Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Extraction Technique on Bioactive Compounds Content
2.2. Total Antioxidant Activity
2.3. Antidiabetic Activity
- α-amylase and α-glucosidase inhibition
- Insulin secretion assay
3. Materials and Methods
3.1. Materials
3.2. Extract Preparation
3.2.1. ASE
3.2.2. UAE
3.2.3. LE
3.3. Quantification of Polyphenolic Compounds
3.3.1. Spectrophotometric Assay for Total Polyphenols and Flavonoids
3.3.2. HPLC-DAD Analysis
3.4. Antioxidant Assays
3.4.1. DPPH Radical Scavenging
3.4.2. Reducing Power Assay
3.5. Antidiabetic Assay
3.5.1. α-Amylase and α-Glucosidase Inhibitory Activities
3.5.2. Insulin Secretion Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bencheikh, N.; Radi, F.Z.; Fakchich, J.; Elbouzidi, A.; Ouahhoud, S.; Ouasti, M.; Bouhrim, M.; Ouasti, I.; Hano, C.; Elachouri, M. Ethnobotanical, Phytochemical, Toxicological, and Pharmacological Properties of Ziziphus lotus (L.) Lam.: A Comprehensive Review. Pharmaceuticals 2023, 16, 575. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic Activity, Biological Effect and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol. 2013, 149, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Haq, F.; Siraj, A.; Ameer, M.; Hamid, T.; Rahman, M.; Khan, S.; Khan, S.; Masud, S. Comparative Review of Drugs Used in Diabetes Mellitus—New and Old. J. Diabetes Mellit. 2021, 11, 115–131. [Google Scholar] [CrossRef]
- Lee, T.T.L.; Hui, J.M.H.; Lee, Y.H.A.; Satti, D.I.; Shum, Y.K.L.; Kiu, P.T.H.; Wai, A.K.C.; Liu, T.; Wong, W.T.; Chan, J.S.K.; et al. Sulfonylurea Is Associated with Higher Risks of Ventricular Arrhythmia or Sudden Cardiac Death Compared with Metformin: A Population-Based Cohort Study. J. Am. Heart Assoc. 2022, 11, e026289. [Google Scholar] [CrossRef] [PubMed]
- Zahrae Radi, F.; Bencheikh, N.; Anarghou, H.; Bouhrim, M.; Alqahtani, A.S.; Hawwal, M.F.; Noman, O.M.; Bnouham, M.; Zair, T. Quality control, phytochemical profile, and biological activities of Crataegus monogyna Jacq. and Crataegus laciniata Ucria fruits aqueous extracts. Saudi Pharm J. 2023, 31, 101753. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Burzynska-Pedziwiatr, I.; Wozniak, L.A.; Bukowiecka-Matusiak, M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023, 13, 1402. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef] [PubMed]
- Khongthaw, B.; Chauhan, P.K.; Dulta, K.; Kumar, V.; Ighalo, J.O. A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. J. Food Meas. Charact. 2023, 17, 1317–1342. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ravindran, R.; Walsh, O.; O’Doherty, J.; Jaiswal, A.K.; Tiwari, B.K.; Rajauria, G. Evaluation of Ultrasound, Microwave, Ultrasound–Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae. Mar. Drugs 2021, 19, 309. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Borrull, F.; Pocurull, E.; Marcé, R.M. Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge. TrAC Trends Anal. Chem. 2010, 29, 752–764. [Google Scholar] [CrossRef]
