Quality Assessment of Reconstructed Cow, Camel and Mare Milk Powders by Near-Infrared Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Cow, Camel and Mare Milk Powder Samples and Reconstructed Milk Samples
2.2. NIRS Results
2.2.1. Visual Inspection of Spectra and PCA Model
2.2.2. Discrimination Models Based on Reconstruction Conditions
2.2.3. PLSR and SVR Models
3. Materials and Methods
3.1. Analyzed Milk Powders
3.2. Preparation of Reconstructed Milk Samples
3.3. Characterization of the Milk Powder Samples
3.3.1. Water Activity
3.3.2. Loose Bulk Density
3.3.3. Insolubility Index
3.3.4. Amino Acid Profile
3.4. Characterization of Reconstructed Milk Samples
3.4.1. Dry Matter Content
3.4.2. pH and Conductivity
3.4.3. Acidity According to Soxhlet–Henkel (Titratable Acidity)
3.4.4. Viscosity
3.4.5. Fat Content
3.4.6. Color Properties
3.4.7. NIRS Analysis
3.5. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barkema, H.W.; Von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Bista, A.; McCarthy, N.; O’Donnell, C.P.; O’Shea, N. Key parameters and strategies to control milk concentrate viscosity in milk powder manufacture. Int. Dairy J. 2021, 121, 105120. [Google Scholar] [CrossRef]
- Sager, M.; Mcculloch, C.R.; Schoder, D. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products. Food Chem. 2018, 255, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Darnay, L.; Tóth, A.; Csehi, B.; Szepessy, A.; Horváth, M.; Pásztor-Huszár, K.; Laczay, P. The Effect of Microbial Transglutaminase on the Viscosity and Protein Network of Kefir Made from Cow, Goat, or Donkey Milk. Fermentation 2021, 7, 214. [Google Scholar] [CrossRef]
- Kalyankar, S.D.; Deshmukh, M.A.; Chopde, S.S.; Khedkar, C.D.; Lule, V.K.; Deosarkar, S.S. Milk Powder. In Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 724–728. [Google Scholar] [CrossRef]
- Kapaj, A.; Deci, E. World Milk Production and Its Consumption and socio economic factors effecting its consumption. In Dairy in Human Health and Disease across the Lifespan; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–115. [Google Scholar] [CrossRef]
- Wang, C.; Reis, M.G.; Waterhouse, G.I.N.; Hemar, Y.; Reis, M.M. Prediction of dairy powder functionality attributes using diffuse reflectance in the visible and near infrared (Vis-NIR) region. Int. Dairy J. 2021, 117, 104981. [Google Scholar] [CrossRef]
- Forchetti, D.A.P.; Poppi, R.J. Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder. LWT 2017, 76, 337–343. [Google Scholar] [CrossRef]
- Zouari, A.; Perrone, Í.T.; Schuck, P.; Gaucheron, F.; Dolivet, A.; Attia, H.; Ayadi, M.A. Effect of outlet drying temperature and milk fat content on the physicochemical characteristics of spray-dried camel milk powder. Dry. Technol. 2019, 37, 1615–1624. [Google Scholar] [CrossRef]
- Zouari, A.; Schuck, P.; Gaucheron, F.; Triki, M.; Delaplace, G.; Gauzelin-Gaiani, C.; Lopez, C.; Attia, H.; Ayadi, M.A. Microstructure and chemical composition of camel and cow milk powders’ surface. LWT 2020, 117, 108693. [Google Scholar] [CrossRef]
- Pugliese, A.; Cabassi, G.; Chiavaro, E.; Paciulli, M.; Carini, E.; Mucchetti, G. Physical characterization of whole and skim dried milk powders. J. Food Sci. Technol. 2017, 54, 3433–3442. [Google Scholar] [CrossRef]
- Augustin, M.A.; Clarke, P.T.; Craven, H. Powdered milk | Characteristics of Milk Powders. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Cabellero, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 4703–4711. [Google Scholar] [CrossRef]
- Duncan, S.E.; Webster, J.B. Oxidation and protection of milk and dairy products. In Oxidation in Foods and Beverages and Antioxidant Applications: Management in Different Industry Sectors; Decker, E.A., Elias, R.J., McClements, D.J., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2010; Volume 2, pp. 121–155. [Google Scholar] [CrossRef]
- Tirgarian, B.; Yadegari, H.; Bagheri, A.; Neshagaran, E.; Mardani, M.; Farmani, J. Reduced-fat chocolate spreads developed by water-in-oleogel emulsions. J. Food Eng. 2023, 337, 111233. [Google Scholar] [CrossRef]
- Seifu, E. Camel milk products: Innovations, limitations and opportunities. Food Prod. Process. Nutr. 2023, 5, 15. [Google Scholar] [CrossRef]
