Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pectin Yield
2.2. Degree of Esterification
2.3. Equivalent Weight
2.4. Methoxyl Content (MeO)
2.5. Total Anhydrouronic Acid (AUA) Content
2.6. Ash Content
2.7. Moisture Content
2.8. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.9. SEM Analysis
2.10. Thermal Properties
2.11. DPPH Antioxidant Evaluation
3. Materials and Methods
3.1. Raw Materials
3.2. Extraction of Pectin
3.3. Pectin Characterization
3.3.1. Degree of Esterification of Pectin (Including Commercial Pectin)
3.3.2. Equivalent Weight of Pectin (Including Commercial Pectin)
3.3.3. Methoxyl Content of Pectin (Including Commercial Pectin)
3.3.4. Anhydrouronic Acid Content of Pectin (Including Commercial Pectin)
3.3.5. Moisture Content Determination of Pectin, Including Commercial Pectin
3.3.6. Ash Content Determination of Pectin (Including Commercial Pectin)
3.3.7. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3.8. Microstructure Evaluation
3.3.9. Thermal Properties
3.4. Evaluation of Pectin Antioxidant Activity Using the DPPH Test
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paw, M.; Begum, T.; Gogoi, R.; Pandey, S.K.; Lal, M. Chemical Composition of Citrus limon L. Burmf Peel Essential Oil from North East India. J. Essent. Oil-Bear. Plants 2020, 23, 337–344. [Google Scholar] [CrossRef]
- Spreen, T.H.; Gao, Z.; Fernandes, W.; Zansler, M.L. Global economics and marketing of citrus products. In The Genus Citrus; Woodhead Publishing: Sawston, UK, 2020; pp. 471–493. [Google Scholar] [CrossRef]
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, J.; Shi, K.; Xu, Y.; Hu, H.; Xu, X.; Hu, T.; Zhang, P.; Yao, J.; Pan, S. Trends in valorization of citrus by-products from the net-zero perspective: Green processing innovation combined with applications in emission reduction. Trends Food Sci. Technol. 2023, 137, 124–141. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent Trends on the Valorization Strategies for the Management of Citrus By-products. In Food Reviews International; Bellwether Publishing, Ltd.: Columbia, MD, USA, 2021; Volume 37, pp. 91–120. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Biosci. 2018, 21, 20–26. [Google Scholar] [CrossRef]
- Anmol, R.J.; Marium, S.; Hiew, F.T.; Han, W.C.; Kwan, L.K.; Wong, A.K.Y.; Khan, F.; Sarker, M.M.R.; Chan, S.Y.; Kifli, N.; et al. Phytochemical and Therapeutic Potential of Citrus grandis (L.) Osbeck: A Review. J. Evid.-Based Integr. Med. 2021, 26, 2515690X211043741. [Google Scholar] [CrossRef]
- Gupta, S.; Rahman, M.A.; Sundaram, S. Citrus fruit as a potential source of phytochemical, antioxidant and pharmacological ingredients. J. Sci. Healthc. Explor. JSHE 2021, 1, 8473. [Google Scholar]
- Reichembach, L.H.; Lúcia de Oliveira Petkowicz, C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll. 2021, 118, 106824. [Google Scholar] [CrossRef]
- Yang, N.; Li, Y.; Xing, F.; Wang, X.; Li, X.; Li, L.; Yang, J.; Wang, Y.; Zhang, M. Composition and structural characterization of pectin in micropropagated and conventional plants of Premma puberula Pamp. Carbohydr. Polym. 2021, 260, 117711. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H.; Wei, M.; Zhu, C. Effects of enzymatic treatment on the physicochemical properties and antioxidant activity of hawthorn pectin. Mater. Today Commun. 2022, 30, 103225. [Google Scholar] [CrossRef]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. In Food Reviews International; Taylor and Francis Ltd.: Oxfordshire, UK, 2022; Volume 38, pp. 282–312. [Google Scholar] [CrossRef]