- Pirvu, L.C.; Nita, S.; Rusu, N.; Bazdoaca, C.; Neagu, G.; Bubueanu, C.; Udrea, M.; Udrea, R.; Enache, A. Effects of laser irradiation at 488, 514, 532, 552, 660, and 785 nm on the aqueous extracts of Plantago lanceolata L.: A comparison on chemical content, antioxidant activity and caco-2 viability. Appl. Sci. 2022, 12, 5517. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Alecu, A.; Albu, C.; Seciu-Grama, A.-M.; Radu, G.L. Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts. Molecules 2024, 29, 326. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Zhang, M.; Mujumdar, A.S. Potential application of laser technology in food processing. Trends Food Sci. Technol. 2021, 118, 711–722. [Google Scholar] [CrossRef]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Bunea, A.; Fiţ, N.; Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals 2023, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Bayram, H.M.; Arda Ozturkcan, S. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis Fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, M.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Ziemlewska, A.; Furman-Toczek, D.; Szczepanek, D.; Sowa, I. In Vitro Evaluation of Anti-Inflammatory and Protective Potential of an Extract from Cornus mas L. Fruit against H2O2-Induced Oxidative Stress in Human Skin Keratinocytes and Fibroblasts. Int. J. Mol. Sci. 2022, 23, 13755. [Google Scholar] [CrossRef] [PubMed]
- Dzydzan, O.; Bila, I.; Kucharska, A.Z.; Brodyak, I.; Sybirna, N. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food Funct. 2019, 10, 6459–6472. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, Ł.; Bednarz-Misa, I.; Kucharska, A.Z.; Kubiak, A.; Kasprzyk, P.; Sozański, T.; Przybylska, D.; Piórecki, N.; Krzystek-Korpacka, M. Cornelian Cherry (Cornus mas L.) Extracts Exert Cytotoxicity in Two Selected Melanoma Cell Lines—A Factorial Analysis of Time-Dependent Alterations in Values Obtained with SRB and MTT Assays. Molecules 2022, 27, 4193. [Google Scholar] [CrossRef] [PubMed]
- Mesgari Abbasi, M.; Hassanalilou, T.; Khordadmehr, M.; Mohammadzadeh Vardin, A.; Behroozi Kohlan, A.; Khalili, L. Effects of Cornus mas Fruit Hydro-Methanolic Extract on Liver Antioxidants and Histopathologic Changes Induced by Cisplatin in Rats. Indian J. Clin. Biochem. 2020, 35, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, N.; Hashemi, A.; Noori, M.; Momeni, H.R. Effect of Cornus mas fruit flavonoids on memory retention, level of plasma glucose and lipids in an intracerebroventricular streptozotocin-induced experimental Alzheimer’s disease model in Wistar rats. Environ. Exp. Biol. 2016, 14, 113–120. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Cornescu, F. Variability in physical and chemical characteristics of Cornelian cherry fruits (Cornus mas L.) from Romanian Oltenia region’s spontaneous flora and role of the climatic conditions. Braz. J. Bot. 2020, 43, 677–682. [Google Scholar] [CrossRef]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M.; et al. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef] [PubMed]
