Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L.
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Antibacterial Activity
2.3. Association Test
2.4. Antioxidant Activity
2.5. Cytotoxic Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. Identification of EO Components
4.4. Antibacterial Activity Assays
4.5. Synergistic Antibacterial Activity of EOs
4.6. Antioxidant Activity Evaluation
4.6.1. DPPH Radical Scavenging
4.6.2. ABTS Radical Scavenging
4.6.3. Ferric Reducing Power
4.7. Cytotoxic Activity Evaluation
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M. Plant secondary metabolites: The weapons for biotic stress management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Shah, M.; Bibi, S.; Kamal, Z.; Al-Sabahi, J.N.; Alam, T.; Ullah, O.; Murad, W.; Rehman, N.U.; Al-Harrasi, A. Bridging the chemical profile and biomedical effects of Scutellaria edelbergii essential oils. Antioxidants 2022, 11, 1723. [Google Scholar] [CrossRef]
- Goodier, M.C.; Zhang, A.J.; Goldfarb, N.I.; Warshaw, E.M.; Nikle, A.B.; Hylwa, S.A. Use of essential oils: A general population survey. Contact Dermat. 2019, 80, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent advances in the application of antibacterial complexes using essential oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef]
- Visan, D.C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original contributions to the chemical composition, microbicidal, virulence-arresting and antibiotic-enhancing activity of essential oils from four coniferous species. Pharmaceuticals 2021, 14, 1159. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, P.; Pandae, V. Hepatoprotective activity of Aeschynomene aspera. Linn. Pharmacol. 2011, 3, 297–304. [Google Scholar]
- Bharathi, M.P.; Rao, D.M. Evaluation of in vitro antioxidant activity of Aeschynomene indica. J. Pharm. Res. 2015, 9, 21–26. [Google Scholar]
- Achika, J.; Ndukwe, G.; Ayo, R. Isolation, characterization and antimicrobial activity of 3β, 22E-stigmasta-5, 22-dien-3-ol from the aerial part of Aeschynomene uniflora E. Mey. Br. J. Pharm. Res. 2016, 11, 1–8. [Google Scholar] [CrossRef]
- Ignoato, M.C.; Fabrão, R.M.; Schuquel, I.T.A.; Botelho, M.F.P.; Santin, S.M.d.O.; Arruda, L.L.M.d.; Bersani-Amado, C.A.; Souza, M.C.d. Phytochemical study and evaluation of anti-inflammatory activity of Aeschynomene fluminensis vell. (Fabaceae). Quim. Nova 2012, 35, 2241–2244. [Google Scholar] [CrossRef]
- Alekhya, C.; Yasodamma, N.; Chaithra, D.; Job Roger Binny, A. Anthelmintic activity of Aeschynomene aspera and Aeschynomene indica. Int. J. Pharm. Pharm. Sci. 2013, 5, 386–388. [Google Scholar]
- Caamal-Fuentes, E.; Moo-Puc, R.; Torres-Tapia, L.W.; Peraza-Sanchez, S.R. Pterocarpans from the root bark of Aeschynomene fascicularis. Nat. Prod. Commun. 2013, 8, 1421–1422. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.M.; Salama, M.M.; Mohammed, F.F.; Tohamy, A.F.; El Deeb, K.S. Metabolic profile and hepatoprotective effect of Aeschynomene elaphroxylon (Guill. & Perr.). PLoS ONE 2019, 14, e0210576. [Google Scholar]