- Jacob, E.M.; Borah, A.; Jindal, A.; Pillai, S.C.; Yamamoto, Y.; Maekawa, T.; Kumar, D.N.S. Synthesis and characterization of citrus-derived pectin nanoparticles based on their degree of esterification. J. Mater. Res. 2020, 35, 1514–1522. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, C.; Feng, L.; Han, Y.; Du, H.; Xiao, H.; Zheng, J. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci. Technol. 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Montilla, A.; Villamiel, M. Role of pectin in the current trends towards low-glycaemic food consumption. Food Res. Int. 2021, 140, 109851. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers 2022, 14, 1378. [Google Scholar] [CrossRef] [PubMed]
- Thu Dao, T.A.; Webb, H.K.; Malherbe, F. Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocoll. 2021, 113, 106475. [Google Scholar] [CrossRef]
- Duwee, Y.S.; Kiew, P.L.; Yeoh, W.M. Multi-objective optimization of pectin extraction from orange peel via response surface methodology: Yield and degree of esterification. J. Food Meas. Charact. 2022, 16, 1710–1724. [Google Scholar] [CrossRef]
- Hu, S.; Kuwabara, R.; Beukema, M.; Ferrari, M.; de Haan, B.J.; Walvoort, M.T.C.; de Vos, P.; Smink, A.M. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydr. Polym. 2020, 249, 116863. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012, 66, 591–599. [Google Scholar] [CrossRef]
- Agarkova, E.Y.; Kruchinin, A.G.; Glazunova, O.A.; Fedorova, T.V. Whey protein hydrolysate and pumpkin pectin as nutraceutical and prebiotic components in a functional mousse with antihypertensive and bifidogenic properties. Nutrients 2019, 11, 2930. [Google Scholar] [CrossRef]
- Na, C.S.; Yun, D.H.; Choi, D.H.; Kim, J.S. The Effect of Pear Pectin on Blood Pressure, Plasma Renin ANP and Cardiac Hypertrophy in Hypertensive Rat Induced by 2K1C. J. Korean Soc. Food Sci. Nutr. 2003, 32, 700–705. [Google Scholar]
- Wicker, L.; Kim, Y.; Kim, M.J.; Thirkield, B.; Lin, Z.; Jung, J. Pectin as a bioactive polysaccharide—Extracting tailored function from less. Food Hydrocoll. 2014, 42, 251–259. [Google Scholar] [CrossRef]
- Wang, M.; Huang, B.; Fan, C.; Zhao, K.; Hu, H.; Xu, X.; Pan, S.; Liu, F. Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. Int. J. Biol. Macromol. 2016, 91, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Houron, C.; Ciocan, D.; Trainel, N.; Mercier-Nomé, F.; Hugot, C.; Spatz, M.; Perlemuter, G.; Cassard, A.-M. Gut Microbiota Reshaped by Pectin Treatment Improves Liver Steatosis in Obese Mice. Nutrients 2021, 13, 3725. [Google Scholar] [CrossRef]
- Koriem, K.M.M.; Arbid, M.S.; Emam, K.R. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. Environ. Toxicol. Pharmacol. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- de Alencar, J.C.G.; Batista, D.N.S.S.; de Souza, J.C.; Santos, I.P.P.; Bicas, J.L.; Mamede, M.E.d.O.; Paulino, B.N. Dual-objective optimization of ultrasound-assisted organic acid extraction of pectin from umbu (Spondias tuberosa L.): A promising Brazilian native fruit from Caatinga biome. Biomass Convers. Biorefin. 2024, 14, 1–21. [Google Scholar] [CrossRef]
- Wan Chik, M.A.; Yusof, R.; Shafie, M.H.; Mohamed Hanaphi, R. The versatility of pectin: A comprehensive review unveiling its recovery techniques and applications in innovative food products. J. Food Meas. Charact. 2024, 18, 6101–6123. [Google Scholar] [CrossRef]
- García-Carrizo, F.; Galmés, S.; Picó, C.; Palou, A.; Rodríguez, A.M. Supplementation with the Prebiotic High-Esterified Pectin Improves Blood Pressure and Cardiovascular Risk Biomarker Profile, Counteracting Metabolic Malprogramming. J. Agric. Food Chem. 2022, 70, 13200–13211. [Google Scholar] [CrossRef]
- Devi, W.E.; Shukla, R.N.; Bala, K.L.; Kumar, A.; Mishra, A.A.; Yadav, K.C. Extraction of Pectin from Citrus Fruit Peel and Its Utilization in Preparation of Jelly. Int. J. Eng. Res. Technol. 2014, 3, 1925–1932. [Google Scholar]