- AlYammahi, J.; Rambabu, K.; Thanigaivelan, A.; Hasan, S.W.; Taher, H.; Show, P.L.; Banat, F. Production and characterization of camel milk powder enriched with date extract. LWT 2023, 179, 114636. [Google Scholar] [CrossRef]
- Ehlayel, M.S.; Hazeima, K.A.; Al-Mesaifri, F.; Bener, A. Camel milk: An alternative for cow’s milk allergy in children. Allergy Asthma Proc. 2011, 32, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Maryniak, N.Z.; Hansen, E.B.; Ballegaard, A.S.R.; Sancho, A.I.; Bøgh, K.L. Comparison of the allergenicity and immunogenicity of Camel and cow’s milk—A study in brown Norway rats. Nutrients 2018, 10, 1903. [Google Scholar] [CrossRef]
- Maryniak, N.Z.; Sancho, A.I.; Hansen, E.B.; Bøgh, K.L. Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022, 11, 926. [Google Scholar] [CrossRef]
- Uniacke-Lowe, T.; Fox, P.F. Equid Milk: Chemistry, Biochemistry and Processing. In Food Biochemistry and Food Processing, 2nd ed.; John Wiley & Sons: Oxford, UK, 2012; pp. 491–530. [Google Scholar] [CrossRef]
- Musaev, A.; Sadykova, S.; Anambayeva, A.; Saizhanova, M.; Balkanay, G.; Kolbaev, M. Mare’s milk: Composition, properties, and application in medicine. Arch. Razi Inst. 2021, 76, 991–1001. [Google Scholar] [CrossRef]
- Fantuz, F.; Salimei, E.; Papademas, P. Macro-and Micronutrients in Non-cow Milk and Products and Their Impact on Human Health. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 209–261. [Google Scholar] [CrossRef]
- Pieszka, M.; Łuszczyński, J.; Zamachowska, M.; Augustyn, R.; Długosz, B.; Hȩdrzak, M. Is mare milk an appropriate food for people?—A review. Ann. Anim. Sci. 2016, 16, 33–51. [Google Scholar] [CrossRef]
- Schuck, P. Milk powder: Physical and functional properties of milk powders. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 117–124. [Google Scholar] [CrossRef]
- Berisha, K.; Bytyçi, H.; Mednyánszky, Z.; Kiss, E.; Simon-Sarkadi, L. Amino acid and biogenic amine composition of Busha cattle milk. Acta Aliment. 2021, 50, 144–152. [Google Scholar] [CrossRef]
- Sarkadi, L.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef]
- Zhang, M.; Sarkadi, L.; Uveges, M.; Tormasi, J.; Benes, E.; Vass, R.A.; Vari, S.G. Gas chromatographic determination of fatty acid composition in breast milk of mothers with different health conditions. Acta Aliment. 2022, 51, 625–635. [Google Scholar] [CrossRef]
- Anema, S.G.; Lowe, E.K.; Lee, S.K.; Klostermeyer, H. Effect of the pH of skim milk at heating on milk concentrate viscosity. Int. Dairy J. 2014, 39, 336–343. [Google Scholar] [CrossRef]
- Sutariya, S.G.; Huppertz, T.; Patel, H.A. Influence of milk pre-heating conditions on casein–whey protein interactions and skim milk concentrate viscosity. Int. Dairy J. 2017, 69, 19–22. [Google Scholar] [CrossRef]
- Wu, D.; Feng, S.; He, Y. Infrared spectroscopy technique for the nondestructive measurement of fat content in milk powder. J. Dairy Sci. 2007, 90, 3613–3619. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jana, A.H.; Chavan, R.S. Functionality of Milk Powders and Milk-Based Powders for End Use Applications—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 518–528. [Google Scholar] [CrossRef]
- Hoppe, C.; Andersen, G.S.; Jacobsen, S.; Mølgaard, C.; Friis, H.; Sangild, P.T.; Michaelsen, K.F. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups. J. Nutr. 2008, 138, 145S–161S. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Chan, S.; Yago, A.J.E.; Shravya, R.; Bhandari, B.R.; Bansal, N. Changes in physicochemical properties of spray-dried camel milk powder over accelerated storage. Food Chem. 2019, 295, 224–233. [Google Scholar] [CrossRef]
- Marconi, E.; Panfili, G. Chemical Composition and Nutritional Properties of Commercial Products of Mare Milk Powder. J. Food Compos. Anal. 1998, 11, 178–187. [Google Scholar] [CrossRef]
- Bimpong, D.; Adofowaa, L.A.; Agyeman, A.; Boakye, A.; Oduro, I.N.; Otoo, E.W.; Zaukuu, J.L.Z. Authenticating peanut butter and yoghurt in the Kumasi Metropolis of Ghana using near infrared spectroscopy. Prog. Agric. Eng. Sci. 2023, 19, 69–81. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical evolution and food control achievements of near infrared spectroscopy, electronic nose, and electronic tongue—Critical overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef]
