Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Electrochemical Characterization of NiMo-Based Nanoarrays
3. Materials and Methods
3.1. Materials
3.2. Preparation of Ni-Mo-Based Nanoarrays
3.3. Structural Characterization
3.4. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, S.J.; Liu, X.H.; Li, S.S.; Yuan, W.J.; Yang, L.N.; Wang, T.; Zheng, H.Q.; Cao, R.; Zhang, W. The Mechanism of Water Oxidation Using Transition Metal-based Heterogeneous Electrocatalysts. Chem. Soc. Rev. 2024, 53, 5593–5625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Zheng, X.J.; Guo, X.M.; Zhang, J.H.; Yuan, A.H.; Du, Y.K.; Gao, F. Design of Modified MOFs Electrocatalysts for Water Splitting: High Current Density Operation and Long-Term Stability. Appl. Catal. B Environ. 2023, 336, 235–245. [Google Scholar] [CrossRef]
- Guan, D.P.; Wang, B.W.; Zhang, J.G.; Shi, R.; Jiao, K.; Li, L.C.; Wang, Y.; Xie, B.; Zhang, Q.W.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Kumari, R.; Sammi, A.; Shubhangi; Srivastava, A.; Azad, U.P.; Chandra, P. Emerging 3D Nanomaterials as Electrocatalysts for Water Splitting Reactions. Int. J. Hydrogen Energy 2024, 74, 214–231. [Google Scholar] [CrossRef]
- Davis, E.M.; Bergmann, A.; Kuhlenbeck, H.; Cuenya, B.R. Facet Dependence of the Oxygen Evolution Reaction on Co3O4, CoFe2O4, and Fe3O4 Epitaxial Film Electrocatalysts. J. Am. Chem. Soc. 2024, 146, 13770–13782. [Google Scholar] [CrossRef]
- Tayyaba, W.; Salah, D.; Lei, M.; Pervaiz, A.; Pu, M.; Sirajul, H.; Mayeen, U.K.; Boukhris, L.; Mohammad, R.F.; Fazal, U.R. Porous Hierarchical Ni/Mg/Al Layered Double Hydroxide for Adsorption of Methyl Orange from Aqueous Solution. Nanomaterials 2023, 13, 1943. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, W.Y.; Zhang, X.W.; Wang, X.; Wang, J.J.; Zhao, Q.; Sun, Y.H.; Li, J.P.; Liu, G.; Han, X.P. Activating Lattice Oxygen Based on Energy Band Engineering in Oxides for Industrial Water/Saline Oxidation. Energy Environ. Sci. 2024, 17, 3347–3357. [Google Scholar] [CrossRef]
- Wang, T.X.; Zhang, X.; Yu, X.J.; Liu, Y.; Li, J.P.; Liu, Z.B.; Zhao, N.N.; Zhang, J.; Niu, J.F.; Feng, Q.L. Modulating the Electronic Structure of VS2 via Ru Decoration for An Efficient pH-Universal Electrocatalytic Hydrogen Evolution Reaction. Nanoscale 2024, 16, 11250–11261. [Google Scholar] [CrossRef]
- Fu, J.; Fan, Z.Y.; Nakabayashi, M.; Ju, H.X.; Pastukhova, N.; Xiao, Y.Q.; Feng, C.; Shibata, N.; Domen, K.; Li, Y.B. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729. [Google Scholar] [CrossRef]
- Chaillot, D.; Bennici, S.; Brendlé, J. Layered Double Hydroxides and LDH-Derived Materials in Chosen Environmental Applications: A Review. Environ. Sci. Pollut. Res. 2021, 28, 24375–24405. [Google Scholar] [CrossRef]
- Lu, X.Y.; Xue, H.R.; Gong, H.; Bai, M.J.; Tang, D.M.; Ma, R.Z.; Sasaki, T. 2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction. Nano-Micro Lett. 2020, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- You, H.H.; Wu, D.S.; Si, D.H.; Cao, M.N.; Sun, F.F.; Zhang, H.; Wang, H.M.; Liu, T.F.; Cao, R. Monolayer NiIr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Xu, W.B.; Dong, G.F.; Fang, M. Controlled Fabrication of Hierarchically Structured MnO2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization. Nanomaterials 2023, 13, 2268. [Google Scholar] [CrossRef]
- Zhou, X.; Xia, Z.; Zhang, Z.; Ma, Y.; Qu, Y. One-Step Synthesis of Multi-Walled Carbon Nanotubes/Ultra-Thin Ni(OH)2 Nanoplate Composite as Efficient Catalysts for Water Oxidation. J. Mater. Chem. A 2014, 2, 11799–11806. [Google Scholar] [CrossRef]