- Norziah, M.H.; Fang, E.O.; Karim, A.A. Extraction and characterisation of pectin from pomelo fruit peels. In Gums and Stabilisers for the Food Industry 10; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Sawston, UK, 2000; pp. 27–36. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried chinese sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef]
- Wai, W.W.; AlKarkhi, A.F.M.; Easa, A.M. Comparing biosorbent ability of modified citrus and durian rind pectin. Carbohydr. Polym. 2010, 79, 584–589. [Google Scholar] [CrossRef]
- Arrutia, F.; Adam, M.; Calvo-Carrascal, M.Á.; Mao, Y.; Binner, E. Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste. Chem. Eng. J. 2020, 395, 125056. [Google Scholar] [CrossRef]
- Baraiya, K.; Yadav, V.K.; Choudhary, N.; Ali, D.; Raiyani, D.; Chowdhary, V.A.; Alooparampil, S.; Pandya, R.V.; Sahoo, D.K.; Patel, A.; et al. A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels 2023, 9, 908. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.M. Isolation and Characterization of Pectin Extracted from Lemon Pomace during Ripening. J. Food Nutr. Sci. 2014, 2, 30. [Google Scholar] [CrossRef]
- Kamal, M.M.; Kumar, J.; Mamun, M.A.H.; Ahmed, M.N.U.; Shishir, M.R.I.; Mondal, S.C. Extraction and Characterization of Pectin from Citrus sinensis Peel. J. Biosyst. Eng. 2021, 46, 16–25. [Google Scholar] [CrossRef]
- Ghoshal, G.; Negi, P. Isolation of pectin from kinnow peels and its characterization. Food Bioprod. Process. 2020, 124, 342–353. [Google Scholar] [CrossRef]
- Mada, T.; Duraisamy, R.; Guesh, F. Optimization and characterization of pectin extracted from banana and papaya mixed peels using response surface methodology. Food Sci. Nutr. 2022, 10, 1222–1238. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Haque, M.Z.; Nada, K.; Uddin, M.N.; Al-Mansur, M.A.; Khatun, N.; Jabin, S.A. Pectin from ripe peels of mango cultivars. Bangladesh J. Sci. Ind. Res 2017, 52, 229–238. [Google Scholar] [CrossRef]
- Konrade, D.; Gaidukovs, S.; Vilaplana, F.; Sivan, P. Pectin from Fruit- and Berry-Juice Production by-Products: Determination of Physicochemical, Antioxidant and Rheological Properties. Foods 2023, 12, 1615. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef]
- Zhuang, X.; Jiang, X.; Han, M.; Kang, Z.; Zhao, L.; Xu, X.; Zhou, G. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels. Food Hydrocoll. 2016, 57, 253–261. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J. Food Eng. 2014, 120, 1–8. [Google Scholar] [CrossRef]
- Akinalan Balik, B.; Argin, S.; Lagaron, J.M.; Torres-Giner, S. Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Appl. Sci. 2019, 9, 5136. [Google Scholar] [CrossRef]
- Surolia, R.; Singh, A. Pectin—Structure, Specification, Production, Applications and various Emerging Sources: A Review. In Sustainable Food Systems (Volume II): SFS: Novel Sustainable Green Technologies, Circular Strategies, Food Safety & Diversity; Thakur, M., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 267–282. [Google Scholar] [CrossRef]
- Aburto, J.; Moran, M.; Galano, A.; Torres-García, E. Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 2015, 112, 94–104. [Google Scholar] [CrossRef]
- Santos, E.E.; Amaro, R.C.; Bustamante, C.C.C.; Guerra, M.H.A.; Soares, L.C.; Froes, R.E.S. Extraction of pectin from agroindustrial residue with an ecofriendly solvent: Use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. 2020, 107, 105921. [Google Scholar] [CrossRef]
- Kumar, S.; Krishna Chaitanya, R.; Preedy, V.R. Chapter 20—Assessment of Antioxidant Potential of Dietary Components. In HIV/AIDS; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 239–253. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Georgiev Assen, Y.; Ognyanov, M.; Kussovski, V.; Georgiev, Y.; Yanakieva, I.; Kussovski, V.; Kratchanova, M. Isolation, characterization and modification of citrus pectins. J. BioSci. Biotech. 2014, 2012, 223–233. [Google Scholar]