- Yang, X.; Guang, P.; Xu, G.; Zhu, S.; Chen, Z.; Huang, F. Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics. LWT 2020, 132, 109837. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Feng, S. Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment. Anal. Chim. Acta 2008, 610, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Inácio, M.R.C.; De Moura, M.D.F.V.; De Lima, K.M.G. Classification and determination of total protein in milk powder using near infrared reflectance spectrometry and the successive projections algorithm for variable selection. Vib. Spectrosc. 2011, 57, 342–345. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z.; Wu, T. Classification and quantitation of milk powder by near-infrared spectroscopy and mutual information-based variable selection and partial least squares. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2018, 189, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.S.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E.; et al. Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef]
- Kasemsumran, S.; Thanapase, W.; Kiatsoonthon, A. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Anal. Sci. 2007, 23, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, H.; Erasmus, S.W.; Zhao, S.; Wang, Q.; van Ruth, S.M. Rapid high-throughput determination of major components and amino acids in a single peanut kernel based on portable near-infrared spectroscopy combined with chemometrics. Ind. Crops Prod. 2020, 158, 112956. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Ayvaz, H.; Wehling, R.L. Infrared and Raman spectroscopy. In Food Analysis, 5th ed.; Food Science Text Series; Nielsen, S.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 107–127. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef]
- Tsenkova, R.; Atanassova, S.; Itoh, K.; Ozaki, Y.; Toyoda, K. Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. J. Anim. Sci. 2000, 78, 515–522. [Google Scholar] [CrossRef]
- Tsenkova, R.; Atanassova, S.; Morita, H.; Ikuta, K.; Toyoda, K.; Iordanova, I.K.; Hakogi, E. Near infrared spectra of cows’ milk for milk quality evaluation: Disease diagnosis and pathogen identification. J. Near Infrared Spectrosc. 2006, 14, 363–370. [Google Scholar] [CrossRef]
- Kuzmenko, A.V.; Tverjanovich, A.S.; Ilyushin, M.A.; Tveryanovich, Y.S. The effect of the concentration of high-absorbing inclusions on the laser initiation threshold of energetic materials: Model and experiment. J. Energetic Mater. 2019, 37, 420–432. [Google Scholar] [CrossRef]
- Ejeahalaka, K.K.; On, S.L.W. Characterisation of the quality alterations in model fat-filled milk powders under inclement conditions and the prediction of the storage time using near infrared spectroscopy. Food Chem. 2020, 323, 126752. [Google Scholar] [CrossRef]
- Skeie, S.; Feten, G.; Almøy, T.; Østlie, H.; Isaksson, T. The use of near infrared spectroscopy to predict selected free amino acids during cheese ripening. Int. Dairy J. 2006, 16, 236–242. [Google Scholar] [CrossRef]
- Muncan, J.; Kovacs, Z.; Pollner, B.; Ikuta, K.; Ohtani, Y.; Terada, F.; Tsenkova, R. Near infrared aquaphotomics study on common dietary fatty acids in cow’s liquid, thawed milk. Food Control. 2021, 122, 107805. [Google Scholar] [CrossRef]
- Balabin, R.M.; Smirnov, S.V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta 2011, 85, 562–568. [Google Scholar] [CrossRef]
- McDermott, A.; Visentin, G.; De Marchi, M.; Berry, D.P.; Fenelon, M.A.; O’Connor, P.M.; Kenny, O.A.; McParland, S. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics. J. Dairy Sci. 2016, 99, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Lu, B.; Hao, G.; Xu, J.; Wang, Z.; Chen, C. Rapid detection of melamine in milk powder by near infrared spectroscopy. J. Near Infrared Spectrosc. 2009, 17, 59–67. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef]
- Liu, S.; Lei, T.; Li, G.; Liu, S.; Chu, X.; Hao, D.; Xiao, G.; Khan, A.A.; Haq, T.U.; Sameeh, M.Y.; et al. Rapid detection of micronutrient components in infant formula milk powder using near-infrared spectroscopy. Front. Nutr. 2023, 10, 1273374. [Google Scholar] [CrossRef]
- ISO 2446; Milk-Determination of Fat Content (Routine Method). International Organization for Standardization: Geneva, Switzerland, 1976.