- Fakchich, J.; Elachouri, M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J. Ethnopharmacol. 2021, 267, 113200. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Brown, P.N.; Talent, N.; Dickinson, T.A.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Habtemariam, S.; Ahmed, T.; Sureda, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.M. Polyphenolic composition of crataegus monogyna jacq: From chemistry to medical applications. Nutrients 2015, 7, 7708–7728. [Google Scholar] [CrossRef] [PubMed]
- Cremonini, E.; Bettaieb, A.; Haj, F.G.; Fraga, C.G.; Oteiza, P.I. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch. Biochem. Biophys. 2016, 599, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, B.; Olson, L.K.; Schutzki, R.E.; Tai, M.-H.; Nair, M.G. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J. Agric. Food Chem. 2006, 54, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, M.C.; Loizzo, M.R.; Tundis, R.; Dugay, A.; Bouzidi, C.; Marie, A.; Acquaviva, R.; Cappello, A.R.; Deguin, B. Iridoid- and flavonoid-enriched fractions of Cornus sanguinea and Cornus mas exert antioxidant and anti-inflammatory effects and inhibit key enzymes in the treatment of metabolic disorders. Food Funct. 2023, 14, 8838–8853. [Google Scholar] [CrossRef] [PubMed]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çınar, F.; Bursać Kovačević, D.; Žutić, I.; Dragović-Uzelac, V. Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Martinović, A.; Cavoski, I. The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chem. 2020, 318, 126549. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 21. [Google Scholar] [CrossRef] [PubMed]
- Blagojević, B.; Agić, D.; Serra, A.T.; Matić, S.; Matovina, M.; Bijelić, S.; Popović, B.M. An in vitro and in silico evaluation of bioactive potential of cornelian cherry (Cornus mas L.) extracts rich in polyphenols and iridoids. Food Chem. 2021, 335, 127619. [Google Scholar] [CrossRef] [PubMed]
- Pomianek, T.; Zagórska-Dziok, M.; Skóra, B.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I.; Szychowski, K.A. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. Int. J. Mol. Sci. 2024, 25, 5495. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Skrzydlewska, E. Ascorbic Acid as Antioxidant. Vitam. Horm. 2023, 121, 247–270. [Google Scholar] [PubMed]
- Świerczewska, A.; Buchholz, T.; Melzig, M.F.; Czerwińska, M.E. In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts. J. Food Drug Anal. 2019, 27, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for Controlling Starch Digestion: Structural Requirements for Inhibiting Human α-Amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A Review on Structure-Activity Relationship of Dietary Polyphenols Inhibiting α-amylase. Crit. Rev. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Fernandes, A.; Brás, N.F.; Mateus, N.; de Freitas, V.; Fernandes, I. Anthocyanins as Antidiabetic Agents—In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020, 25, 3813. [Google Scholar] [CrossRef] [PubMed]
