Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Algal Identification
2.2. AgNPs Synthesis Using Desmochloris Edaphica Strain CCAP 6006/5
Characterization
2.3. Antiproliferative Activity of DBio@AgNPs and DSup@AgNPs
2.4. Inhibitory Activity of DBio@AgNPs and DSup@AgNPs against Bacterial Cells
3. Material and Methods
3.1. Algal Isolation, Culture, and Identification
3.2. Algal Extract Preparation and Phytochemical Content Analysis
3.3. Green Synthesis of AgNPs Using Algal Biomass and Cell-Free Medium Using D. edaphica and Physicochemical Characterizations
3.3.1. Optimization of AgNP Synthesis Using Microalgal Biomass and Supernatant
3.3.2. Anticancer Activity of DBio@AgNPs and DSup@AgNPs
3.3.3. Antibacterial Activity of DBio@AgNPs and DSup@AgNPs
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravindran, A.; Chandran, P.; Khan, S.S. Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf. B Biointerfaces 2013, 105, 342–352. [Google Scholar] [CrossRef]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Qi, M.; Wang, X.; Chen, J.; Liu, Y.; Liu, Y.; Jia, J.; Li, L.; Yue, T.; Gao, L.; Yan, B. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS Nano 2023, 17, 8851–8865. [Google Scholar] [CrossRef]
- De Moura, M.R.; Mattoso, L.H.; Zucolotto, V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng. 2012, 109, 520–524. [Google Scholar] [CrossRef]
- Jadhav, K.; Deore, S.; Dhamecha, D.; Hr, R.; Jagwani, S.; Jalalpure, S.; Bohara, R. Phytosynthesis of silver nanoparticles: Characterization, biocompatibility studies, and anticancer activity. ACS Biomater. Sci. Eng. 2018, 4, 892–899. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, S. Green fabrication of bioactive silver nanoparticles using Mentha pulegium extract under alkaline: An enhanced anticancer activity. ACS Omega 2021, 7, 1494–1504. [Google Scholar] [CrossRef]
- Pucelik, B.; Sułek, A.; Borkowski, M.; Barzowska, A.; Kobielusz, M.; Dąbrowski, J.M. Synthesis and characterization of size-and charge-tunable silver nanoparticles for selective anticancer and antibacterial treatment. ACS Appl. Mater. Interfaces 2022, 14, 14981–14996. [Google Scholar] [CrossRef]
- Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Krishnan, S.; Hii, Y.S.; Pan, S.; Chan, Y.S.; Acquah, C.; Danquah, M.K.; Rodrigues, J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J. Nanostruct. Chem. 2022, 12, 809–831. [Google Scholar] [CrossRef]
- Gaillet, S.; Rouanet, J.-M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63. [Google Scholar] [CrossRef]
- Shreyash, N.; Bajpai, S.; Khan, M.A.; Vijay, Y.; Tiwary, S.K.; Sonker, M. Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl. Nano Mater. 2021, 4, 11428–11457. [Google Scholar] [CrossRef]
- Hamida, R.S.; Ali, M.A.; Redhwan, A.; Bin-Meferij, M.M. Cyanobacteria—A promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomed. 2020, 15, 6033–6066. [Google Scholar] [CrossRef]
- Asmathunisha, N.; Kathiresan, K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B Biointerfaces 2013, 103, 283–287. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, S.; Wang, K.; Wang, Z.; Duan, J.; Cui, L.; Zheng, H.; Wang, Y.; Wang, S. Evaluation of biosynthesis parameters, stability and biological activities of silver nanoparticles synthesized by Cornus Officinalis extract under 365 nm UV radiation. RSC Adv. 2020, 10, 27173–27182. [Google Scholar] [CrossRef]
