | 0.133 ± 0.036 a,b | 58.82 ± 8.71 b |
C CD50 | 89.58 ± 0.012 b,c | 0.480 ± 0.018 g | 72.04 ± 14.49 b |
C CD60 | 96.44 ± 0.014 e,f | 0.363 ± 0.002 e | 70.84 ± 13.43 b |
C CD70 | 97.75 ± 0.013 e,f | 0.187 ± 0.005 c | 67.76 ± 11.73 b |
CB | 10.43 ± 0.003 a | 0.983 ± 0.001 j | 271.43 ± 31.34 e |
CB FD | 98.18 ± 0.009 e,f | 0.149 ± 0.011 b | 34.48 ± 2.19 a |
CB VD | 95.51 ± 0.009 e,f | 0.180 ± 0.018 c | 91.67 ± 19.65 c |
CB CD50 | 87.69 ± 0.025 b | 0.557 ± 0.012 h | 94.24 ± 10.46 c |
CB CD60 | 91.64 ± 0.182 c,d | 0.422 ± 0.005 f | 87.79 ± 5.68 b |
CB CD70 | 94.42 ± 0.027 d,e | 0.252 ± 0.003 d | 63.92 ± 2.26 b |
Method | L* | a* | b* | BI | C* | ∆E |
---|---|---|---|---|---|---|
C | 85.62 ± 1.3 f | −0.51 ± 0.35 a | 10.72± 1.12 c | 12.61 | 10.73 | - |
C FD | 91.90 ± 2.07 g | −0.46 ± 0.15 a | 11.38± 0.52 c | 12.54 | 11.39 | 6.31 |
C VD | 63.56 ± 4.70 d | 0.56 ± 0.33 a,b | 11.80± 1.33 c | 20.71 | 11.81 | 22.11 |
C CD50 | 77.30 ± 2.55 d | 2.50 ± 0.92 b | 18.06± 1.54 e | 28.44 | 18.23 | 11.49 |
C CD60 | 75.26 ± 2.85 d | 1.61 ± 0.55 a,b | 16.60± 1.09 d | 25.96 | 16.68 | 12.10 |
C CD70 | 76.16 ± 1.55 d | 2.12 ± 0.83 b | 17.67± 1.77 d | 27.90 | 17.80 | 12.03 |
CB | 43.72 ± 2.35 b | 28.81 ± 3.13 e | 8.92± 0.76 b | 66.75 | 30.16 | 51.17 |
CB FD | 58.59 ± 2.14 c | 28.06 ± 1.68 e | 8.84± 1.96 b | 48.90 | 29.41 | 39.37 |
CB VD | 37.02 ± 3.66 a | 15.64 ± 2.77 c | 6.25± 2.52 a | 47.54 | 16.84 | 51.41 |
CB CD50 | 40.26 ± 1.54 a,b | 18.22 ± 1.18 d | 10.92± 0.94 c | 63.00 | 21.92 | 49.07 |
CB CD60 | 39.65 ± 2.96 a,b | 19.37 ± 2.07 d | 11.37± 1.30 c | 67.52 | 22.46 | 50.09 |
CB CD70 | 39.59 ± 1.91 a,b | 18.90 ± 1.08 d | 11.11± 1.62 c | 65.93 | 21.24 | 49.96 |
Code | Material | Type of Drying |
---|---|---|
C | Celery | - |
C FD | Celery | freeze drying |
C VD | Celery | vacuum drying |
C CD50 | Celery | convective drying 50 °C |
C CD60 | Celery | convective drying 60 °C |
C CD70 | Celery | convective drying 70 °C |
CB | Celery after impregnation with beetroot juice | - |
CB FD | Celery after impregnation with beetroot juice | freeze drying |
CB VD | Celery after impregnation with beetroot juice | vacuum drying |
CB CD50 | Celery after impregnation with beetroot juice | convective drying 50 °C |
CB CD60 | Celery after impregnation with beetroot juice | convective drying 60 °C |
CB CD70 | Celery after impregnation with beetroot juice | convective drying 70 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kręcisz, M.; Klemens, M.; Latański, A.; Stępień, B. The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process. Molecules 2024, 29, 4050. https://doi.org/10.3390/molecules29174050
Kręcisz M, Klemens M, Latański A, Stępień B. The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process. Molecules. 2024; 29(17):4050. https://doi.org/10.3390/molecules29174050
Chicago/Turabian StyleKręcisz, Magdalena, Marta Klemens, Aleks Latański, and Bogdan Stępień. 2024. "The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process" Molecules 29, no. 17: 4050. https://doi.org/10.3390/molecules29174050
APA StyleKręcisz, M., Klemens, M., Latański, A., & Stępień, B. (2024). The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process. Molecules, 29(17), 4050. https://doi.org/10.3390/molecules29174050