- Yang, Y.W.; Lie, W.H.; Unocic, R.R.; Yuwono, J.A. Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation. Adv. Mater. 2023, 35, 2305573. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Tang, H.; Sheng, L.; Wang, R.Y.; Fan, M.H.; Wan, J.L.; Wu, Y.H.; Zhang, Z.R.; Zhou, S.M.; Zeng, J. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun. 2024, 15, 559. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.Q.; Zhou, Y.Q.; Zhao, X.J.; Liu, Z.H.; Chen, Y. Borate Anion-Intercalated NiV-LDH Nanoflakes/NiCoP Nanowires Heterostructures for Enhanced Oxygen Evolution Selectivity in Seawater Splitting. Adv. Funct. Mater. 2024, 23, 15949. [Google Scholar] [CrossRef]
- Cai, M.M.; Zhu, Q.; Wang, X.Y.; Shao, Z.Y.; Yao, L.; Zeng, H.; Wu, X.F.; Chen, J.; Huang, K.K.; Feng, S.H. Formation and Stabilization of NiOOH by Introducing α-FeOOH in LDH: Composite Electrocatalyst for Oxygen Evolution and Urea Oxidation Reactions. Adv. Mater. 2023, 35, 2209338. [Google Scholar] [CrossRef]
- Chen, Q.R.; Kang, Z.Y.; Luo, S.X.; Li, J.; Deng, P.L.; Wang, C.T.; Hua, Y.J.; Zhong, S.K.; Tian, X.L. Boosting NiFe-LDH by Ruthenium Dioxide for Effective Overall Water Splitting. Int. J. Hydrogen Energy 2021, 46, 8888–8897. [Google Scholar] [CrossRef]
- Gloag, L.; Somerville, S.V.; Gooding, J.J.; Tilley, R.D. Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173–189. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gao, R.T.; Chen, H.J.; Yang, Y.; Wu, L.M.; Wang, L. Ruthenium and Silver Synergetic Regulation NiFe LDH Boosting Long-Duration Industrial Seawater Electrolysis. Adv. Funct. Mater. 2024, 23, 15674. [Google Scholar] [CrossRef]
- Peng, J.; Dong, W.; Wang, Z.; Meng, Y.; Liu, W.; Song, P.; Liu, Z. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Mater. Today Adv. 2020, 8, 100081. [Google Scholar] [CrossRef]
- Saji, V.S. Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2022, 430, 141095. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Charan, P.H.K.; Justin, P.; Rao, G.R. Hierarchically organized NiCo2O4 microflowers anchored on multiwalled CNT: Efficient bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. ChemPlusChem 2020, 85, 183–194. [Google Scholar] [CrossRef]
- Liu, Z.B.; Corva, M.; Amin, H.M.A.; Blanc, N.; Linnemann, J.; Tschulik, K. Single Co3O4 Nanocubes Electrocatalyzing the Oxygen Evolution Reaction: Nano-Impact Insights into Intrinsic Activity and Support Effects. Int. J. Mol. Sci. 2021, 22, 13137. [Google Scholar] [CrossRef]
- Tamboli, A.M.; Jung, Y.; Sim, J.; Kim, B.; Kim, W.S.; Kim, M.J.; Lee, C.; Kim, K.; Lim, C.H.; Kim, K.H.; et al. Boosting oxygen evolution reaction activity with Mo incorporated NiFe-LDH electrocatalyst for efficient water electrolysis. Chemosphere 2023, 344, 140314. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, X.L.; Lv, H.G.; Yu, H.Q.; Yu, Y. Bimetallic-Based Electrocatalysts for Oxygen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2212160. [Google Scholar] [CrossRef]
- Wu, L.B.; Ning, M.H.; Xing, X.X.; Wang, Y.; Zhang, F.H.; Gao, G.H.; Song, S.W.; Wang, D.Z.; Yuan, C.Q.; Yu, L.; et al. Boosting Oxygen Evolution Reaction of (Fe,Ni)OOH via Defect Engineering for Anion Exchange Membrane Water Electrolysis under Industrial Conditions. Adv. Mater. 2023, 35, 2306097. [Google Scholar] [CrossRef]
- Wang, W.H.; Chee, S.W.; Yan, H.W.; Erofeev, L.; Mirsaidov, U. Growth Dynamics of Vertical and Lateral Layered Double Hydroxide Nanosheets during Electrodeposition. Nano Lett. 2021, 21, 5977–5983. [Google Scholar] [CrossRef]
- Xue, Y.Z.; Ren, Z.Y.; Xie, Y.; Du, S.C.; Wu, J.; Meng, H.Y.; Fu, H.G. CoSex Nanocrystalline-Dotted CoCo Layered Double Hydroxide Nanosheets: A Synergetic Engineering for Enhanced Electrocatalytic Water Oxidation. Nanoscale 2017, 9, 16256–16263. [Google Scholar] [CrossRef]
