Self-Assembly Regulated Photocatalysis of Porphyrin-TiO2 Nanocomposites
Abstract
:1. Introduction
2. Results
2.1. The Optimization of Light-Capturing Blocks
2.2. The Regulation of Assembled Microstructure
2.3. The Optimization for the Crystallinity of TiO2
2.4. Structure-Dependent Photocatalysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of THPP Nanoparticles
3.3. Preparation of THPP-TiO2 Nanocomposites
3.4. Preparation of THPP@TiO2 Nanocomposites
3.5. Hydrothermal Treatment
3.6. Photocatalytic Methyl Orange (MO) Decomposition
3.7. Photocatalytic Hydrogen Generation
3.8. Mott–Schottky Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.W.; Lee, J.S. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef]
- Cho, J.H.; Ma, J.; Kim, S.Y. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge. Exploration 2023, 3, 20230001. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.J.; Tournet, J.; Dastafkan, K.; Liu, Y.; Hau Ng, Y.; Karuturi, S.K.; Zhao, C.; Yin, Z.Y. Noble-metal-free multicomponent nanointegration for sustainable energy conversion. Chem. Rev. 2021, 121, 10271–10366. [Google Scholar] [CrossRef]
- Ang, T.Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Wu, G.C.; Deshmukh, R.; Trainor, A.; Uppal, A.; Chowdhury, A.F.M.K.; Baez, C.; Martin, E.; Higgins, J.; Mileva, A.; Ndhlukula, K. Avoiding ecosystem and social impacts of hydropower, wind, and solar in southern africa’s low-carbon electricity system. Nat. Commun. 2024, 15, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Ricks, W.; Voller, K.; Galban, G.; Norbeck, J.H.; Jenkins, J.D. The role of flexible geothermal power in decarbonized electricity systems. Nat. Energy 2024. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, C.M.; Zhu, J.; Qin, W.; Tao, X.P.; Fan, F.T.; Li, R.G.; Li, C. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 2020, 59, 9653–9658. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, Y.Z.; Xin, X.; Yang, J.B.; Wang, M.H.; Wang, R.L.; Guo, P.; Huang, W.J.; Sobrido, A.J.; Wei, B.Q.; et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science 2023, 381, 291–296. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.J.; Xiao, Y.X.; Wang, P.; Ye, Z.W.; Zhou, B.W.; Sun, K.; Mi, Z.T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Jia, J.Y.; Seitz, L.C.; Benck, J.D.; Huo, Y.J.; Chen, Y.S.; Ng, J.W.D.; Bilir, T.; Harris, J.S.; Jaramillo, T.F. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogenefficiency over 30%. Nat. Commun. 2016, 7, 13237–13242. [Google Scholar] [CrossRef]
- Wang, K.H.; Tao, Y.; Tang, Z.K.; Xu, X.; Benetti, D.; Vidal, F.; Zhao, H.G.; Rosei, F.; Sun, X.H. Efficient photoelectrochemical hydrogen generation based on core size effect of heterostructured quantum dots. Small 2024, 20, 2306453. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.J.; Zhang, W.J.; Dong, L.; Ma, Z.; Xu, J.S.; Gu, X.L.; Chen, Z.P. Progress on quantum dot photocatalysts for biomass valorization. Exploration 2023, 3, 20220169. [Google Scholar] [CrossRef]
- Chen, Y.T.; Hong, C.X.; Xu, Q.; Zheng, H.H.; Wang, C.; Lu, H.S.; Zhang, S.; Du, M.M.; Zeng, G.N. Visible light enhancement of biocarbon quantum-dot-decorated TiO2 for naphthalene removal. Molecules 2024, 29, 2708. [Google Scholar] [CrossRef]
- Vadivel, D.; Suryakumar, S.; Casella, C.; Speltini, A.; Dondi, D. Advancements in materials science and photocatalysts for sustainable development. Catalysts 2024, 14, 378. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhao, S.N.; Zang, S.Q. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. Exploration 2023, 3, 20220005. [Google Scholar] [CrossRef]