- ISO488|IDF 105; Milk-Determination of Fat Content-Gerber Butyrometers. International Organization for Standardization and International Dairy Federation: Geneva, Switzerland, 2008.
- Trout, G.M.; Lucas, P.S. A Comparison of the Babcock, Gerber, Minnesota, Pennsylvania, and Mojonnier Methods for Determining the Percentage of Fat in Homogenized Milk. J. Dairy Sci. 1947, 30, 145–159. [Google Scholar] [CrossRef]
- Esen, M.K.; Güzeler, N. The effects of the use of whey protein as a fat replacer on the composition, proteolysis, textural, meltability, microstructural, and sensory properties of reduced-fat Boru- type Künefe cheese during storage. Int. Dairy J. 2023, 137, 105519. [Google Scholar] [CrossRef]
- R Foundation. The R Project for Statistical Computing; R foundation: Vienna, Austria, 2020. [Google Scholar]
- Aquaphotomics. Available online: https://www.aquaphotomics.com/aquap2/ (accessed on 10 May 2024).
- Shen, F.; Niu, X.; Yang, D.; Ying, Y.; Li, B.; Zhu, G.; Wu, J. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy. J. Agric. Food Chem. 2010, 58, 9809–9816. [Google Scholar] [CrossRef]
- Neill, O.; Yoder, I.C.; Connally, S.A.; Mueller, P.R. Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2004; pp. 407–416. [Google Scholar]
Measured Parameters | Cow Milk Powder | Camel Milk Powder | Mare Milk Powder |
---|---|---|---|
Water activity | 0.24 ± 0.006 a | 0.28 ± 0.002 b | 0.22 ± 0.08 c |
Insolubility index (mL) | 0.1 ± 0.005 a | 0.75 ± 0.03 b | 1.37 ± 0.02 c |
Bulk density (kg m3) | 678.9 ± 14.1 a | 393.65 ± 34.75 b | 549.76 ± 16.21 c |
Reconstructed Milk Powder | ||||
---|---|---|---|---|
Measured Parameters | Significant Factors | Cow Milk | Camel Milk | Mare Milk |
Apparent viscosity (mPa s−1) | C1 | 3.88 ± 0.05 Aa | 3.96 ± 0.05 Ba | 3.63 ± 0.06 Ca |
C2 | 4.20 ± 0.06 Ab | 4.25 ± 0.08 Ab | 3.82 ± 0.05 Bb | |
C3 | 4.53 ± 0.07 Ac | 4.64 ± 0.13 Ac | 4.00 ± 0.04 Bc | |
Conductivity (mS cm−1) | T1 | 6.41 ± 0.03 Aa | 5.17 ± 0.12 Ba | 2.25 ± 0.02 Ca |
T2 | 7.36 ± 0.11 Ab | 5.93 ± 0.04 Bb | 2.55 ± 0.09 Cb | |
T3 | 8.32 ± 0.06 Ac | 6.45 ± 0.06 Bc | 2.71 ± 0.03 Cc | |
pH | T1 | 6.73 ± 0.06 Aa | 6.57 ± 0.05 Ba | 7.19 ± 0.04 Ca |
T2 | 6.71 ± 0.06 Aa | 6.53 ± 0.08 Ba | 7.12 ± 0.07 Cb | |
T3 | 6.72 ± 0.05 Aa | 6.51 ± 0.06 Ba | 7.23 ± 0.04 Ca | |
Titratable acidity (°SH) | C1 | 6.36 ± 0.7 Aa | 6.32 ± 0.44 Aa | 2.00 ± 0.15 Ca |
C2 | 6.35 ± 0.29 Aa | 6.90 ± 0.22 Bb | 2.38 ± 0.19 Cb | |
