Interfacial Rheological Investigation of Modified Silica Nanoparticles with Different Alkyl Chain Lengths at the n-Octane/Water Interface
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of MNPs
2.2. Interfacial Behaviors of NPs at Oil/Water Interface
2.2.1. Effect of NPs on Interfacial Tension
2.2.2. Effect of NPs’ Concentration on Interfacial Viscoelastic Properties at Different Frequencies
2.2.3. Effect of Alkyl Chain Length on Dilational Elasticity for MNPs
2.3. Special Interfacial Behaviors of M6C in Large Amplitude Compression Experiment
3. Experimental Section
3.1. Materials
3.2. Synthesis of MNPs with Various Alkyl Chain Lengths
3.3. Characterization of MNPs
3.4. Interfacial Tension and Dilational Rheology Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Acronyms | |
---|---|
NPs | Nanoparticles |
HLNPs | Hydrophilic silica nanoparticles |
MNPs | Modified silica nanoparticles |
M3C | MNPs with propyl alkyl chain |
M6C | MNPs with hexyl alkyl chain |
M8C | MNPs with octyl alkyl chain |
M12C | MNPs with dodecyl alkyl chain |
References
- Ahmad, S.; Ahmad, S.; Sheikh, J.N. Silica centered aerogels as advanced functional material and their applications: A review. J. Non-Cryst. Solids 2023, 611, 122322. [Google Scholar] [CrossRef]
- Hirschbiegel, C.-M.; Zhang, X.; Huang, R.; Cicek, Y.A.; Fedeli, S.; Rotello, V.M. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv. Drug Deliv. Rev. 2023, 195, 114730. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Mahapatra, D.K.; Esmaeili, A.; Piszczyk, L.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- He, J.; Jia, H.; Wang, Q.; Xu, Y.; Zhang, L.; Jia, H.; Song, L.; Wang, Y.; Xie, Q. Investigation on pH and redox-trigged emulsions stabilized by ferrocenyl surfactants in combination with Al2O3 nanoparticles and their application for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130303. [Google Scholar] [CrossRef]
- Li, Y.; Dai, C.; Zhou, H.; Wang, X.; Lv, W.; Zhao, M. Investigation of Spontaneous Imbibition by Using a Surfactant-Free Active Silica Water-Based Nanofluid for Enhanced Oil Recovery. Energy Fuels 2018, 32, 287–293. [Google Scholar] [CrossRef]
- Barman, S.; Christopher, G.F. Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces. J. Rheol. 2016, 60, 35–45. [Google Scholar] [CrossRef]
- Powell, K.C.; Chauhan, A. Interfacial Tension and Surface Elasticity of Carbon Black (CB) Covered Oil-Water Interface. Langmuir 2014, 30, 12287–12296. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, J.H.J.; Vermant, J. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. J. Phys. Condens. Matter 2018, 30, 023002. [Google Scholar] [CrossRef]
- Huang, T.; Cao, C.; Liu, Z.L.; Li, Y.; Du, F.P. Interaction of pepsin-C16mim Br system: Interfacial dilational rheology and conformational studies. Soft Matter 2014, 10, 6810–6819. [Google Scholar] [CrossRef]
- Noskov, B.A.; Loglio, G.; Miller, R. Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions: Formation of heterogeneous adsorption layers. Adv. Colloid Interface Sci. 2011, 168, 179–197. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, S.; Maas, K.; Schols, H.A.; van der Linden, E.; Sagis, L.M.C. Interfacial properties of air/water interfaces stabilized by oligofructose palmitic acid esters in the presence of whey protein isolate. Food Hydrocoll. 2013, 32, 162–171. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.M.; Miller, R. Dilational surface viscoelasticity of polymer solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Fainerman, V.B.; Trukhin, D.V.; Zinkovych, I.I.; Miller, R. Interfacial tensiometry and dilational surface visco-elasticity of biological liquids in medicine. Adv. Colloid Interface Sci. 2018, 255, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Bykov, A.G.; Loglio, G.; Miller, R.; Noskov, B.A. Dilational surface elasticity of monolayers of charged polystyrene nano- and microparticles at liquid/fluid interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2015, 485, 42–48. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.C.; Gong, Q.T.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J.Y. Interfacial dilational properties of tri-substituted alkyl benzene sulfonates at air/water and decane/water interfaces. J. Colloid Interface Sci. 2008, 327, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Effect of the Incorporation of Nanosized Titanium Dioxide on the Interfacial Properties of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Langmuir 2017, 33, 10715–10725. [Google Scholar] [CrossRef]