- Du, X.Z.; Fan, H.J.; Liu, S.L.; Zhang, Z.C. Selective nucleophilic α-C alkylation of phenols with alcohols via Ti=Cα intermediate on anatase TiO2 surface. Nat. Commun. 2023, 14, 4479–4488. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase polymorph of TiO2 (anatase, rutile, brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Mansfeldova, V.; Zlamalova, M.; Tarabkova, H.; Janda, P.; Vorokhta, M.; Piliai, L.; Kavan, L. Work function of TiO2 (anatase, rutile, and brookite) single crystals: Effects of the environment. J. Phys. Chem. C 2021, 125, 1902–1912. [Google Scholar] [CrossRef]
- Zhao, D.Q.; Tang, X.; Liu, P.L.; Huang, Q.; Li, T.X.; Ju, L. Recent progress of ion-modified TiO2 for enhanced photocatalytic hydrogen production. Molecules 2024, 29, 2347. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Xiao, L.Q.; Chen, Y.; Yang, F.; Meng, H.Y.; Zhang, W.Y.; Zhang, Y.F.; Wu, Y. TiO2-based catalysts with various structures for photocatalytic application: A review. Catalysts 2024, 14, 366. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.Q.; Yan, J.H.; Yu, J.Y.; Sun, G.; Ding, B. Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 2017, 7, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Prathan, A.; Sanglao, J.; Wang, T.; Bhoomanee, C.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods. Sci. Rep. 2020, 10, 8065–8074. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Soler, L.; Cazorla, C.; Oliveras, J.; Bastús, N.G.; Puntes, V.F.; Llorca, J. Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution. Nat. Commun. 2023, 14, 6165–6174. [Google Scholar] [CrossRef] [PubMed]
- Alsharaeh, E.H.; Bora, T.; Soliman, A.; Ahmed, F.; Bharath, G.; Ghoniem, M.G.; Abu-Salah, K.M.; Dutta, J. Sol-gel-assisted microwave-derived synthesis of anatase Ag/TiO2/GO nanohybrids toward efficient visible light phenol degradation. Catalysts 2017, 7, 133. [Google Scholar] [CrossRef]
- Sacco, N.; Iguini, A.; Gamba, I.; Marchesini, F.A.; García, G. Pd:in-doped TiO2 as a bifunctional catalyst for the photoelectrochemical oxidation of paracetamol and simultaneous green hydrogen production. Molecules 2024, 29, 1073. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.Y.; Zhang, L.Y.; Cheng, B.; Yu, J.G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef]
- Li, L.D.; Yan, J.Q.; Wang, T.; Zhao, Z.J.; Zhang, J.; Gong, J.L.; Guan, N.J. Sub-10nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881–5890. [Google Scholar] [CrossRef]
- Guo, Z.R.; Zhang, X.; Li, X.Y.; Cui, C.; Zhang, Z.L.; Li, H.S.; Zhang, D.X.; Li, J.Y.; Xu, X.Y.; Zhang, J.T. Enhanced charge separation by incomplete calcination modified co-doped TiO2 nanoparticle for isothiazolinone photocatalytic degradation. Nano Res. 2024, 17, 4834–4843. [Google Scholar] [CrossRef]
- Wang, P.; Guo, S.; Wang, H.J.; Chen, K.K.; Zhang, N.; Zhang, Z.M.; Lu, T.B. A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nat. Commun. 2019, 10, 3155–3166. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Li, J.G.; Kamiyama, H.; Katada, M.; Ohashi, N.; Moriyoshi, Y.; Ishigaki, T. Pyrogenic Iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties. J. Am. Chem. Soc. 2005, 127, 10982–10990. [Google Scholar] [CrossRef]
- Ning, F.D.; Qin, J.Q.; Dan, X.; Pan, S.F.; Bai, C.; Shen, M.; Li, Y.L.; Fu, X.W.; Zhou, S.; Shen, Y.B.; et al. Nanosized proton conductor array with high specific surface area improves fuel cell performance at low Pt loading. ACS Nano 2023, 17, 9487–9500. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Y.; Xu, W.; Ren, C.H.; Zhang, L.P.; Zhang, C.R.; Liu, J.F.; Yang, C.H. Recent progress in quantitative analysis of self-assembled peptides. Exploration 2024. [Google Scholar] [CrossRef]
