Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Guan, H.; Zhou, S.; Fu, S.; Pu, D.; Chen, X.; Ge, Y.; Wang, S.; Wang, C.; Cui, H.; Liang, J. Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems. Adv. Mater. 2024, 36, 2307987. [Google Scholar] [CrossRef]
- Tong, Y.; Najar, A.; Wang, L.; Liu, L.; Du, M.; Yang, J.; Li, J.; Wang, K.; Liu, S. Wide-bandgap organic–inorganic lead halide perovskite solar cells. Adv. Sci. 2022, 9, 2105085. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Walter, D.; Wu, Y.; Fong, K.C.; Jacobs, D.A.; Duong, T.; Peng, J.; Weber, K.; White, T.P.; Catchpole, K.R. Monolithic perovskite/Si tandem solar cells: Pathways to over 30% efficiency. Adv. Energy Mater. 2020, 10, 1902840. [Google Scholar] [CrossRef]
- Chin, X.Y.; Turkay, D.; Steele, J.A.; Tabean, S.; Eswara, S.; Mensi, M.; Fiala, P.; Wolff, C.M.; Paracchino, A.; Artuk, K. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 2023, 381, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.; Allen, T.G.; De Bastiani, M.; Razzaq, A.; Xu, L.; Ugur, E.; Liu, J.; De Wolf, S. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 2024, 383, eadh3849. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.J.; Oliver, R.D.; Johnston, M.B.; Snaith, H.J. Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 2023, 8, 822–838. [Google Scholar] [CrossRef]
- Huang, T.; Xu, F.; Hu, J.; Wu, J.; Li, S.; Chen, P.; Jia, X.; Yan, H.; Ji, Y.; Luo, D. Rational heterostructure stacking enables 23% wide-bandgap perovskite solar cells by side-reaction inhibition. Energy Environ. Sci. 2024, 17, 5984–5992. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, Q.; Bai, Y.; Chen, Q. Issues of phase segregation in wide-bandgap perovskites. Mater. Chem. Front. 2023, 7, 1896–1911. [Google Scholar] [CrossRef]
- Wang, R.T.; Xu, A.F.; Yang, L.W.; Chen, J.Y.; Kitai, A.; Xu, G. Magnetic-field-induced energy bandgap reduction of perovskite KMnF3. J. Mater. Chem. C 2020, 8, 4164–4168. [Google Scholar] [CrossRef]
- El-Mellouhi, F.; Marzouk, A.; Bentria, E.T.; Rashkeev, S.N.; Kais, S.; Alharbi, F.H. Hydrogen bonding and stability of hybrid organic–inorganic perovskites. ChemSusChem 2016, 9, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, J.-H.; Kong, E.-H.; Jang, H.M. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 2016, 6, 21687. [Google Scholar] [CrossRef] [PubMed]
- Svane, K.L.; Forse, A.C.; Grey, C.P.; Kieslich, G.; Cheetham, A.K.; Walsh, A.; Butler, K.T. How strong is the hydrogen bond in hybrid perovskites? J. Phys. Chem. Lett. 2017, 8, 6154–6159. [Google Scholar] [CrossRef]
- Lin, L.; Jones, T.W.; Yang, T.C.-J.; Li, X.; Wu, C.; Xiao, Z.; Li, H.; Li, J.; Qian, J.; Lin, L. Hydrogen bonding in perovskite solar cells. Matter 2024, 7, 38–58. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.K.; Xue, J.; Yang, Y. A review of perovskites solar cell stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Xu, K.J.; Wang, R.T.; Xu, A.F.; Chen, J.Y.; Xu, G. Hysteresis and Instability Predicted in Moisture Degradation of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 48882–48889. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Wei, H.; Zheng, X.; Yu, Z.; Shao, Y.; Shield, J.E.; Huang, J. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616. [Google Scholar] [CrossRef]
- Levine, I.; Vera, O.G.; Kulbak, M.; Ceratti, D.-R.; Rehermann, C.; Márquez, J.A.; Levcenko, S.; Unold, T.; Hodes, G.; Balberg, I. Deep defect states in wide-band-gap ABX3 halide perovskites. ACS Energy Lett. 2019, 4, 1150–1157. [Google Scholar] [CrossRef]
- Zhou, Y.; Poli, I.; Meggiolaro, D.; De Angelis, F.; Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 2021, 6, 986–1002. [Google Scholar] [CrossRef]
- Yang, G.; Ni, Z.; Yu, Z.J.; Larson, B.W.; Yu, Z.; Chen, B.; Alasfour, A.; Xiao, X.; Luther, J.M.; Holman, Z.C. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 2022, 16, 588–594. [Google Scholar] [CrossRef]