- Lv, W.F.; Zhou, Z.H.; Zhang, Q.; Luo, W.L.; Wang, H.Z.; Ma, D.S.; Zhang, L.; Wang, R.; Zhan, L. Wetting of polymer surfaces by aqueous solutions of branched cationic Gemini surfactants. Soft Matter 2019, 15, 6725–6731. [Google Scholar] [CrossRef]
- Isakov, N.A.; Belousov, M.V.; Nizhnikov, A.A.; Noskov, B.A. Dynamic properties of the layers of cupin-1.1 aggregates at the air/water interface. Biophys. Chem. 2024, 307, 107166. [Google Scholar] [CrossRef]
- Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers. J. Phys. Chem. B 2006, 110, 19543–19551. [Google Scholar] [CrossRef]
- Ma, H.; Luo, M.X.; Dai, L.L. Influences of surfactant and nanoparticle assembly on effective interfacial tensions. Phys. Chem. Chem. Phys. 2008, 10, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Yazhgur, P.A.; Noskov, B.A.; Liggieri, L.; Lin, S.Y.; Loglio, G.; Miller, R.; Ravera, F. Dynamic properties of mixed nanoparticle/surfactant adsorption layers. Soft Matter 2013, 9, 3305–3314. [Google Scholar] [CrossRef]
- Liggieri, L.; Santini, E.; Guzmán, E.; Maestro, A.; Ravera, F. Wide-frequency dilational rheology investigation of mixed silica nanoparticle-CTAB interfacial layers. Soft Matter 2011, 7, 7699–7709. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.Y.; Yu, W.Y.; Wang, J.Q.; Sun, Q.; Li, Z.M. Interfacial study on the interaction between hydrophobic nanoparticles and ionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016, 488, 20–27. [Google Scholar] [CrossRef]
- Vatanparast, H.; Javadi, A.; Bahramian, A. Silica nanoparticles cationic surfactants interaction in water-oil system. Colloids Surf. A Physicochem. Eng. Asp. 2017, 521, 221–230. [Google Scholar] [CrossRef]
- Kirby, S.M.; Anna, S.L.; Walker, L.M. Effect of surfactant tail length and ionic strength on the interfacial properties of nanoparticle–surfactant complexes. Soft Matter 2018, 14, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Vatanparast, H.; Eftekhari, M.; Javadi, A.; Miller, R.; Bahramian, A. Influence of hydrophilic silica nanoparticles on the adsorption layer properties of non-ionic surfactants at water/heptane interface. J. Colloid Interface Sci. 2019, 545, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, M.; Schwarzenberger, K.; Karakashev, S.I.; Grozev, N.A.; Eckert, K. Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio. J. Colloid Interface Sci. 2024, 653, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. DPPC-DOPC Langmuir monolayers modified by hydrophilic silica nanoparticles: Phase behaviour, structure and rheology. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 174–183. [Google Scholar] [CrossRef]
- Giovino, M.; Pribyl, J.; Benicewicz, B.; Kumar, S.; Schadler, L. Linear rheology of polymer nanocomposites with polymer-grafted nanoparticles. Polymer 2017, 131, 104–110. [Google Scholar] [CrossRef]
- Zhang, C.F.; Yang, S.Y.; Padmanabhan, V.; Akcora, P. Solution Rheology of Poly(acrylic acid)-Grafted Silica Nanoparticles. Macromolecules 2019, 52, 9594–9603. [Google Scholar] [CrossRef]
- Thakur, S.; Razavi, S. Particle Size and Rheology of Silica Particle Networks at the Air-Water Interface. Nanomaterials 2023, 13, 2114. [Google Scholar] [CrossRef] [PubMed]
- Alzobaidi, S.; Da, C.; Wu, P.K.; Zhang, X.; Rabat-Torki, N.J.; Harris, J.M.; Hackbarth, J.E.; Lu, C.W.; Hu, D.D.; Johnston, K.P. Tuning Nanoparticle Surface Chemistry and Interfacial Properties for Highly Stable Nitrogen-In-Brine Foams. Langmuir 2021, 37, 5408–5423. [Google Scholar] [CrossRef]
- Zhou, H.D.; Dai, C.L.; Zhang, Q.S.; Li, Y.Y.; Lv, W.J.; Cheng, R.; Wu, Y.N.; Zhao, M.W. Interfacial rheology of novel functional silica nanoparticles adsorbed layers at oil-water interface and correlation with Pickering emulsion stability. J. Mol. Liq. 2019, 293, 111500. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, M.; Guo, Z.; Lan, X.; Zhang, L.; Zhang, L. Effect of hydrophobicity on the interfacial rheological behaviors of nanoparticles at decane-water interface. J. Mol. Liq. 2019, 294, 111618. [Google Scholar] [CrossRef]
- Jia, H.; Dai, J.; Huang, P.; Han, Y.; Wang, Q.; He, J.; Song, J.; Wei, X.; Yan, H.; Liu, D. Application of novel amphiphilic Janus-SiO2 nanoparticles for an efficient demulsification of crude oil/water emulsions. Energy Fuels 2020, 34, 13977–13984. [Google Scholar] [CrossRef]