- Aziz, N.; Faraz, M.; Pandey, R.; Shakir, M.; Fatma, T.; Varma, A.; Barman, I.; Prasad, R. Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir 2015, 31, 11605–11612. [Google Scholar] [CrossRef]
- Bulgariu, L.; Bulgariu, D. Bioremediation of toxic heavy metals using marine algae biomass. Green Mater. Wastewater Treat. 2020, 542, 69–98. [Google Scholar]
- Sijil, P.; Cherita, C.; Jethani, H.; Chauhan, V.S. Chapter 1. Microalgae as a Renewable and Sustainable Source of High Value Metabolites; The Royal Society of Chemistry: London, UK, 2022; pp. 1–26. [Google Scholar]
- Hamida, R.S.; Ali, M.A.; Mugren, N.; Al-Zaban, M.I.; Bin-Meferij, M.M.; Redhwan, A. Planophila laetevirens-Mediated Synthesis of Silver Nanoparticles: Optimization, Characterization, and Anticancer and Antibacterial Potentials. ACS Omega 2023, 8, 29169–29188. [Google Scholar] [CrossRef]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef]
- Wen, J.; Gao, F.; Liu, H.; Wang, J.; Xiong, T.; Yi, H.; Zhou, Y.; Yu, Q.; Zhao, S.; Tang, X. Metallic nanoparticles synthesized by algae: Synthetic route, action mechanism, and the environmental catalytic applications. J. Environ. Chem. Eng. 2023, 12, 111742. [Google Scholar] [CrossRef]
- Darienko, T.; Rad-Menéndez, C.; Campbell, C.N.; Pröschold, T. Molecular phylogeny of unicellular marine coccoid green algae revealed new insights into the systematics of the Ulvophyceae (Chlorophyta). Microorganisms 2021, 9, 1586. [Google Scholar] [CrossRef]
- Kulkarni, C.V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A magic lipid? Phys. Chem. Chem. Phys. 2011, 13, 3004–3021. [Google Scholar] [CrossRef]
- Sobczak-Kupiec, A.; Malina, D.; Wzorek, Z.; Zimowska, M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett. 2011, 6, 656–660. [Google Scholar] [CrossRef]
- Haji, B.S.; Barzinjy, A.A. Citrullus Colocynthis Fruit Extract Mediated Green Synthesis of Silver Nanoparticles: The Impact of pH, Temperature, and Silver Nitrate Concentration. e-J. Surf. Sci. Nanotechnol. 2022, 21, 61–71. [Google Scholar] [CrossRef]
- Piñero, S.; Camero, S.; Blanco, S. Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology. J. Phys. Conf. Ser. 2017, 786, 012020. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, X.; Cai, H.; Cao, C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J. Mol. Liq. 2014, 196, 135–141. [Google Scholar] [CrossRef]
- Hamida, R.S.; Ali, M.A.; Sharif, F.T.; Sonbol, H.; Bin-Meferij, M.M. Biofabrication of silver nanoparticles using Nostoc muscorum Lukesova 2/91: Optimization, characterization, and biological applications. Int. J. Nanomed. 2023, 18, 5625–5649. [Google Scholar] [CrossRef]
- Lengke, M.F.; Fleet, M.E.; Southam, G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 2007, 23, 2694–2699. [Google Scholar] [CrossRef]
- Prasad, T.N.; Kambala, V.S.R.; Naidu, R. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Phycol. 2013, 25, 177–182. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem. 2020, 13, 1011–1019. [Google Scholar] [CrossRef]
