Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Extraction Conditions
2.1.1. Selection of Extraction Solvent (1-Undecanol) Volume
2.1.2. Selection of Disperser Solvent
2.1.3. Selection of Disperser Solvent Volume
2.1.4. Optimization of pH of Aqueous Sample Solution
2.1.5. Type of Solution for Adjusting the pH
2.1.6. Effect of Salt Addition
2.1.7. Breakthrough Volume
2.1.8. Effect of Ultrasound and Centrifugation Period
2.2. Analytical Figures of Merit
2.3. Enrichment Factor and Extraction Recovery
2.4. Robustness
2.5. Analytical Approaches for Determination of Thymol and Carvacrol
3. Materials and Methods
3.1. Reagents
3.2. Apparatus
3.3. GC Analysis Condition
3.4. Sample Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Azizi, S.; Basiratpour, A.; Zokaei, M.; Derakhshan, M. Thymol and carvacrol supplementation in poultry health and performance. Vet. Med. Sci. 2022, 8, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; McDonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S.; Duffy, G. Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 2010, 139, 70–78. [Google Scholar] [CrossRef]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Kiyanpour, V.; Fakhari, A.R.; Alizadeh, R.; Asghari, B.; Jalali-Heravi, M. Multivariate optimization of hydrodistillation-headspace solvent microextraction of thymol and carvacrol from Thymus transcaspicus. Talanta 2009, 79, 695–699. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Sereshti, H.; Izadmanesh, Y.; Samadi, S. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens vent. J. Chromatogr. A 2011, 1218, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Storage stability and antibacterial activity against Escherichia coli O157:H7 of carvacrol in edible apple films made by two different casting methods. J. Agric. Food Chem. 2008, 56, 3082–3088. [Google Scholar] [CrossRef]
- Bazylko, A.; Strzelecka, H. Quantitative determination of phenol derivatives from Oleum thymi. Chromatographia 2000, 52, 112–114. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography-mass spectrometry. J. Chromatogr. A 2015, 1399, 18–24. [Google Scholar] [CrossRef]
- Daneshfar, A.; Tabaraki, R.; Khodakarami, R.; Khezeli, T. Determination of phenol and carvacrol in honey samples using dispersive liquid–liquid microextraction and experimental design for optimization. Anal. Bioanal. Chem. Res. 2016, 3, 41–51. [Google Scholar]
- Ghaedi, M.; Roosta, M.; Khodadoust, S.; Daneshfar, A. Application of optimized vortex-assisted surfactant-enhanced DLLME for preconcentration of thymol and carvacrol, and their determination by HPLC-UV: Response surface methodology. J. Chromatogr. Sci. 2015, 53, 1222–1231. [Google Scholar] [CrossRef]
- Ghiasvand, A.; Dowlatshah, S.; Nouraei, N.; Heidari, N.; Yazdankhah, F. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J. Chromatogr. A 2015, 1406, 87–93. [Google Scholar] [CrossRef]
- Ghobadloo, P.A.; Hamidi, S.; Nemati, M.; Jahed, F.S. Ultrasound assisted dispersive solid phase microextraction of thymol and carvacrol in pharmaceutical products using graphene oxide as an adsorbent prior to analysis by high performance liquid chromatography. Curr. Pharm. Anal. 2020, 16, 578–584. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Shekarchi, M.; Khanavi, M.; Adib, N.; Amri, M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn. Mag. 2010, 6, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, E.; Haddadi, H.; Javadian, H.; Asfaram, A. Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts. J. Chromatogr. B 2021, 1182, 122941. [Google Scholar] [CrossRef] [PubMed]
- Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: Experimental design methodology. J. Chromatogr. B 2015, 975, 34–39. [Google Scholar] [CrossRef]
- Viñas, P.; Soler-Romera, M.J.; Hernández-Córdoba, M. Liquid chromatographic determination of phenol, thymol and carvacrol in honey using fluorimetric detection. Talanta 2006, 69, 1063–1067. [Google Scholar] [CrossRef]
- Adamczyk, S.; Lázaro, R.; Pérez-Arquillué, C.; Conchello, P.; Herrera, A. Evaluation of Residues of Essential Oil Components in Honey after Different Anti-Varroa Treatments. J. Agric. Food Chem. 2005, 53, 10085–10090. [Google Scholar] [CrossRef]
- Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; González, M.J.; Higes, M. Extraction of thymol, eucalyptol, menthol, and camphor residues from honey and beeswax: Determination by gas chromatography with flame ionization detection. J. Chromatogr. A 2002, 954, 207–215. [Google Scholar] [CrossRef]
- Tsigouri, A.; Passaloglou-Katrali, M.; Sabatakou, O. Determination of eucalyptol camphor menthol and thymol in Greek thyme honey by GC-FID. Acta Aliment. 2008, 37, 181–189. [Google Scholar] [CrossRef]
- Ares, A.M.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Simultaneous determination of carvacrol and thymol in bee pollen by using a simple and efficient solvent extraction method and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2020, 181, 113124. [Google Scholar] [CrossRef]
- Bernal, J.; Nozal, M.J.; Bernal, J.L.; Ares, A.M. Determination of Carvacrol and Thymol in Honey by Using a Simple and Efficient Headspace-Gas Chromatography-Mass Spectrometry Method. Food Anal. Methods 2020, 13, 2138–2146. [Google Scholar] [CrossRef]
- Nerín, C. Focus on sample handling. Anal. Bioanal. Chem. 2007, 388, 1001–1002. [Google Scholar] [CrossRef]
- Tang, S.; Qi, T.; Ansah, P.D.; Fouemina, J.C.N.; Shen, W.; Basheer, C.; Lee, H.K. Single-drop microextraction. TrAC Trends Anal. Chem. 2018, 108, 306–313. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Ma, W.; Guo, Z.; Li, X.; Li, X.; Zhang, Q. Determination of patulin in apple juice by single-drop liquid-liquid-liquid microextraction coupled with liquid chromatography-mass spectrometry. Food Chem. 2018, 257, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Singh, R. Applications of dispersive liquid–liquid micro-extraction in forensic toxicology. TrAC Trends Anal. Chem. 2016, 75, 227–237. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, X.; Wei, H.; Liu, D.; Xia, G.; Yang, X. Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. Food Anal. Methods 2016, 9, 2133–2141. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Mansour, F.R.; Danielson, N.D. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 2017, 170, 22–35. [Google Scholar] [CrossRef]
- Mousavi, L.; Tamiji, Z.; Khoshayand, M.R. Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method. Talanta 2018, 190, 335–356. [Google Scholar] [CrossRef] [PubMed]
- Šandrejová, J.; Campillo, N.; Viñas, P.; Andruch, V. Classification and terminology in dispersive liquid-liquid microextraction. Microchem. J. 2016, 127, 184–186. [Google Scholar] [CrossRef]
- Leong, M.I.; Huang, S.D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J. Chromatogr. A 2008, 1211, 8–12. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Rahimi Moghadam, M.; Zargar, B.; Rastegarzadeh, S. Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC-UV System. J. AOAC Int. 2021, 104, 999–1004. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, X.; Zhang, C.; Ma, X.; Ling, Q.; Zhao, L. Ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. J. Chromatogr. B 2014, 969, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Povedano, M.M.; Luque de Castro, M.D. Ultrasound-assisted analytical emulsification-extraction. TrAC Trends Anal. Chem. 2013, 45, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Peng, G.; He, Q.; Zhu, H.; Al-Hamadani, S.M. Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2015, 140, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Nathional Library of Medicine, National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 15 June 2024).
- Libre Texts Chemistry, Acidity of Phenols. Available online: https://chem.libretexts.org/@go/page/732 (accessed on 15 June 2024).
- Zamani-Kalajahi, M.; Fazeli-Bakhtiyari, R.; Amiri, M.; Basiratpour, A.; Zokaei, M.; Derakhshan, M. Dispersive liquid–liquid microextraction based on solidification of floating organic droplet followed by spectrofluorimetry for determination of carvedilol in human plasma. Bioanalysis 2013, 5, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Tavallali, H.; Fakhraee, V. Preconcentration and determination of trace amounts of Cd2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. Int. J. Chemtech. Res. 2011, 3, 1628–1634. [Google Scholar]