C3 | 6.95 ± 0.12 Ab | 7.32 ± 0.23 Bc | 2.56 ± 0.21 Cb | |
Dry matter (%) | C1 | 9.08 ± 0.31 Aa | 8.75 ± 0.30 Ba | 8.93 ± 0.14 ABa |
C2 | 11.18 ± 0.23 Ab | 10.80 ± 0.14 Bb | 10.82 ± 0.16 Bb | |
C3 | 13.5 ± 0.46 Ac | 12.57 ± 0.13 Bc | 12.77 ± 0.68 Bc | |
L* | C1 | 68.56 ± 0.72 Aa | 61.01 ± 0.85 Ba | 57.51 ± 0.77 Ca |
C2 | 69.90 ± 0.63 Ab | 62.69 ± 0.50 Bb | 59.97 ± 0.68 Cb | |
C3 | 70.75 ± 0.47 Ac | 63.84 ± 0.60 Bc | 61.67 ± 0.47 Cc | |
a* | T1 | −0.74 ± 0.05 Aa | −3.01 ± 0.06 Ba | −0.92 ± 0.04 Ca |
T2 | −0.77 ± 0.07 Aa | −3.20 ± 0.03 Bb | −1.00 ± 0.05 Cb | |
T3 | −0.74 ± 0.05 Aa | −3.33 ± 0.07 Bc | −1.02 ± 0.04 Cb | |
b* | C1 | −2.57 ± 0.13 Aa | −5.73 ± 0.30 Ba | −5.18 ± 0.12 Ca |
C2 | −1.91 ± 0.12 Ab | −4.69 ± 0.23 Bb | −4.45 ± 0.12 Cb | |
C3 | −1.36 ± 0.10 Ac | −3.97 ± 0.26 Bc | −3.94 ± 0.08 Bc |
Measured Parameters | LV | Pretreatment | R2C | RMSEC | R2CV | RMSECV | R2pr | RMSEP |
---|---|---|---|---|---|---|---|---|
Viscosity | 5 | sgol@2−21−0 | 0.9198 | 0.0914 | 0.9121 | 0.0956 | 0.9004 | 0.0996 |
Conductivity | 5 | sgol@2−21−0 | 0.9861 | 0.248 | 0.9848 | 0.2592 | 0.9819 | 0.2836 |
pH | 5 | sgol@2−21−0 | 0.9801 | 0.0398 | 0.9785 | 0.0413 | 0.9652 | 0.0528 |
Titratable acidity | 4 | sgol@2−21−0 | 0.9543 | 0.4314 | 0.9506 | 0.4484 | 0.9299 | 0.5816 |
Dry matter | 4 | sgol@2−21−0 | 0.9174 | 0.4814 | 0.9122 | 0.4964 | 0.8662 | 0.6021 |
Fat content | 4 | sgol@2−21−0 | 0.9267 | 0.2797 | 0.8058 | 0.4535 | 0.7081 | 0.5153 |
L* | 4 | sgol@2−21−0 | 0.9747 | 0.7068 | 0.9726 | 0.7353 | 0.9558 | 0.9421 |
a* | 4 | sgol@2−21−0 | 0.9938 | 0.0862 | 0.9936 | 0.0862 | 0.9884 | 0.1203 |
b* | 4 | sgol@2−21−0 | 0.9795 | 0.2042 | 0.9778 | 0.2124 | 0.9701 | 0.2438 |
Measured Parameters | ε | Pretreatment | R2C | RMSEC | R2CV | RMSECV | R2pr | RMSEP |
---|---|---|---|---|---|---|---|---|
Viscosity | 0.01 | sgol@2−21−0 | 0.9604 | 0.0640 | 0.9604 | 0.0640 | 0.9404 | 0.0784 |
Conductivity | 0.01 | sgol@2−21−0 | 0.9980 | 0.0945 | 0.9980 | 0.0945 | 0.9974 | 0.1063 |
pH | 0.1 | sgol@2−21−0 | 0.9821 | 0.0380 | 0.9821 | 0.0380 | 0.9783 | 0.0417 |
Titratable acidity | 0.01 | sgol@2−21−0 | 0.9774 | 0.3108 | 0.9774 | 0.3107 | 0.9638 | 0.3877 |
Dry matter | 0.1 | sgol@2−21−0 | 0.9144 | 0.4874 | 0.9144 | 0.4874 | 0.8976 | 0.5293 |
Fat content | 0.1 | sgol@2−21−0 | 0.9348 | 0.2536 | 0.9347 | 0.2535 | 0.8052 | 0.4175 |
L* | 0.1 | sgol@2−21−0 | 0.9878 | 0.4939 | 0.9877 | 0.4938 | 0.9837 | 0.5631 |