- McDowall, D.; Greeves, B.J.; Clowes, R.; McAulay, K.; Fuentes-Caparrós, A.M.; Thomson, L.; Khunti, N.; Cowieson, N.; Nolan, M.C.; Wallace, M.; et al. Controlling photocatalytic activity by self-assembly-tuning perylene bisimide photocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. 2020, 10, 2002469. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Li, Z.W.; Ravaine, S.; He, M.X.; Song, Y.L.; Yin, Y.D.; Zheng, H.B.; Teng, J.H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef]
- Hu, Q.Q.; Li, H.; Wang, L.H.; Gu, H.Z.; Fan, C.H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019, 119, 6459–6506. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Zhong, Y.; Wang, L.; Zhang, N.; Cao, R.H.; Bian, K.F.; Alarid, L.; Haddad, R.E.; Bai, F.; Fan, H.Y. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523–6528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, L.; Wang, H.M.; Cao, R.H.; Wang, J.F.; Bai, F.; Fan, H.Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2017, 18, 560–566. [Google Scholar] [CrossRef]
- Tang, Q.X.; Han, Y.F.; Chen, L.X.; Qi, Q.Y.; Yu, J.L.; Yu, S.B.; Yang, B.; Wang, H.Y.; Zhang, J.S.; Xie, S.H.; et al. Bioinspired self-assembly of metalloporphyrins and polyelectrolytes into hierarchical supramolecular nanostructures for enhanced photocatalytic H2 production in Water. Angew. Chem. Int. Edit. 2024, 63, e202315599. [Google Scholar] [CrossRef]
- Mi, Y.; Weng, Y.X. Band alignment and controllable electron migration between rutile and anatase TiO2. Sci. Rep. 2015, 5, 11482–11491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Sun, P.F.; Fei, X.Z.; Wu, X.J.; Huang, Z.Y.; Zhong, W.F.; Gong, Q.B.; Zheng, Y.P.; Zhang, Q.H.; Xie, S.J.; et al. Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane. Nat. Commun. 2024, 15, 4453–4462. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Bi, W.T.; Zhang, L.; Tao, S.; Chu, W.S.; Zhang, Q.; Luo, Y.; Wu, C.Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Xia, S.Y.; Wang, J.F.; Ren, X.T.; Chen, S.D.; Zhong, Y.; Bai, F. Synthesis of the ZnTPyP/WO3 nanorod-on-nanorod heterojunction direct Z-scheme with spatial charge separation ability for enhanced photocatalytic hydrogen generation. Nanoscale 2023, 15, 2871–2881. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lv, X.; Zhong, Y.; Wang, G.; Liu, S.; Chen, S.; Qi, C.; He, M.; Shangguan, P.; Luo, Z.; et al. Self-Assembly Regulated Photocatalysis of Porphyrin-TiO2 Nanocomposites. Molecules 2024, 29, 3872. https://doi.org/10.3390/molecules29163872
Liu Y, Lv X, Zhong Y, Wang G, Liu S, Chen S, Qi C, He M, Shangguan P, Luo Z, et al. Self-Assembly Regulated Photocatalysis of Porphyrin-TiO2 Nanocomposites. Molecules. 2024; 29(16):3872. https://doi.org/10.3390/molecules29163872
Chicago/Turabian StyleLiu, Yisheng, Xinpeng Lv, Yong Zhong, Gaoyang Wang, Shuanghong Liu, Sudi Chen, Cai Qi, Mu He, Ping Shangguan, Zhengqun Luo, and et al. 2024. "Self-Assembly Regulated Photocatalysis of Porphyrin-TiO2 Nanocomposites" Molecules 29, no. 16: 3872. https://doi.org/10.3390/molecules29163872
APA StyleLiu, Y., Lv, X., Zhong, Y., Wang, G., Liu, S., Chen, S., Qi, C., He, M., Shangguan, P., Luo, Z., Li, X., Guo, J., Sun, J., Bai, F., & Wang, J. (2024). Self-Assembly Regulated Photocatalysis of Porphyrin-TiO2 Nanocomposites. Molecules, 29(16), 3872. https://doi.org/10.3390/molecules29163872