- Wu, H.; Gao, K.; Lu, Y.; Meng, Z.; Gou, C.; Li, Z.; Yang, M.; Qu, M.; Liu, T.; Hou, J. Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124162. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, Y.; Liu, Y.; Fan, W.; Tang, L.; Chen, T.; Wang, Y.; Yang, F. Temperature-sensitive polymer grafted with nano-SiO2 improves sealing and inhibition performance of shale water-based drilling fluid. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 698, 134531. [Google Scholar] [CrossRef]
- Yin, T.; Yang, Z.; Dong, Z.; Lin, M.; Zhang, J. Physicochemical properties and potential applications of silica-based amphiphilic Janus nanosheets for enhanced oil recovery. Fuel 2019, 237, 344–351. [Google Scholar] [CrossRef]
- Tian, S.; Gao, W.; Liu, Y.; Kang, W.; Yang, H. Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124682. [Google Scholar] [CrossRef]
- Dai, C.; Wang, S.; Li, Y.; Gao, M.; Liu, Y.; Sun, Y.; Zhao, M. The first study of surface modified silica nanoparticles in pressure-decreasing application. RSC Adv. 2015, 5, 61838–61845. [Google Scholar] [CrossRef]
- Peng, B.Z.; Chen, G.J.; Sun, C.Y.; Liu, B.; Zhang, Y.Q.; Zhang, Q.A. Dynamic Interfacial Tension between Water and n-Octane plus Sorbitan Monolaurate at (274.2 to 293.2) K. J. Chem. Eng. Data 2011, 56, 1617–1621. [Google Scholar] [CrossRef]
- Al-Sahhaf, T.; Elkamel, A.; Ahmed, A.S.; Khan, A.R. The influence of temperature, pressure, salinity, and surfactant concentration on the interfacial tension of the N-octane-water system. Chem. Eng. Commun. 2005, 192, 667–684. [Google Scholar] [CrossRef]
- Shelly, A. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil–Water Interfaces. Langmuir 2016, 32, 4125–4133. [Google Scholar] [CrossRef]
- Fernandez-Rodriguez, M.A.; Binks, B.P.; Rodriguez-Valverde, M.A.; Cabrerizo-Vilchez, M.A.; Hidalgo-Alvarez, R. Particles adsorbed at various non-aqueous liquid-liquid interfaces. Adv. Colloid Interface Sci. 2017, 247, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, R.; Clint, J.H.; Nees, D.; Paunov, V.N. Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces. Langmuir 2000, 16, 1969–1979. [Google Scholar] [CrossRef]
- Bai, Y.; Pu, C.; Li, X.; Huang, F.; Liu, S.; Liang, L.; Liu, J. Performance evaluation and mechanism study of a functionalized silica nanofluid for enhanced oil recovery in carbonate reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129939. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, S.H.; Kim, H.J.; Lim, C.S.; Chung, I.; Lee, W.K.; Seo, B. Effect of the Surface Modification of Silica Nanoparticles on the Viscosity and Mechanical Properties of Silica/Epoxy Nanocomposites. Compos. Interfaces 2022, 29, 1573–1590. [Google Scholar] [CrossRef]
- Sonn, J.S.; Lee, J.Y.; Jo, S.H.; Yoon, I.H.; Jung, C.H.; Lim, J.C. Effect of surface modification of silica nanoparticles by silane coupling agent on decontamination foam. Ann. Nucl. Energy 2018, 114, 11–18. [Google Scholar] [CrossRef]
- Javadi, A.; Krägel, J.; Makievski, A.; Kovalchuk, V.; Kovalchuk, N.; Mucic, N.; Loglio, G.; Pandolfini, P.; Karbaschi, M.; Miller, R. Fast dynamic interfacial tension measurements and dilational rheology of interfacial layers by using the capillary pressure technique. Colloids Surf. A Physicochem. Eng. Asp. 2012, 407, 159–168. [Google Scholar] [CrossRef]
- Ravera, F.; Loglio, G.; Kovalchuk, V.I. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid Interface Sci. 2010, 15, 217–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Wen, S.; Xie, Q.; Fan, F.; Wang, Q.; Zhang, X.; Lv, K.; Jia, H.; Sun, H. Interfacial Rheological Investigation of Modified Silica Nanoparticles with Different Alkyl Chain Lengths at the n-Octane/Water Interface. Molecules 2024, 29, 3749. https://doi.org/10.3390/molecules29163749
Xu L, Wen S, Xie Q, Fan F, Wang Q, Zhang X, Lv K, Jia H, Sun H. Interfacial Rheological Investigation of Modified Silica Nanoparticles with Different Alkyl Chain Lengths at the n-Octane/Water Interface. Molecules. 2024; 29(16):3749. https://doi.org/10.3390/molecules29163749
Chicago/Turabian StyleXu, Long, Shijie Wen, Qiuyu Xie, Fangning Fan, Qiang Wang, Xuehao Zhang, Kaihe Lv, Han Jia, and Hai Sun. 2024. "Interfacial Rheological Investigation of Modified Silica Nanoparticles with Different Alkyl Chain Lengths at the n-Octane/Water Interface" Molecules 29, no. 16: 3749. https://doi.org/10.3390/molecules29163749
APA StyleXu, L., Wen, S., Xie, Q., Fan, F., Wang, Q., Zhang, X., Lv, K., Jia, H., & Sun, H. (2024). Interfacial Rheological Investigation of Modified Silica Nanoparticles with Different Alkyl Chain Lengths at the n-Octane/Water Interface. Molecules, 29(16), 3749. https://doi.org/10.3390/molecules29163749