- Caamal-Fuentes, E.; Torres-Tapia, L.W.; Simá-Polanco, P.; Peraza-Sánchez, S.R.; Moo-Puc, R. Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. J. Ethnopharmacol. 2011, 135, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Caamal-Fuentes, E.E.; Peraza-Sánchez, S.R.; Torres-Tapia, L.W.; Moo-Puc, R.E. Isolation and identification of cytotoxic compounds from Aeschynomene fascicularis, a Mayan medicinal plant. Molecules 2015, 20, 13563–13574. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1995; Volume 41, p. 351. [Google Scholar]
- Aruna, C.; Chaithra, D.; Alekhya, C.; Yasodamma, N. Pharmacognostic studies of Aeschynomene indica L. Int. J. Pharm. Pharm. Sci. 2012, 4, 76–77. [Google Scholar]
- Lei, Z.Y.; Chen, J.J.; Cao, Z.J.; Ao, M.Z.; Yu, L.J. Efficacy of Aeschynomene indica L. leaves for wound healing and isolation of active constituent. J. Ethnopharmacol. 2019, 228, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Godlewska, K.; Pacyga, P.; Najda, A.; Michalak, I. Investigation of chemical constituents and antioxidant activity of biologically active plant-derived natural products. Molecules 2023, 28, 5572. [Google Scholar] [CrossRef]
- Noudogbessi, J.; Sessou, P.; Wotto, V.; Figueredo, G.; Chalard, P.; Chalchat, J.; Dansou, K.; Sohounhloué, D. Chemical compositions and preventive activity of essential oils extracted from the leaves of two varieties of Tephrosia (Leguminosae-papilionoideae) collected in Benin on Callosobruchus maculatus (Fabricius). Asian J. Res. Chem. 2012, 5, 1431–1436. [Google Scholar]
- Zoghbi, M.d.G.B.; Andrade, E.H.; Martins-da-Silva, R.C.; Trigo, J.R. Chemical variation in the volatiles of Copaifera reticulata Ducke (Leguminosae) growing wild in the states of Pará and Amapá, Brazil. J. Essent. Oil Res. 2009, 21, 501–503. [Google Scholar] [CrossRef]
- Zoghbi, M.d.G.B.; Martins-da-Silva, R.C.; Trigo, J.R. Volatiles of oleoresins of Copaifera paupera (Herzog) Dwyer C. piresii Dwyer and C. pubiflora Benth. (Leguminosae). J. Essent. Oil Res. 2009, 21, 403–404. [Google Scholar] [CrossRef]
- Gurgel, E.S.C.; de Oliveira, M.S.; Souza, M.C.; da Silva, S.G.; de Mendonca, M.S.; da Silva Souza Filho, A.P. Chemical compositions and herbicidal (phytotoxic) activity of essential oils of three Copaifera species (Leguminosae-Caesalpinoideae) from Amazon-Brazil. Ind. Crops. Prod. 2019, 142, 111850. [Google Scholar] [CrossRef]
- de Almeida, M.C.; Souza, L.G.; Ferreira, D.A.; Monte, F.J.; Braz-Filho, R.; de Lemos, T.L. Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr. Pharmacogn. Mag. 2015, 11, S362–S364. [Google Scholar]
- Al-Qudah, M.A. Chemical composition of essential oil from Jordanian Lupinus varius L. Arab. J. Chem. 2013, 6, 225–227. [Google Scholar] [CrossRef]
- Ulubelen, A.; Topcu, G.; Eri, C.; Sönmez, U.; Kartal, M.; Kurucu, S.; Bozok-Johansson, C. Terpenoids from Salvia sclarea. Phytochemistry 1994, 36, 971–974. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- de Morais Oliveira-Tintino, C.D.; Pessoa, R.T.; Fernandes, M.N.M.; Alcântara, I.S.; da Silva, B.A.F.; de Oliveira, M.R.C.; Martins, A.O.B.P.B.; da Silva, M.d.S.; Tintino, S.R.; Rodrigues, F.F.G. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine 2018, 41, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Akiel, M.A.; Alshehri, O.Y.; Aljihani, S.A.; Almuaysib, A.; Bader, A.; Al-Asmari, A.I.; Alamri, H.S.; Alrfaei, B.M.; Halwani, M.A. Viridiflorol induces anti-neoplastic effects on breast, lung, and brain cancer cells through apoptosis. Saudi J. Biol. Sci. 2022, 29, 816–821. [Google Scholar] [CrossRef]