- Mohandass, C.; Vijayaraj, A.; Rajasabapathy, R.; Satheeshbabu, S.; Rao, S.; Shiva, C.; De-Mello, I. Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity. Indian J. Pharm. Sci. 2013, 75, 606. [Google Scholar]
- Hamal, D.B.; Klabunde, K.J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci. 2007, 311, 514–522. [Google Scholar] [CrossRef]
- Patel, V.; Berthold, D.; Puranik, P.; Gantar, M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 2015, 5, 112–119. [Google Scholar] [CrossRef]
- Gontijo, L.A.P.; Raphael, E.; Ferrari, D.P.S.; Ferrari, J.L.; Lyon, J.P.; Schiavon, M.A. pH effect on the synthesis of different size silver nanoparticles evaluated by DLS and their size-dependent antimicrobial activity. Matéria 2020, 25, e-12845. [Google Scholar] [CrossRef]
- Pernas-Pleite, C.; Conejo-Martínez, A.M.; Fernández Freire, P.; Hazen, M.J.; Marín, I.; Abad, J.P. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int. J. Mol. Sci. 2023, 24, 16183. [Google Scholar] [CrossRef]
- Jena, J.; Pradhan, N.; Dash, B.P.; Sukla, L.B.; Panda, P.K. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int. J. Nanomater. Biostruct. 2013, 3, 1–8. [Google Scholar]
- Kusumaningrum, H.P.; Zainuri, M.; Marhaendrajaya, I.; Subagio, A. Nanosilver microalgae biosynthesis: Cell appearance based on SEM and EDX methods. J. Phys. Conf. Ser. 2018, 1025, 012084. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, T.; Paliwal, C.; Maurya, R.; Ghosh, A.; Mishra, S. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. 2016, 6, 72269–72274. [Google Scholar] [CrossRef]
- Cekuolyte, K.; Gudiukaite, R.; Klimkevicius, V.; Mazrimaite, V.; Maneikis, A.; Lastauskiene, E. Biosynthesis of Silver Nanoparticles Produced Using Geobacillus spp. Bacteria. Nanomaterials 2023, 13, 702. [Google Scholar] [CrossRef]
- Abdullah, B.M.; Salih, N.; Salimon, J. Optimization of the chemoenzymatic mono-epoxidation of linoleic acid using D-optimal design. J. Saudi Chem. Soc. 2014, 18, 276–287. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, X.; Mayers, B.T.; Herricks, T.; Xia, Y. Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants. J. Solid State Chem. 2008, 181, 1530–1538. [Google Scholar] [CrossRef]
- Mora-Godínez, S.; Contreras-Torres, F.F.; Pacheco, A. Characterization of Silver Nanoparticle Systems from Microalgae Acclimated to Different CO2 Atmospheres. ACS Omega 2023, 8, 21969–21982. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Liu, Q.; Liu, J.; He, B.; Cui, L.; Li, Z.; Yun, Z.; Qu, G.; Liu, S.; Zhou, Q. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 2013, 9, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed]
- Park, M.V.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810–9817. [Google Scholar] [CrossRef] [PubMed]
- Philpott, D.J.; Edgeworth, J.D.; Sansonetti, P.J. The pathogenesis of Shigella flexneri infection: Lessons from in vitro and in vivo studies. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2000, 355, 575–586. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Errington, J.; Aart, L.T.v.d. Microbe Profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology 2020, 166, 425–427. [Google Scholar] [CrossRef]