a* | 0.01 | sgol@2−21−0 | 0.9979 | 0.0497 | 0.9979 | 0.0497 | 0.9957 | 0.0708 |
b* | 0.01 | sgol@2−21−0 | 0.9966 | 0.0825 | 0.9966 | 0.0825 | 0.9952 | 0.0961 |
Measured Amino Acids | LV | Pretreatment | R2C | RMSEC | R2CV | RMSECV | R2pr | RMSEP |
---|---|---|---|---|---|---|---|---|
Alanine | 4 | sgol@2−21−0, msc | 0.9757 | 0.0042 | 0.9739 | 0.0044 | 0.8783 | 0.011 |
Arginine | 4 | sgol@2−21−0, msc | 0.9849 | 0.0049 | 0.9837 | 0.005 | 0.9399 | 0.0095 |
Asparagine | 4 | sgol@2−21−0, msc | 0.9837 | 0.0082 | 0.9825 | 0.0086 | 0.9518 | 0.0158 |
Cysteine | 4 | sgol@2−21−0 | 0.9478 | 0.005 | 0.9434 | 0.0052 | 0.789 | 0.0089 |
Glutamic acid | 4 | sgol@2−21−0, msc | 0.9742 | 0.0304 | 0.9722 | 0.0315 | 0.9456 | 0.0519 |
Glycine | 4 | sgol@2−21−0, msc | 0.9272 | 0.0064 | 0.9204 | 0.0067 | 0.9165 | 0.006 |
Histidine | 4 | sgol@2−21−0 | 0.9463 | 0.0041 | 0.939 | 0.0044 | 0.931 | 0.0053 |
Isoleucine | 4 | sgol@2−21−0 | 0.9442 | 0.0038 | 0.937 | 0.004 | 0.9061 | 0.0056 |
Leucine | 4 | sgol@2−21−0, msc | 0.9804 | 0.0104 | 0.9789 | 0.0107 | 0.9526 | 0.0178 |
Lysine | 4 | sgol@2−21−0, msc | 0.979 | 0.009 | 0.9774 | 0.0093 | 0.9609 | 0.0132 |
Methionine | 4 | sgol@2−21−0 | 0.9303 | 0.0047 | 0.9202 | 0.005 | 0.8863 | 0.0075 |
Phenylalanine | 4 | sgol@2−21−0 | 0.9684 | 0.0063 | 0.9651 | 0.0066 | 0.9251 | 0.0105 |
Proline | 4 | sgol@2−21−0, msc | 0.9656 | 0.0119 | 0.9631 | 0.0124 | 0.9348 | 0.0175 |
Serine | 4 | sgol@2−21−0, msc | 0.9822 | 0.006 | 0.9809 | 0.0062 | 0.9368 | 0.0129 |
Threonine | 4 | sgol@2−21−0 | 0.9419 | 0.007 | 0.934 | 0.0075 | 0.9015 | 0.0095 |
Tyrosine | 4 | sgol@2−21−0 | 0.9603 | 0.0083 | 0.9566 | 0.0087 | 0.9119 | 0.0118 |
Valine | 4 | sgol@2−21−0, msc | 0.9759 | 0.005 | 0.9738 | 0.0053 | 0.8355 | 0.0139 |
Measured Amino Acids | ε | Pretreatment | R2C | RMSEC | R2CV | RMSECV | R2pr | RMSEP |
---|---|---|---|---|---|---|---|---|
Alanine | 0.1 | sgol@2−21−0, msc | 0.9712 | 0.0047 | 0.9711 | 0.0047 | 0.9305 | 0.0070 |
Arginine | 0.1 | sgol@2−21−0, msc | 0.9835 | 0.0050 | 0.9835 | 0.0050 | 0.9634 | 0.0074 |
Asparagine | 0.1 | sgol@2−21−0, msc | 0.9853 | 0.0081 | 0.9853 | 0.0081 | 0.9728 | 0.0109 |
Cysteine | 0.5 | sgol@2−21−0 | 0.9419 | 0.0049 | 0.9419 | 0.0049 | 0.8453 | 0.0078 |
Glutamic acid | 0.1 | sgol@2−21−0, msc | 0.9751 | 0.0316 | 0.9751 | 0.0316 | 0.9539 | 0.0423 |
Glycine | 0.1 | sgol@2−21−0, msc | 0.9509 | 0.0049 | 0.9509 | 0.0049 | 0.8988 | 0.0071 |