- Trevizan, L.N.F.; do Nascimento, K.F.; Santos, J.A.; Kassuya, C.A.L.; Cardoso, C.A.L.; do Carmo Vieira, M.; Moreira, F.M.F.; Croda, J.; Formagio, A.S.N. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J. Ethnopharmacol. 2016, 192, 510–515. [Google Scholar] [PubMed]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, O.; Zhou, F.; Li, Q.; Wu, Z.; Zheng, Y. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res. 2015, 40, 1520–1525. [Google Scholar] [CrossRef]
- Park, S.-N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.-K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar] [CrossRef]
- Carson, C.; Riley, T. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Pattnaik, S.; Subramanyam, V.R.; Bapaji, M.; Kole, C.R. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997, 89, 39–46. [Google Scholar]
- Pitarokili, D.; Couladis, M.; Petsikos-Panayotarou, N.; Tzakou, O. Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J. Agric. Food Chem. 2002, 50, 6688–6691. [Google Scholar] [CrossRef]
- Iwasaki, K.; Zheng, Y.-W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol. 2016, 22, 9765–9774. [Google Scholar] [CrossRef]
- Park, H.; Seol, G.H.; Ryu, S.; Choi, I.-Y. Neuroprotective effects of (−)-linalool against oxygen-glucose deprivation-induced neuronal injury. Arch. Pharm. Res. 2016, 39, 555–564. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Deyno, S.; Mtewa, A.G.; Abebe, A.; Hymete, A.; Makonnen, E.; Bazira, J.; Alele, P.E. Essential oils as topical anti-infective agents: A systematic review and meta-analysis. Complement. Ther. Med. 2019, 47, 102224. [Google Scholar] [CrossRef]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Alternat. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P.; Molle, V. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Moo, C.-L.; Yang, S.-K.; Osman, M.-A.; Yuswan, M.H.; Loh, J.-Y.; Lim, W.-M.; Swee-Hua-Erin, L.; Lai, K.-S. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef]
- Van Zyl, R.L.; Seatlholo, S.T.; Van Vuuren, S.F.; Viljoen, A.M. The biological activities of 20 nature identical essential oil constituents. J. Essent. Oil Res. 2006, 18, 129–133. [Google Scholar] [CrossRef]
- Duman, A.D.; Telci, I.; Dayisoylu, K.S.; Digrak, M.; Demirtas, İ.; Alma, M.H. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties. Nat. Prod. Commun. 2010, 5, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Ireland, B.; Hibbert, D.; Goldsack, R.; Doran, J.; Brophy, J. Chemical variation in the leaf essential oil of Melaleuca quinquenervia (Cav.) ST Blake. Biochem. Syst. Ecol. 2002, 30, 457–470. [Google Scholar] [CrossRef]
- Barbouchi, M.; Benzidia, B. Chemical variability in essential oils isolated from roots, stems, leaves and flowers of three Ruta species growing in Morocco. J. King Saud Univ. Sci. 2021, 33, 101634. [Google Scholar] [CrossRef]