- Akkarachiyasit, S.; Charoenlertkul, P.; Yibchok-Anun, S.; Adisakwattana, S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int. J. Mol. Sci. 2010, 11, 3387–3396. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanism of antioxidant activity using the DPPH free radical method. Leb. Wiss Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Berker, K.; Güçlü, K.; Tor, I.; Apak, R. Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP) and ferricyanide reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Neagu, E.; Paun, G.; Albu, C.; Eremia, S.A.-M.V.; Radu, G.L. Artemisia abrotnum and Symphytum officinale Polyphenolic Compounds-Rich Extracts with Potential Application in Diabetes Management. Metabolites 2023, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, L.G.; Kwon, Y.I.; Apostolidis, E.; Shetty, K. Phenolic compounds antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Biores. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef] [PubMed]
- Suparto, I.; Arfianti, N.; Septiawati, T.; Triwahyuni, W.; Iskandriati, D. Ethanol extract of Mahkota Dewa (Phaleria macrocarpa (Scheff,) Boerl.) fruit with in-vitro antidiabetic activities. In Proceedings of the International Seminar on Chemistry, Jatinangor, Indonesia, 30–31 October 2008; pp. 285–288. [Google Scholar]
- Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient regulation of insulin secretion and action. J. Endocrinol. 2014, 221, R105–R120. [Google Scholar] [CrossRef] [PubMed]
Sample | Extraction Method | Polyphenols (mg CAE/g Dry Extract) | Flavonoids (mg RE/g Dry Extract) | Yield (%) |
---|---|---|---|---|
C. mas | ASE | 103.94 ± 2.60 | 2.57 ± 0.02 | 36.1 ± 1.60 |
UAE | 79.46 ± 0.20 | 0.95 ± 0.01 | 21.8 ± 0.90 | |
LE1550 | 81.38 ± 0.60 | 0.92 ± 0.01 | 30.6 ± 1.60 | |
LEcomb. | 85.33 ± 0.40 | 1.44 ± 0.01 | 31.8 ± 1.40 | |
C. monogyna | ASE | 84.89 ± 0.60 | 3.02 ± 0.03 | 48.4 ± 2.20 |
UAE | 54.87 ± 0.40 | 2.04 ± 0.02 | 18.2 ± 0.70 | |
LE1550 | 57.31 ± 0.50 | 1.98 ± 0.01 | 19.5 ± 0.80 | |
LEcomb. | 76.59 ± 0.60 | 2.25 ± 0.02 | 20.2 ± 1.10 |
Compound | ASE | UAE | LE1550 | LEcomb. |
---|---|---|---|---|
Gallic acid | 76.11 ± 3.80 | 74.83 ± 2.60 | 73.37 ± 3.20 | 74.90 ± 4.30 |
Chlorogenic acid | 504.72 ± 11.20 | 415.70 ± 9.20 | 362.09 ± 11.30 | 430.19 ± 12.70 |
Caffeic acid | 1020.56 ± 14.90 | 710.07 ± 11.40 | 701.63 ± 15.80 | 781.76 ± 17.10 |
Coumaric acid | 39.44 ± 1.80 | 32.89 ± 1.20 | 33.76 ± 1.90 | 38.93 ± 1.50 |
Rutin | 957.22 ± 12.60 | 528.52 ± 12.30 | 533.01 ± 11.70 | 635.85 ± 10.40 |
Ellagic acid | 118.18 ± 4.50 | 97.80 ± 4.30 | 105.90 ± 3.70 | 130.20 ± 5.20 |
Quercetin 3-β-D-glucoside | 80.00 ± 3.10 | 27.18 ± 0.90 | 18.82 ± 0.80 | 20.69 ± 1.20 |
Quercitrin | 183.89 ± 9.50 | 60.74 ± 1.60 | 26.47 ± 1.90 | 71.38 ± 4.80 |
Myricetin | 45.28 ± 2.40 | 15.10 ± 0.80 | 18.11 ± 0.90 | 22.89 ± 1.60 |
Quercetin | 18.33 ± 1.10 | 14.43 ± 0.50 | 12.89 ± 0.60 | 16.67 ± 0.90 |
Luteolin | 20.00 ± 1.70 | 4.70 ± 0.30 | 4.63 ± 0.30 | 5.57 ± 0.30 |
Kaempferol | 7.78 ± 0.60 | nd | 1.76 ± 0.10 | 1.82 ± 0.10 |
Isorahmentin | nd | nd | 5.88 ± 0.20 | 5.90 ± 0.20 |