- Meikle, T.G.; Dyett, B.P.; Strachan, J.B.; White, J.; Drummond, C.J.; Conn, C.E. Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 6944–6954. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef]
- Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Duan, S.-S.; Ouyang, Y.-S.; Chen, Y.-B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011, 24, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, J.Y.; Too, H.-P. A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals. Anal. Chim. Acta 2007, 588, 34–41. [Google Scholar] [CrossRef]
- Salvioni, L.; Galbiati, E.; Collico, V.; Alessio, G.; Avvakumova, S.; Corsi, F.; Tortora, P.; Prosperi, D.; Colombo, M. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int. J. Nanomed. 2017, 12, 2517–2530. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 07. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.C.; Ko, K.-S.; Koh, D.-C. Evaluation of the effects of particle sizes of silver nanoparticles on various biological systems. Int. J. Mol. Sci. 2020, 21, 8465. [Google Scholar] [CrossRef] [PubMed]
- Bolch, C.J.; Orr, P.T.; Jones, G.J.; Blackburn, S.I. Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). J. Phycol. 1999, 35, 339–355. [Google Scholar] [CrossRef]
- Hamida, R.S.; Ali, M.A.; Almohawes, Z.N.; Alahdal, H.; Momenah, M.A.; Bin-Meferij, M.M. Green synthesis of hexagonal silver nanoparticles using a novel microalgae coelastrella aeroterrestrica strain BA_Chlo4 and resulting anticancer, antibacterial, and antioxidant activities. Pharmaceutics 2022, 14, 2002. [Google Scholar] [CrossRef] [PubMed]
- Khaw, Y.S.; Khong, N.M.H.; Shaharuddin, N.A.; Yusoff, F.M. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. J. Microbiol. Methods 2020, 172, 105890. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef]
No. | Compound | Retention Time | Area% | Matched Factor | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|---|
1 | Methyl jasmonate | 19.32 | 0.76 | 901 | C13H22O3 | 226 |
2 | Acetic acid, [1-(4-isopropylphenyl)-2-methyl]propyl ester | 19.86, 19.98 | 5.60, 1.01 | 898, 886 | C15H22O2 | 234 |
3 | 3-methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one | 20.51 | 1.29 | 835 | C14H22O | 206 |
4 | Versalide | 23.65 | 3.50 | 917 | C18H26O | 258 |
5 | Methyl linolenate | 25.54 | 3.69 | 919 | C19H32O2 | 292 |
6 | Palmitic acid | 26.21 | 5.95 | 925 | C16H32O2 | 256 |
7 | 9,11-octadecadienoic acid, methyl ester, (9Z,11E)- | 28.53 | 1.27 | 919 | C19H34O2 | 294 |
8 | Methyl vaccenate | 28.71 | 1.83 | 905 | C19H36O2 | 296 |
9 | Linoelaidic acid | 29.25 | 12.83 | 936 | C18H32O2 | 280 |
10 | Elaidic acid | 29.44 | 18.36 | 939 | C18H34O2 | 282 |
11 | Stearic acid | 29.89 | 2.50 | 910 | C18H36O2 | 284 |
12 | Glycidyl palmitate | 31.91 | 0.89 | 862 | C19H36O3 | 312 |
13 | Glyceryl linolenate | 34.56 | 3.45 | 823 | C21H36O4 | 352 |
14 | Glycidyl oleate | 34.70 | 4.50 | 906 | C21H38O3 | 338 |
15 | 2-palmitoylglycerol | 35.08 | 1.59 | 892 | C19H38O4 | 330 |
16 | 1,2-dipalmitin | 35.19 | 1.05 | 796 | C35H68O5 | 568 |
17 | Diisooctyl phthalate | 35.68 | 0.79 | 932 | C24H38O4 | 390 |
18 | 2-monolinolein | 37.61 | 9.24 | 893 | C21H38O4 | 354 |