- Probst, I.; Sforcin, J.; VLM, R.; Fernandes, A.; Fernandes Júnior, A. Antimicrobial activity of propolis and essential oils and synergism between these natural products. J. Venom. Anim. Toxins Incl. Trop. Dis. 2011, 17, 159–167. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J. Food Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol. Rev. 2019, 43, 490–516. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Mohdaly, A.A.A.; Ramadan, M.F. Characteristics, composition and functional properties of seeds, seed cake and seed oil from different Brassica carinata genotypes. Food Bioscience 2022, 48, 100752. [Google Scholar]
- Santos, C.C.d.M.P.; Salvadori, M.S.; Mota, V.G.; Costa, L.M.; de Almeida, A.A.C.; de Oliveira, G.A.L.; Costa, J.P.; de Sousa, D.P.; de Freitas, R.M.; de Almeida, R.N. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J. 2013, 2013, 949452. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.; Dirsch, V.; Supuran, C. International natural product Sciences taskforce. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Abu Zahra, H.; Ammar, R.B.; Mohamed, M.E.; Ibrahim, H.-I.M. Beta-caryophyllene enhances the anti-tumor activity of cisplatin in lung cancer cell lines through regulating cell cycle and apoptosis signaling molecules. Molecules 2022, 27, 8354. [Google Scholar] [CrossRef]
- da Silva Rivas, A.C.; Lopes, P.M.; de Azevedo Barros, M.M.; Costa Machado, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar]
- Cascaes, M.M.; Carneiro, O.d.S.; Nascimento, L.D.d.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.d.A. Essential oils from Annonaceae species from Brazil: A systematic review of their phytochemistry, and biological activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 38–44. [Google Scholar] [CrossRef]
- d’Alessio, P.A.; Ostan, R.; Bisson, J.-F.; Schulzke, J.D.; Ursini, M.V.; Béné, M.C. Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013, 92, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Jha, N.K.; Meeran, M.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective potential of limonene and limonene containing natural products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jacob, J.A.; Loganathachetti, D.S.; Nainangu, P.; Chen, B. β-Elemene: Mechanistic studies on cancer cell interaction and its chemosensitization effect. Front. Pharmacol. 2017, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Qu, J.; Xu, L.; Hou, K.; Zhang, J.; Qu, X.; Liu, Y. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 2011, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 1–47. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry (accessed on 18 March 2023).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 978-1-68440-220-5. [Google Scholar]
- Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and simplified method for drug combination studies by checkerboard assay. MethodsX 2021, 8, 101543. [Google Scholar] [CrossRef]
- Hogg, G.; Barr, J.; Webb, C. In-vitro activity of the combination of colistin and rifampicin against multidrug-resistant strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 1998, 41, 494–495. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-prot095505. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Compound | RI a | RI b | % (Leaves) | % (Stems) |
---|---|---|---|---|---|