Delphinidin-3-glucopyranoside | 33.06 ± 1.30 | 32.21 ± 1.20 | 33.27 ± 2.40 | 36.33 ± 1.90 |
Cyanidin-3-glucopyranoside | 566.94 ± 11.50 | 248.32 ± 3.80 | 405.88 ± 4.60 | 433.32 ± 8.20 |
Petunidin-3-glucoside | 237.78 ± 4.90 | 110.74 ± 2.70 | 170.59 ± 5.30 | 182.70 ± 4.40 |
Delphinidin | 12.22 ± 0.90 | 11.74 ± 0.80 | 11.76 ± 0.80 | 11.01 ± 1.10 |
Cyanidin | 11.67 ± 0.70 | 11.07 ± 0.60 | 11.11 ± 0.50 | 10.69 ± 0.90 |
Vitamin C | 22,379.17 ± 16.40 | 18,819.46 ± 15.30 | 15,778.43 ± 14.10 | 18,655.35 ± 16.20 |
Compound | ASE | UAE | LE1550 | LEcomb. |
---|---|---|---|---|
Gallic acid | 59.13 ± 3.50 | 52.20 ± 3.20 | 50.26 ± 2.90 | 52.97 ± 4.10 |
(+)-Catechin | 3262.81 ± 14.20 | 3192.31 ± 13.70 | 4012.82 ± 14.50 | 4276.73 ± 15.20 |
Chlorogenic acid | 492.77 ± 8.30 | 489.56 ± 7.50 | 507.18 ± 8.10 | 533.66 ± 8.30 |
Caffeic acid | 28.39 ± 1.40 | 26.37 ± 1.20 | 27.69 ± 1.40 | 30.30 ± 2.60 |
(−)-Epicatechin | 3841.94 ± 15.80 | 3679.67 ± 16.10 | 3750.26 ± 16.70 | 4234.16 ± 15.90 |
p-Coumaric acid | 12.50 ± 0.90 | 14.84 ± 1.10 | 11.33 ± 0.80 | 13.88 ± 0.90 |
Rutin | 2614.88 ± 14.60 | 2312.09 ± 13.20 | 2720.00 ± 14.60 | 2927.23 ± 15.80 |
Ellagic acid | 518.18 ± 10.50 | 497.80 ± 9.30 | 495.90 ± 8.70 | 530.20 ± 11.20 |
Quercetin 3-β-D-glucoside | 40.08 ± 3.10 | 31.87 ± 2.80 | 28.21 ± 2.30 | 28.29 ± 2.50 |
Quercitrin | 489.63 ± 9.20 | 421.98 ± 8.40 | 432.31 ± 8.10 | 504.46 ± 9.70 |
Myricetin | 27.98 ± 1.80 | 25.27 ± 1.20 | 20.00 ± 1.10 | 20.79 ± 0.90 |
Quercetin | 50.01 ± 4.30 | 46.15 ± 2.90 | 68.72 ± 4.60 | 66.83 ± 3.30 |
Luteolin | 13.43 ± 0.70 | 7.14 ± 0.50 | 9.74 ± 0.70 | 5.45 ± 0.20 |
Kaempferol | 15.99 ± 1.10 | 15.38 ± 1.20 | 14.87 ± 0.90 | 15.36 ± 1.40 |
Isorahmentin | 3.51 ± 0.20 | nd | nd | 4.95 ± 0.30 |
Delphinidin-3-glucopyranoside | 18.60 ± 1.40 | 12.86 ± 0.70 | nd | 19.20 ± 1.80 |
Cyanidin-3-glucopyranoside | 232.15 ± 3.90 | 203.85 ± 3.50 | 203.08 ± 3.70 | 231.19 ± 4.10 |
Delphinidin | 17.23 ± 1.10 | 19.78 ± 1.80 | 18.46 ± 1.40 | 17.82 ± 1.20 |
Cyanidin | 19.71 ± 1.60 | 16.78 ± 0.90 | 18.46 ± 1.20 | 17.82 ± 1.30 |
Vitamin C | 2593.80 ± 14.80 | 1732.97 ± 12.70 | 1594.36 ± 12.30 | 1521.78 ± 11.90 |
Compound | λmax (nm) | tR (min) | The Linear Regression Equations | R | Linearity Range of Response (µg mL−1) | LoD (µg mL−1) | LoQ (µg mL−1) |
---|---|---|---|---|---|---|---|
Gallic acid | 271 | 8.2 | A = 22,548.51XC − 16,730.64 | 0.9994 | 0.5–50 | 0.11 | 0.23 |
(+)-Catechin | 279 | 19.3 | A = 8300.645XC − 4379.833 | 0.9998 | 0.5–50 | 0.45 | 0.47 |
Chlorogenic acid | 327 | 20.6 | A = 62,237.79XC − 17,377.63 | 0.9998 | 0.5–50 | 0.13 | 0.36 |
Caffeic acid | 324 | 22.7 | A = 117,248.9XC − 27,352.26 | 0.9999 | 0.5–50 | 0.1 | 0.9 |
(-)-Epicatechin | 279 | 23.9 | A = 10,134.4XC − 1638.931 | 0.997 | 0.5–50 | 0.16 | 0.30 |
p-Coumaric acid | 310 | 28.4 | A = 174,370.4XC − 39,107.04 | 0.9993 | 0.5–50 | 0.15 | 0.42 |
Rutin | 354 | 32.3 | A = 31,257.94XC − 4695.0 | 0.9998 | 0.5–50 | 0.24 | 0.48 |
Ellagic acid | 367 | 33.8 | A =30,052.11XC − 34,356.48 | 0.9997 | 0.5–50 | 0.23 | 0.34 |
Quercetin 3-β-D-glucoside | 354 | 35.1 | A = 38,616.38XC − 7273.773 | 0.9996 | 0.5–50 | 0.18 | 0.42 |