- Du, X.C.; Huang, J.W.; Zhang, J.J.; Yan, Y.C.; Wu, C.Y.; Hu, Y.; Yan, C.Y.; Lei, T.Y.; Chen, W.; Fan, C.; et al. Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 4484–4502. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dai, J.; Guo, Y.Q.; Wu, C.Z.; Hu, F.T.; Zhao, J.Y.; Zeng, X.C.; Xie, Y. Semimetallic Molybdenum Disulfide Ultrathin Nanosheets as An Efficient Electrocatalyst for Hydrogen Evolution. Nanoscale 2014, 6, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Liu, X.Y.; Wu, X. Realizing Efficient Electrochemical Overall Water Electrolysis through Hierarchical CoP@NiCo-LDH Nanohybrids. Nano Energy 2023, 114, 108681. [Google Scholar] [CrossRef]
- Fan, K.; Chen, H.; Ji, Y.F.; Huang, H.; Claesson, P.M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.S.; Luo, Y.; et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Attia, M.; Tetzlaff, D.; Apfel, U.P. Tailoring the Electrocatalytic Activity of Pentlandite FexNi9-XS8 Nanoparticles via Variation of the Fe: Ni Ratio for Enhanced Water Oxidation. ChemElectroChem 2021, 8, 3863–3874. [Google Scholar] [CrossRef]
- Sels, B.F.; De Vos, D.E.; Jacobs, P.A. Kinetics of the Oxygenation of Unsaturated Organics with Singlet Oxygen Generated from H2O2 by A Heterogeneous Molybdenum Catalyst. J. Am. Chem. Soc. 2007, 129, 6916–6926. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Du, K.; Wang, X.W.; Han, Y.F.; Li, L.X.; Wen, G.J. Fabrication of Hierarchical MOF-Derived NiCo2S4@Mo-Doped Co-LDH Arrays for High-Energy-Density Asymmetric Supercapacitors. Nanomaterials 2023, 13, 2663. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Purkayastha, S.K.; Guha, A.K.; Ali, M.A.; Deka, S. Nanoarchitectonics of amorphous Fe–Ni–B nanosheets for high throughput overall water splitting reaction. Int. J. Hydrogen Energy 2024, 53, 706–716. [Google Scholar] [CrossRef]
- Soltani, M.; Amin, H.M.A.; Cebe, A.; Ayata, S.; Baltruschat, H. Metal-Supported Perovskite as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution: Substrate Effect. J. Electrochem. Soc. 2021, 168, 034504. [Google Scholar] [CrossRef]
- Dionigi, F.; Zeng, Z.H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.X. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522. [Google Scholar] [CrossRef]
- Jamesh, M.I.; Hu, D.Q.; Wang, J.; Naz, F.; Feng, J.P.; Yu, L.; Cai, Z.; Colmenares, J.C.; Lee, D.J.; Chu, P.K.; et al. Recent Advances in Noble Metal-Free Electrocatalysts to Achieve Efficient Alkaline Water Splitting. J. Mater. Chem. A 2024, 12, 11771–11820. [Google Scholar] [CrossRef]
- Browne, M.P.; Sofer, Z.; Pumera, M. Layered and two-dimensional metal oxides for electrochemical energy conversion. Energy Environ. Sci. 2019, 12, 41–58. [Google Scholar] [CrossRef]
- Chen, J.B.; Wu, Y.W.; Zheng, H.S.; Chen, M.P.; Sun, H.C.; Zhou, T.; Na, G.H.; Li, D.Q.; Lu, Q.J.; Zi, B.Y.; et al. Facile Room-Temperature Synthesis of Pt/NiCo LDH for Enhanced Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 72, 41–48. [Google Scholar] [CrossRef]
- Han, X.Y.; Li, J.; Lu, J.L.; Luo, S.; Wan, J.; Li, B.X.; Hu, C.G.; Cheng, X.L. High Mass-Loading NiCo-LDH Nanosheet Arrays Grown on Carbon Cloth by Electrodeposition for Excellent Electrochemical Energy Storage. Nano Energy 2021, 86, 106079. [Google Scholar] [CrossRef]