1 | β-Pinene | 975 | 980 | 2.2 | - |
2 | Limonene | 1028 | 1029 | 1.0 | - |
3 | p-Cymenene | 1089 | 1089 | 0.6 | 0.6 |
4 | Linalool | 1099 | 1095 | 4.1 | 11.8 |
5 | α-Campholenal | 1126 | 1122 | 1.3 | 0.6 |
6 | cis-Limonene oxide | 1132 | 1132 | - | 1.8 |
7 | trans-Pinocarveol | 1140 | 1139 | - | 0.6 |
8 | cis-Verbenol | 1141 | 1141 | 0.9 | - |
9 | trans-Verbenol | 1145 | 1144 | 4.9 | - |
10 | 1,4-Dimethyl-4-acetylcyclohexene | 1151 | 1152 | - | 1.2 |
11 | Pinocarvone | 1163 | 1164 | 1.4 | 1.2 |
12 | Terpinen-4-ol | 1178 | 1177 | 0.7 | 1.0 |
13 | p-Cymen-8-ol | 1185 | 1182 | 0.5 | 0.8 |
14 | α-Terpineol | 1191 | 1189 | 0.8 | 3.1 |
15 | Myrtenol | 1197 | 1195 | 2.3 | 1.3 |
16 | n-Decanal | 1203 | 1201 | - | 1.2 |
17 | Verbenone | 1210 | 1205 | 0.9 | - |
18 | β-Cyclocitral | 1222 | 1219 | 1.4 | 1.6 |
19 | Nerol | 1228 | 1229 | - | 1.2 |
20 | Geraniol | 1253 | 1252 | 0.7 | 1.9 |
21 | β-Cyclohomocitral | 1259 | 1261 | 0.2 | - |
22 | (E,E)-2,4-Decadienal | 1315 | 1315 | - | 0.7 |
23 | Dehydro-ar-ionene | 1355 | 1355 | 0.3 | 0.4 |
24 | Eugenol | 1358 | 1359 | 0.5 | - |
25 | Copaene | 1378 | 1376 | 2.3 | 1.0 |
26 | β-Damascenone | 1385 | 1384 | 1.3 | 1.3 |
27 | β-Elemene | 1393 | 1391 | 1.1 | 0.7 |
28 | (Z)-Caryophyllene | 1410 | 1408 | 0.4 | 0.2 |
29 | α-trans-Bergamotene | 1417 | 1432 | 0.6 | - |
30 | (E)-Caryophyllene | 1424 | 1419 | 17.3 | 10.8 |
31 | (E)-α-Ionone | 1434 | 1434 | 0.5 | - |
32 | α-Guaiene | 1441 | 1439 | 4.7 | 3.1 |
33 | Geranyl acetone | 1451 | 1453 | 0.4 | 0.8 |
34 | Humulene | 1458 | 1454 | 1.4 | 0.9 |
35 | 2,4,6-Trimethoxy-toluene | 1471 | 1482 | 1.0 | 0.3 |
36 | β-Chamigrene | 1478 | 1477 | 2.2 | 1.2 |
37 | (E)-β-Ionone | 1487 | 1487 | 2.5 | 3.3 |
38 | β-Selinene | 1492 | 1498 | 0.7 | 0.5 |
39 | Aciphyllene | 1501 | 1501 | - | 0.3 |
40 | α-Bulnesene | 1508 | 1509 | 1.2 | 0.8 |
41 | δ-Cadinene | 1526 | 1524 | 2.0 | 0.9 |
42 | α-Calacorene | 1547 | 1544 | 0.5 | - |
43 | Diepicedrene-1-oxide | 1557 | 1551 | 0.5 | 0.4 |
44 | (E)-Nerolidol | 1563 | 1563 | 1.3 | 2.0 |
45 | (3Z)-Hexenyl benzoate | 1571 | 1566 | 0.8 | 0.7 |
46 | Caryophyllene oxide | 1578 | 1582 | - | 0.4 |
47 | Viridiflorol | 1589 | 1592 | 8.1 | 9.5 |
48 | Tetradecanal | 1609 | 1611 | - | 0.4 |
49 | Humulene epoxide II | 1610 | 1608 | 0.6 | - |
50 | Junenol | 1614 | 1618 | 0.5 | 0.5 |
51 | Caryophylladienol II | 1641 | 1639 | 0.3 | 0.4 |
52 | Zizanol | 1663 | 1677 | 0.4 | 0.5 |
53 | Bulnesol | 1676 | 1671 | 1.4 | 1.1 |
54 | Cryptofauronol | 1692 | 1713 | 0.3 | 0.3 |
55 | Pentadecanal | 1711 | 1715 | 3.4 | 1.6 |
56 | Tetradecanoic acid | 1758 | 1758 | - | 0.6 |
57 | Benzyl Benzoate | 1767 | 1760 | 0.3 | 0.7 |
58 | (E)-Isovalencenol | 1791 | 1793 | 0.4 | - |
59 | β-Costol | 1792 | 1788 | - | 0.6 |
60 | Hexahydrofarnesyl acetone | 1841 | 1843 | 1.9 | 1.8 |
61 | n-Hexadecanol | 1876 | 1874 | 0.3 | - |
62 | (5E,9E)-Farnesyl acetone | 1915 | 1913 | 0.5 | 1.1 |
63 | Methyl palmitate | 1921 | 1921 | - | 0.6 |
64 | Isophytol | 1944 | 1946 | 0.1 | 0.4 |
65 | Hexadecanoic acid | 1956 | 1959 | 0.2 | 6.3 |
66 | n-Octadecanol | 2079 | 2077 | 3.5 | 2.9 |
67 | Phytol | 2109 | 1943 | 5.2 | 7.0 |
68 | Oleic Acid | 2139 | 2141 | 0.3 | 0.7 |
Monoterpene hydrocarbons | 4.1 | 1.0 | |||