Quercitrin | 349 | 42.7 | A = 28,998.06XC − 9131.278 | 0.9998 | 0.5–50 | 0.33 | 0.45 |
Myricetin | 372 | 43.3 | A= 46,639.07XC − 10,691.48 | 0.9998 | 0.5–50 | 0.11 | 0.38 |
Quercetin | 372 | 49.3 | A = 111,657.0XC − 44,094.22 | 0.9998 | 0.5–50 | 0.32 | 0.48 |
Luteolin | 349 | 50.1 | A = 102,976.7XC − 2735.935 | 0.9996 | 0.5–50 | 0.26 | 0.46 |
Kaempherol | 367 | 56.7 | A = 86,346.8XC − 23,246.12 | 0.9998 | 0.5–50 | 0.15 | 0.48 |
Isorahmentin | 372 | 57.8 | A = 74,331.04XC − 5962.092 | 0.9999 | 0.5–50 | 0.19 | 0.47 |
Delphinidin-3-glucoside | 526 | 25.5 | A = 19,024.87XC − 13,742.13 | 0.9990 | 0.5–50 | 0.22 | 0.41 |
Cyanidin-3-glucoside | 520 | 27.4 | A = 22,562.61XC − 74,68.727 | 0.9997 | 0.5–50 | 0.23 | 0.38 |
Petunidin-3-glucoside | 526 | 28.4 | A = 32,168.98XC − 7199.806 | 0.9998 | 0.5–50 | 0.19 | 0.29 |
Delphinidin | 531 | 31.2 | A = 76,198.99XC − 24,569.97 | 0.9994 | 0.5–50 | 0.11 | 0.30 |
Cyanidin | 526 | 34.1 | A = 55,174.78XC − 17,679.81 | 0.9993 | 0.5–50 | 0.35 | 0.38 |
Vitamin C | 248 | 2.7 | A= 53,840.48C − 47,183.38 | 0.9999 | 1–250 | 0.2 | 0.5 |
Sample | Extraction Method | DPPH | Fe(III) Reducing Power |
---|---|---|---|
IC50 (μg/mL) | |||
C. mas | ASE | 31.82 ± 0.1 ** | 33.95 ± 0.2 ** |
UAE | 54.70 ± 0.4 ** | 53.55 ± 0.5 * | |
LE1550 | 36.77 ± 0.2 ** | 52.63 ± 0.3 ** | |
LEcomb. | 39.38 ± 0.3 ** | 35.33 ± 0.1 ** | |
C. monogyna | ASE | 522.64 ± 8.4 ** | 73.04 ± 0.6 ** |
UAE | 573.91 ± 6.9 * | 224.32 ± 2.4 ** | |
LE1550 | 493.19 ± 7.2 ** | 369.72 ± 3.1 * | |
LEcomb. | 469.44 ± 4.8 ** | 163.26 ± 1.8 ** | |
Ascorbic acid | 59.38 ± 0.5 | 149.48 ± 2.6 |
Sample | Extraction Method | α-Amylase Inhibition | α-Glucosidase Nhibition |
---|---|---|---|
IC50 (μg/mL) | |||
C. mas | ASE | 0.44 ± 0.02 ** | 77.1 ± 3.10 ** |
UAE | 96.99 ± 2.70 * | 134.5 ± 6.20 * | |
LE1550 | 8.51 ± 0.40 * | 129.8 ± 5.80 * | |
LEcomb. | 0.11 ± 0.01 * | 98.2 ± 4.70 * | |
C. monogyna | ASE | 0.53 ± 0.01 ** | 108.4 ± 9.40 * |
UAE | 7.67 ± 0.90 * | 1157.6 ± 10.40 ** | |
LE1550 | 19.70 ± 1.20 * | 181.3 ± 5.30 * | |
LEcomb. | 1.26 ± 0.01 * | 129.1 ± 3.10 * | |
Acarbose | 8.12 ± 0.60 | 168.4 ± 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paun, G.; Neagu, E.; Albu, C.; Alecu, A.; Seciu-Grama, A.-M.; Radu, G.L. Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts. Molecules 2024, 29, 3595. https://doi.org/10.3390/molecules29153595
Paun G, Neagu E, Albu C, Alecu A, Seciu-Grama A-M, Radu GL. Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts. Molecules. 2024; 29(15):3595. https://doi.org/10.3390/molecules29153595
Chicago/Turabian StylePaun, Gabriela, Elena Neagu, Camelia Albu, Andreia Alecu, Ana-Maria Seciu-Grama, and Gabriel Lucian Radu. 2024. "Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts" Molecules 29, no. 15: 3595. https://doi.org/10.3390/molecules29153595
APA StylePaun, G., Neagu, E., Albu, C., Alecu, A., Seciu-Grama, A. -M., & Radu, G. L. (2024). Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts. Molecules, 29(15), 3595. https://doi.org/10.3390/molecules29153595