- Fernandez, M.E.; Palacio, M.A.; Labaque, M.C. Thymol detection and quantitation by solid-phase microextraction in faeces and egg yolk of Japanese quail. J. Chromatogr. B 2017, 1044, 39–46. [Google Scholar] [CrossRef]
Disperser Solvent | Molar Mass (g mol−1) | Miscibility in Water | Dipole Moment (Debye) | Log Po/w |
---|---|---|---|---|
Acetonitrile | 41.05 | Miscible | 3.92 | −0.334 |
Methanol | 32.04 | Miscible | 1.69 | −0.69 |
Ethanol | 46.07 | Miscible | 1.69 | −0.18 |
Tetrahydrofuran | 72.11 | Miscible | 1.63 | +0.35 |
Acetone | 58.08 | Miscible | 2.91 | −0.042 |
Precision | Analyte | Concentration (mg L−1) | RSD% |
---|---|---|---|
Within-day | Thymol | 5.0 | 3.2 |
10.0 | 2.3 | ||
50.0 | 2.5 | ||
Carvacrol | 5.0 | 3.4 | |
10.0 | 2.7 | ||
50.0 | 1.8 | ||
Between-day | Thymol | 5.0 | 5.1 |
10.0 | 4.2 | ||
50.0 | 1.8 | ||
Carvacrol | 5.0 | 5.4 | |
10.0 | 2.6 | ||
50.0 | 2.1 |
Analyte | CW a (mg L−1) | VW b (µL) | CO c (mg L−1) | VO d (µL) | EF | ER% |
---|---|---|---|---|---|---|
Thymol | 5 | 5000 | 690.4 | 20 | 138.1 | 5.2 |
Carvacrol | 5 | 5000 | 683.1 | 20 | 136.6 | 54.6 |
Experimental Conditions | Analyte | Picked (mg L−1) | Found ± SD (mg L−1) | Accuracy (RE) a | Recovery% (n = 3) |
---|---|---|---|---|---|
A | Thymol | 5.0 50.0 5.0 50.0 | 4.8 ± 0.14 49.3 ± 0.32 4.7 ± 0.05 50.5 ± 0.51 | −0.040 −0.014 −0.060 +0.010 | 96.0 98.6 94.0 101.0 |
Carvacrol | |||||
B | Thymol | 5.0 50.0 5.0 50.0 | 4.5 ± 0.13 50.4 ± 0.42 4.3 ± 0.81 48.8 ± 0.22 | −0.10 +0.032 −0.140 −0.024 | 90.0 100.8 86.0 97.6 |
Carvacrol | |||||
C | Thymol | 5.0 50.0 5.0 50.0 | 5.1 ± 0.16 49.2 ± 0.22 4.6 ± 0.34 49.0 ± 0.47 | +0.060 −0.016 −0.080 −0.020 | 102.0 98.4 92.0 98.0 |
Carvacrol |
Method | Solvent | Analyte | LOD (mg mL−1) | R2 | Linear Range (mg mL−1) | tR g (min) | RSD h % | Recovery % | Ref |
---|---|---|---|---|---|---|---|---|---|
HD-HSME-GC-FID a | Tetradecane, Pentadecane, Hexadecane, Heptadecane | Thymol | 1.9 × 10−3 | 0.9944 | 6.2 × 10−3–8.1 × 10−2 | <20 | 6.4 | 89–101 | [4] |
Carvacrol | 2.3 × 10−4 | 0.9979 | 1.2 × 10−3–8.8 × 10−2 | <20 | 11.4 | 95–116 | |||
UAME-NMSPD-HPLC b | Acetonitrile Methanol | Thymol | 2.3 × 10−7 | 0.9995 | 0.5 × 10−5–2.0 × 10−3 | - | 2.1–4.8 | 95–99 | [16] |
Carvacrol | 2.1 × 10−7 | 0.9993 | 0.5 × 10−5–2.0 × 10−3 | - | 2.7–4.9 | 94–98 | |||
HS-SPME-GC-MS c | Methanol | Thymol | 8.9 × 10−7 | 0.9994 | 2.0 × 10−6–4.0 × 10−4 | <7 | 2.2–11.3 | - | [42] |
Carvacrol | 5.7 × 10−7 | 0.9997 | 2.0 × 10−6–4.0 × 10−4 | <7 | 0.8–9.8 | - | |||
VASE-DLLME- HPLC d | Chloroform Acetonitrile | Thymol | 1.6 × 10−6 | 0.9998 | 0.5 × 10−5–4.0 × 10−3 | <14 | 1.0–4.8 | 97 | [11] |
Carvacrol | 1.6 × 10−6 | 0.9998 | 0.5 × 10−5–4.0 × 10−3 | <14 | 1.0–4.8 | 97 | |||
MMIP-DSPME- HPLC e | Acetonitrile | Thymol | (0.4–1.0) × 10−5 | 0.999 | 0.4 × 10−6–5.0 × 10−2 | <7 | 1.0–4.9 | 97–104 | [15] |
Carvacrol | (0.4–1.0) × 10−5 | 0.999 | 0.4 × 10−6–5.0 × 10−2 | <7 | 1.7–6.3 | 97–105 | |||
DLLME-SFO-GC-FID f | Undecanol | Thymol | 9.5 × 10−4 | 0.9939 | (0.3–7.0) × 10−2 | 14.9 | 2.7 | 96–98 | [This work] |
Carvacrol | 8.9 × 10−4 | 0.9995 | (0.3–7.0) × 10−2 | 15.2 | 2.6 | 94–101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzegar, S.; Rehmani, M.; Farahmandzadeh, M.; Absalan, G.; Karimi, B. Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO). Molecules 2024, 29, 3931. https://doi.org/10.3390/molecules29163931
Barzegar S, Rehmani M, Farahmandzadeh M, Absalan G, Karimi B. Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO). Molecules. 2024; 29(16):3931. https://doi.org/10.3390/molecules29163931
Chicago/Turabian StyleBarzegar, Sedigheh, Mousab Rehmani, Mahdi Farahmandzadeh, Ghodratollah Absalan, and Benson Karimi. 2024. "Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO)" Molecules 29, no. 16: 3931. https://doi.org/10.3390/molecules29163931
APA StyleBarzegar, S., Rehmani, M., Farahmandzadeh, M., Absalan, G., & Karimi, B. (2024). Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO). Molecules, 29(16), 3931. https://doi.org/10.3390/molecules29163931