- Yao, Y.; Hang, P.; Li, B.; Hu, Z.; Kan, C.; Xie, J.; Wang, Y.; Zhang, Y.; Yang, D.; Yu, X. Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 2022, 18, 2203319. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; He, T.; Zhang, S.; Lei, X.; Jiang, Y.; Wang, D.; Sun, P.; Zhao, D.; Hsu, H.-Y.; Li, X. Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 2021, 7, 3131–3143. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, Q.; Yang, Y.; Jiang, Y.; Dai, Z.; Huang, X.; Huo, J.; Guo, P.; Shen, H.; Liu, Z. Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules. J. Mater. Chem. A 2023, 11, 16871–16877. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, L.; Zhu, T.; Chen, H.; Chen, B.; Kubicki, D.J.; Balvanz, A.; Li, C.; Maxwell, A.; Ugur, E. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 2023, 618, 74–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Yavuz, I.; Wang, M.; Weber, M.H.; Xu, M.; Lee, J.-H.; Tan, S.; Huang, T.; Meng, D.; Wang, R. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 2022, 21, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Sun, X.; Xie, H.; Cai, X.; Zheng, B.; Yu, H.; Liu, E.; Hao, X.; Zhang, M. Unraveling the mechanism of ion-migration suppression by interstitial doping for operationally stable CsPbI2Br perovskite solar cells. Chem. Mater. 2022, 34, 1010–1019. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Hou, T.; Sun, X.; Hao, X. Extrinsic interstitial ions in metal halide perovskites: A review. Small 2023, 19, 2303060. [Google Scholar] [CrossRef] [PubMed]
- Zai, H.; Ma, Y.; Chen, Q.; Zhou, H. Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. J. Energy Chem. 2021, 63, 528–549. [Google Scholar] [CrossRef]
- Chen, C.; Song, Z.; Xiao, C.; Awni, R.A.; Yao, C.; Shrestha, N.; Li, C.; Bista, S.S.; Zhang, Y.; Chen, L. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: The role of suppressed ion migration. ACS Energy Lett. 2020, 5, 2560–2568. [Google Scholar] [CrossRef]
- Wang, R.T.; Xu, A.F.; Zhang, W.; Xu, G. The influence of compression on the lattice stability of α-FAPbI3 revealed by numerical simulation. New J. Chem. 2022, 46, 16130–16137. [Google Scholar] [CrossRef]
- Wang, T.; Xu, F.; Wang, Q.; Tai, L.; Xu, G. Improved Perovskite Structural Stability by Halogen Bond from Excessive Lead Iodide via Numerical Simulation. Crystals 2022, 12, 1073. [Google Scholar] [CrossRef]
- Wang, R.T.; Jin, X.; Tan, W.; Zhang, Y.; Zhang, W.; Abbas, A.; Lyu, B.; Xu, F. Hindered Phase Transition Kinetics of α-CsPbI3 by External Tension. Energy Technol. 2023, 11, 2300523. [Google Scholar] [CrossRef]
- Tai, L.; Wang, Q.; Wang, R.T.; Gu, X.; Xu, F. Controlled formation of ball-milled carbon quantum dots via optimized graphite structures by numerical simulation. New J. Chem. 2024, 48, 10087–10092. [Google Scholar] [CrossRef]
- Slotcavage, D.J.; Karunadasa, H.I.; McGehee, M.D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 2016, 1, 1199–1205. [Google Scholar] [CrossRef]
- Ye, T.; Hou, Y.; Nozariasbmarz, A.; Yang, D.; Yoon, J.; Zheng, L.; Wang, K.; Wang, K.; Ramakrishna, S.; Priya, S. Cost-effective high-performance charge-carrier-transport-layer-free perovskite solar cells achieved by suppressing ion migration. ACS Energy Lett. 2021, 6, 3044–3052. [Google Scholar] [CrossRef]
- Choe, H.; Jeon, D.; Lee, S.J.; Cho, J. Mixed or segregated: Toward efficient and stable mixed halide perovskite-based devices. ACS Omega 2021, 6, 24304–24315. [Google Scholar] [CrossRef]
- Lian, X.; Zuo, L.; Chen, B.; Li, B.; Wu, H.; Shan, S.; Wu, G.; Yu, X.; Chen, Q.; Chen, L. Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy Environ. Sci. 2022, 15, 2499–2507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, W.; Yang, W.; Yu, Z.; Xu, G.; Xu, F. Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics. Molecules 2024, 29, 4030. https://doi.org/10.3390/molecules29174030
Wang T, Zhang W, Yang W, Yu Z, Xu G, Xu F. Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics. Molecules. 2024; 29(17):4030. https://doi.org/10.3390/molecules29174030
Chicago/Turabian StyleWang, Taoran, Weiwei Zhang, Wenjuan Yang, Zeyi Yu, Gu Xu, and Fan Xu. 2024. "Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics" Molecules 29, no. 17: 4030. https://doi.org/10.3390/molecules29174030
APA StyleWang, T., Zhang, W., Yang, W., Yu, Z., Xu, G., & Xu, F. (2024). Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics. Molecules, 29(17), 4030. https://doi.org/10.3390/molecules29174030