Histidine | 0.1 | sgol@2−21−0 | 0.9674 | 0.0033 | 0.9673 | 0.0033 | 0.9289 | 0.0049 |
Isoleucine | 0.1 | sgol@2−21−0 | 0.9586 | 0.0034 | 0.9586 | 0.0034 | 0.9073 | 0.0051 |
Leucine | 0.1 | sgol@2−21−0, msc | 0.9835 | 0.0099 | 0.9835 | 0.0099 | 0.9721 | 0.0127 |
Lysine | 0.1 | sgol@2−21−0, msc | 0.9870 | 0.0073 | 0.9870 | 0.0073 | 0.9808 | 0.0088 |
Methionine | 0.1 | sgol@2−21−0 | 0.9428 | 0.0046 | 0.9428 | 0.0046 | 0.8765 | 0.0066 |
Phenylalanine | 0.1 | sgol@2−21−0 | 0.9810 | 0.0050 | 0.9810 | 0.0050 | 0.9636 | 0.0066 |
Proline | 0.1 | sgol@2−21−0, msc | 0.9659 | 0.0119 | 0.9659 | 0.0119 | 0.9313 | 0.0164 |
Serine | 0.1 | sgol@2−21−0, msc | 0.9804 | 0.0066 | 0.9804 | 0.0066 | 0.9586 | 0.0095 |
Threonine | 0.1 | sgol@2−21−0 | 0.9529 | 0.0064 | 0.9528 | 0.0064 | 0.8943 | 0.0094 |
Tyrosine | 0.1 | sgol@2−21−0 | 0.9846 | 0.0051 | 0.9845 | 0.0051 | 0.9717 | 0.0068 |
Valine | 0.1 | sgol@2−21−0, msc | 0.9537 | 0.0069 | 0.9537 | 0.0069 | 0.8949 | 0.0103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majadi, M.; Barkó, A.; Varga-Tóth, A.; Maukenovna, Z.S.; Batirkhanovna, D.Z.; Dilora, S.; Lukacs, M.; Kaszab, T.; Mednyánszky, Z.; Kovacs, Z. Quality Assessment of Reconstructed Cow, Camel and Mare Milk Powders by Near-Infrared Spectroscopy and Chemometrics. Molecules 2024, 29, 3989. https://doi.org/10.3390/molecules29173989
Majadi M, Barkó A, Varga-Tóth A, Maukenovna ZS, Batirkhanovna DZ, Dilora S, Lukacs M, Kaszab T, Mednyánszky Z, Kovacs Z. Quality Assessment of Reconstructed Cow, Camel and Mare Milk Powders by Near-Infrared Spectroscopy and Chemometrics. Molecules. 2024; 29(17):3989. https://doi.org/10.3390/molecules29173989
Chicago/Turabian StyleMajadi, Mariem, Annamária Barkó, Adrienn Varga-Tóth, Zhulduz Suleimenova Maukenovna, Dossimova Zhanna Batirkhanovna, Senkebayeva Dilora, Matyas Lukacs, Timea Kaszab, Zsuzsanna Mednyánszky, and Zoltan Kovacs. 2024. "Quality Assessment of Reconstructed Cow, Camel and Mare Milk Powders by Near-Infrared Spectroscopy and Chemometrics" Molecules 29, no. 17: 3989. https://doi.org/10.3390/molecules29173989
APA StyleMajadi, M., Barkó, A., Varga-Tóth, A., Maukenovna, Z. S., Batirkhanovna, D. Z., Dilora, S., Lukacs, M., Kaszab, T., Mednyánszky, Z., & Kovacs, Z. (2024). Quality Assessment of Reconstructed Cow, Camel and Mare Milk Powders by Near-Infrared Spectroscopy and Chemometrics. Molecules, 29(17), 3989. https://doi.org/10.3390/molecules29173989