- Ai, L.; Niu, Z.; Jiang, J. Mechanistic Insight into Oxygen Evolution Electrocatalysis of Surface Phosphate Modified Cobalt Phosphide Nanorod Bundles and Their Superior Performance for Overall Water Splitting. Electrochim. Acta 2017, 242, 355–363. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.; He, H.; Xu, X.; Jin, Y. A High-Performance Binary Ni-Co Hydroxide-based Water Oxidation Electrode with Three-Dimensional Coaxial Nanotube Array Structure. Adv. Funct. Mater. 2014, 24, 4698–4705. [Google Scholar] [CrossRef]
- Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Lett. 2015, 15, 1421–1427. [Google Scholar] [CrossRef]
- Guo, P.F.; Yang, Y.; Wang, W.J.; Zhu, B.; Wang, W.T.; Wang, Z.Y.; Wang, J.L.; Wang, K.; He, Z.H.; Liu, Z.T. Stable and Active NiFeW Layered Double Hydroxide for Enhanced Electrocatalytic Oxygen Evolution Reaction. Chem. Eng. J. 2021, 426, 130768. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Konigshoven, P.; Hegemann, M.; Baltruschat, H. Role of Lattice Oxygen in the Oxygen Evolution Reaction on Co3O4: Isotope Exchange Determined Using a Small-Volume Differential Electrochemical Mass Spectrometry Cell Design. Anal. Chem. 2019, 91, 12653–12660. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Baltruschat, H. How many surface atoms in Co3O4 take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry. Phys. Chem. Chem. Phys. 2017, 19, 25527. [Google Scholar] [CrossRef]
- Si, F.Z.; Zhang, Y.; Liang, Y.; Kang, X.M.; Liu, J.W.; Fu, X.Z.; Luo, J.L. NiFe-LDH nanosheets with high activity in three dimensions on NiFe foam electrode for water oxidation. Int. J. Hydrogen Energy 2024, 49, 143–151. [Google Scholar] [CrossRef]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Tai, C.W.; Niklasson, G.A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581. [Google Scholar] [CrossRef]
- Shinde, D.V.; Trizio, L.D.; Dang, Z.; Prato, M.; Gaspari, R.; Manna, L. Hollow and Porous Nickel Cobalt Perselenide Nanostructured Microparticles for Enhanced Electrocatalytic Oxygen Evolution. Chem. Mater. 2017, 29, 7032–7041. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Li, M.; Fan, G.; Yang, L.; Li, F. A Strong Coupled 2D Metal-Organic Framework and Ternary Layered Double Hydroxide Hierarchical Nanocomposite as An Excellent Electrocatalyst for The Oxygen Evolution Reaction. Electrochim. Acta 2019, 307, 275–284. [Google Scholar] [CrossRef]
- Zaffora, A.; Megna, B.; Seminara, B.; Franco, F.D.; Santamaria, M. Ni, Fe, Co-LDH Coated Porous Transport Layers for Zero-Gap Alkaline Water Electrolyzers. Nanomaterials 2024, 14, 407. [Google Scholar] [CrossRef]
Specimen | Average Pores Volume (cm3/g) | Average Specific Surface Area (m2/g) |
---|---|---|
Ni-hydroxide/NF | 0.016 | 11.08 |
Ni2Mo1-nanoarrays/NF | 0.020 | 14.63 |
Ni1Mo1-nanoarrays/NF | 0.019 | 13.30 |
Ni2Mo3-nanoarrays/NF | 0.019 | 13.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Li, S.; Wang, Y.; Wang, J.; Guo, Y.; Ding, J.; Tang, K.; Ren, Y.; You, L.; Meng, H.; et al. Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting. Molecules 2024, 29, 3966. https://doi.org/10.3390/molecules29163966
Lu Z, Li S, Wang Y, Wang J, Guo Y, Ding J, Tang K, Ren Y, You L, Meng H, et al. Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting. Molecules. 2024; 29(16):3966. https://doi.org/10.3390/molecules29163966
Chicago/Turabian StyleLu, Zhi, Shilin Li, Yuxin Wang, Jiefeng Wang, Yifan Guo, Jiaqi Ding, Kun Tang, Yingzi Ren, Long You, Hongbo Meng, and et al. 2024. "Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting" Molecules 29, no. 16: 3966. https://doi.org/10.3390/molecules29163966
APA StyleLu, Z., Li, S., Wang, Y., Wang, J., Guo, Y., Ding, J., Tang, K., Ren, Y., You, L., Meng, H., & Wang, G. (2024). Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting. Molecules, 29(16), 3966. https://doi.org/10.3390/molecules29163966