- Rodsamran, P.; Sothornvit, R. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem. 2019, 278, 364–372. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B.P. Characterization of Pectin Extracted from Orange Peel Powder using Microwave-Assisted and Acid Extraction Methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of pectin extracted from banana peels of different varieties. Food Sci. Biotechnol. 2018, 27, 623–629. [Google Scholar] [CrossRef]
- Lai, J.C.H.; Mahesan, D.; Abdul Samat, N.A.S.b.; Baini, R. Characterization and optimization of extracted pectin from unripe banana and mango fruit peels. Mater. Today Proc. 2022, 65, 3020–3029. [Google Scholar] [CrossRef]
- Assefa, A.D.; Saini, R.K.; Keum, Y.-S. Fatty acids, tocopherols, phenolic and antioxidant properties of six citrus fruit species: A comparative study. J. Food Meas. Charact. 2017, 11, 1665–1675. [Google Scholar] [CrossRef]
Pectin Samples (from Two Lemon Farms and Their Years) | Abbreviation | Maximum Pectin Yield (%) |
---|---|---|
Fort Beaufort pectin sample 2024 | FBP 2024 | 12.2 ± 0.02 a |
Peddie pectin sample 2024 | PP 2024 | 13.0 ± 0.02 b |
Peddie pectin sample 2023 | PP 2023 | 13.1 ± 0.03 b |
Fort Beaufort pectin sample 2023 | FBP 2023 | 12.2 ± 0.03 a |
Pectin Samples | DE (%) | EW (g/mol) | MeO Content (%) | AUA (%) | Ash Content (%) | Moisture Content (%) |
---|---|---|---|---|---|---|
FBP 2024 (Fort Beaufort pectin sample in 2024) | 80.6 ± 0.24 a | 862,1 ± 6.00 c | 19.2 ± 0.02 a | 94.2 ± 0.03 d | 1.0 ± 0.02 a | 10.8 ± 0.03 c |
PP 2024 (Peddie pectin sample 2024) | 82.7 ± 0.09 b | 833.3 ± 9.50 ab | 9.3 ± 0.01 b | 91.5 ± 0.07 c | 1.1 ± 0.01 b | 11.1 ± 0.02 d |
PP 2023 (Peddie pectin sample 2023) | 87.0 ± 0.02 c | 841.8 ± 6.51 b | 11.8 ± 0.02 d | 88.7 ± 0.02 b | 1.1 ± 0.01 b | 9.6 ± 0.02 b |
FBP 2023 (Fort Beaufort pectin sample in 2023) | 89.5 ± 0.02 d | 983.3 ± 2.93 d | 10.9 ± 0.03 c | 82.4 ± 0.03 a | 1.0 ± 0.01 a | 9.3 ± 0.04 a |
Commercial P (commercial pectin) | 95.5 ± 0.01 e | 824.2 ± 6.00 a | 13.7 ± 0.02 e | 98.9 ± 0.01 e | 3.6 ± 0.02 c | 9.3 ± 0.01 a |
Pectin Samples | First Step Degradation | Second Step Degradation | Third Step Degradation | |||
---|---|---|---|---|---|---|
Temperature (°C) | Weight Loss (%) | Temperature (°C) | Weight Loss (%) | Temperature (°C) | Weight Loss (%) | |
PP 2024 | 81.00 °C | 9.62% | 261.05 °C | 36.09% | 350.56 °C | 16.97% |
PP 2023 | 91.04 °C | 12.31% | 259.15 °C | 32.15% | 394.11 °C | 17.87% |
FBP 2023 | 86.95 °C | 10.18% | 263.09 °C | 33.66% | 345.22 °C | 21.91% |
FBP 2024 | 86.43 °C | 11.78% | 260.45 °C | 28.69% | 350.55 °C | 21.98% |
Samples | DPPH IC50 Values of Pectin Samples (mg/L) | DPPH IC50 Value of Ascorbic Acid (mg/L) |
---|---|---|
PP 2024 | 1062.5 ± 20.0 b | 15.2 ± 0.3 |
PP 2023 | 1201.3 ± 22.0 c | |
FBP 2023 | 1304.6 ± 19.0 d | |
FBP 2024 | 1382.6 ± 29.9 e | |
Commercial P | 1019.4 ± 17.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dambuza, A.; Rungqu, P.; Oyedeji, A.O.; Miya, G.M.; Kuria, S.K.; Hosu, S.Y.; Oyedeji, O.O. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules 2024, 29, 3878. https://doi.org/10.3390/molecules29163878
Dambuza A, Rungqu P, Oyedeji AO, Miya GM, Kuria SK, Hosu SY, Oyedeji OO. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules. 2024; 29(16):3878. https://doi.org/10.3390/molecules29163878
Chicago/Turabian StyleDambuza, Anathi, Pamela Rungqu, Adebola Omowunmi Oyedeji, Gugulethu M. Miya, Simon K. Kuria, Sunday Yiseyon Hosu, and Opeoluwa Oyehan Oyedeji. 2024. "Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels" Molecules 29, no. 16: 3878. https://doi.org/10.3390/molecules29163878
APA StyleDambuza, A., Rungqu, P., Oyedeji, A. O., Miya, G. M., Kuria, S. K., Hosu, S. Y., & Oyedeji, O. O. (2024). Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules, 29(16), 3878. https://doi.org/10.3390/molecules29163878