19 | Monoolein | 37.73 | 17.37 | 880 | C21H40O4 | 356 |
20 | 2-monostearin | 38.17 | 1.60 | 825 | C21H42O4 | 358 |
21 | Arabinitol, pentaacetate | 45.01 | 0.92 | 728 | C15H22O10 | 362 |
DBio@AgNPs | DSup@AgNPs | ||||||
---|---|---|---|---|---|---|---|
Element | Line | Mass% | Atom% | Element | Line | Mass% | Atom% |
C | K | 6.72 ± 1.41 | 34.72 ± 0.28 | O | K | 1.54 ± 0.02 | 7.64 ± 0.10 |
O | K | 1.46 ± 0.94 | 5.67 ± 0.14 | Al | K | 0.27 ± 0.01 | 0.79 ± 0.03 |
Al | K | 0.21 ± 0.22 | 0.48 ± 0.02 | Si | K | 0.60 ± 0.01 | 1.69 ± 0.03 |
Cl | K | 4.30 ± 0.41 | 7.53 ± 0.03 | Cl | K | 11.82 ± 0.03 | 26.45 ± 0.06 |
Cu | K | 1.99 ± 0.66 | 1.95 ± 0.03 | Cu | K | 0.63 ± 0.04 | 0.78 ± 0.05 |
Zn | K | 1.51 ± 0.72 | 1.43 ± 0.03 | Ag | L | 85.15 ± 0.11 | 62.66 ± 0.08 |
Ag | L | 83.81 ± 2.29 | 48.22 ± 0.05 | Total | 100.00 | 100.00 | |
Total | 100.00 | 100.00 |
Biomass Extract | DBio@AgNPs | Cell Free Medium Extract | DSup@AgNPs | ||||
---|---|---|---|---|---|---|---|
FTIR (cm−1) | Functional Group | FTIR (cm−1) | Functional Group | FTIR (cm−1) | Functional Group | FTIR (cm−1) | Functional Group |
3346 | O–H | 3437 | O–H | 3366 | O–H | 3437 | O–H |
2937 | C–H | 2926 | C–H | 2937 | C–H | 2926 | C–H |
2849 | C–H | 2855 | C–H | 2849 | C–H | 2855 | C–H |
1561 | N–H/C=C | 1750 | C=O | 2435 | N–H | 1740 | C=O |
1400 | C–H | 1632 | C=C/N–H | 1790 | C=O | 1622 | N–H/C=C |
1116 | C–O | 1461 | C–H | 1632 | C=C/N–H | 1461 | C–H |
1030 | C–O | 1380 | C–H | 1349 | C–H | 1380 | C–H |
928 | C–H | 1060 | C–O | 1146 | C–O | 1050 | C–O |
867 | C–H | 883 | C–H | 1045 | C–O | 766 | C–H |
782 | C–H | 528 | C–Br | 878 | C–H | 573 | C–Br |
659 | C–Br | 837 | C–H | ||||
622 | C–Br | 782 | C–H | ||||
544 | C–Br | 622 | C–Br |
Drugs | S. aureus | B. subtilis | S. flexneri |
---|---|---|---|
MIC (µg/mL) | |||
DBio@AgNPs | 62.5 | 62.5 | 62.5 |
DSup@AgNPs | 3.9 | 31.3 | 3.9 |
IZ (mm) | |||
DBio@AgNPs | 17.7 ± 0.1 | 17.1 ± 0.03 | 14.6 ± 0.1 |
DSup@AgNPs | 16.8 ± 0.1 | 16.02 ± 0.06 | 14.9 ± 0.05 |
AgNO3 | 15.7 ± 0.03 | 15.9 ± 0.05 | 14.6 ± 0.1 |
Chem@AgNPs | 12.1 ± 0.1 | 10.1 ± 0.2 | 0.0 ± 0.0 |
Ciprofloxacin | 32.3 ± 0.4 | 33.1 ± 0.1 | 30.5 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamida, R.S.; Ali, M.A.; Alkhateeb, M.A.; Alfassam, H.E.; Momenah, M.A.; Bin-Meferij, M.M. Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy. Molecules 2024, 29, 3750. https://doi.org/10.3390/molecules29163750
Hamida RS, Ali MA, Alkhateeb MA, Alfassam HE, Momenah MA, Bin-Meferij MM. Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy. Molecules. 2024; 29(16):3750. https://doi.org/10.3390/molecules29163750
Chicago/Turabian StyleHamida, Reham Samir, Mohamed Abdelaal Ali, Mariam Abdulaziz Alkhateeb, Haifa Essa Alfassam, Maha Abdullah Momenah, and Mashael Mohammed Bin-Meferij. 2024. "Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy" Molecules 29, no. 16: 3750. https://doi.org/10.3390/molecules29163750
APA StyleHamida, R. S., Ali, M. A., Alkhateeb, M. A., Alfassam, H. E., Momenah, M. A., & Bin-Meferij, M. M. (2024). Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy. Molecules, 29(16), 3750. https://doi.org/10.3390/molecules29163750