Oxygenated monoterpenes | 21.0 | 32.9 | |||
Sesquiterpene hydrocarbons | 34.4 | 20.4 | |||
Oxygenated sesquiterpenes | 16.2 | 18.6 | |||
Oxygenated diterpenes | 5.3 | 7.4 | |||
Total identified | 95.1 | 97.6 |
Strain | MIC (mg/mL) | MBC (mg/mL) | ||||
---|---|---|---|---|---|---|
LEOs | SEOs | Ch | LEOs | SEOs | Ch | |
Gram-positive | ||||||
B. subtilis ATCC 6633 | 0.312 | 0.312 | 0.004 | 0.312 | 0.625 | 0.008 |
S. aureus ATCC 6538 | 0.312 | 0.625 | 0.004 | 0.312 | 0.625 | 0.016 |
Gram-negative | ||||||
E. coli ATCC 25922 | 1.250 | 1.250 | 0.008 | 2.500 | 2.500 | 0.031 |
P. aeruginosa ATCC 27853 | 1.250 | 2.500 | 0.063 | 2.500 | 2.500 | 0.250 |
Strain | Sample | MICa (μg/mL) | MICc (μg/mL) | FICI |
---|---|---|---|---|
Bacillus subtilis | LEOs | 312.50 | 9.77 | 0.28 (S) |
Chl | 4.00 | 1.00 | ||
SEOs | 312.50 | 78.13 | 0.50 (S) | |
Chl | 4.00 | 1.00 | ||
Staphylococcus aureus | LEOs | 312.50 | 19.53 | 0.19 (S) |
Chl | 4.00 | 0.50 | ||
SEOs | 625.00 | 78.13 | 0.38 (S) | |
Chl | 4.00 | 1.00 | ||
Escherichia coli | LEOs | 1250.00 | 156.25 | 0.25 (S) |
Chl | 8.00 | 1.00 | ||
SEOs | 1250.00 | 312.50 | 0.38 (S) | |
Chl | 8.00 | 1.00 | ||
Pseudomonas aeruginosa | LEOs | 1250.00 | 78.13 | 0.19 (S) |
Chl | 62.50 | 8.00 | ||
SEOs | 2500.00 | 156.25 | 0.32 (S) | |
Chl | 62.50 | 16.00 |
Strain | Sample | MICa (μg/mL) | MICc (μg/mL) | FICI |
---|---|---|---|---|
Bacillus subtilis | LEOs | 312.50 | 19.53 | 0.19 (S) |
SM | 2.00 | 0.25 | ||
SEOs | 312.50 | 9.77 | 0.16 (S) | |
SM | 2.00 | 0.25 | ||
Staphylococcus aureus | LEOs | 312.50 | 9.77 | 0.10 (S) |
SM | 2.00 | 0.13 | ||
SEOs | 625.00 | 39.10 | 0.19 (S) | |
SM | 2.00 | 0.25 | ||
Escherichia coli | LEOs | 1250.00 | 39.10 | 0.16 (S) |
SM | 4.00 | 0.50 | ||
SEOs | 1250.00 | 312.50 | 0.38 (S) | |
SM | 4.00 | 0.50 | ||
Pseudomonas aeruginosa | LEOs | 1250.00 | 78.13 | 0.13 (S) |
SM | 4.00 | 0.25 | ||
SEOs | 2500.00 | 156.25 | 0.19 (S) | |
SM | 4.00 | 0.50 |
Test Sample | DPPH IC50 (mg/mL) a | ABTS IC50 (mg/mL) a | FRAP (μmol Trolox × g−1) |
---|---|---|---|
LEOs | 1.35 ± 0.06 a | 0.11 ± 0.01 a | 103.78 ± 10.23 a |
SEOs | 1.66 ± 0.05 a | 0.19 ± 0.01 b | 57.75 ± 7.63 b |
BHT * | (8.00 ± 0.38) × 10−3 b | (6.00 ± 0.38) × 10−3 c | |
Trolox * | (6.00 ± 0.46) × 10−3 c | (4.00 ± 0.23) × 10−3 d |
Sample | 24 h | 48 h | 72 h | |
---|---|---|---|---|
HepG2 | LEOs | 60.37 ± 2.17 a | 36.05 ± 4.89 a | 23.90 ± 2.00 a |
SEOs | 74.09 ± 8.17 b | 51.91 ± 2.54 b | 34.82 ± 3.97 b | |
Doxorubicin | 2.16 ± 0.16 c | 1.68 ± 0.08 c | 1.43 ± 0.07 c | |
MCF-7 | LEOs | 40.83 ± 4.48 a | 11.92 ± 1.97 a | 10.04 ± 1.21 a |
SEOs | 51.30 ± 3.58 b | 25.01 ± 0.98 b | 15.89 ± 0.30 b | |
Doxorubicin | 1.56 ± 0.03 c | 1.34 ± 0.05 c | 1.19 ± 0.08 c | |
LO2 | LEOs | 50.28 ± 0.61 a | 40.32 ± 1.53 a | 31.33 ± 0.73 a |
SEOs | 64.31 ± 2.45 b | 43.12 ± 1.18 b | 38.73 ± 3.72 b | |
Doxorubicin | 1.80 ± 0.29 c | 0.82 ± 0.04 c | 0.55 ± 0.12 c | |
A-549 | LEOs | 57.60 ± 4.85 a | 42.52 ± 2.58 a | 33.19 ± 2.85 a |
SEOs | 68.18 ± 6.47 a | 53.76 ± 5.15 b | 48.66 ± 6.54 b | |
Doxorubicin | 1.64 ± 0.07 b | 1.41 ± 0.11 c | 0.93 ± 0.01 c | |
HCT-116 | LEOs | 46.82 ± 5.45 a | 35.54 ± 2.36 a | 33.81 ± 1.00 a |
SEOs | 67.38 ± 2.98 b | 53.76 ± 7.30 b | 44.92 ± 4.08 b | |
Doxorubicin | 1.33 ± 0.16 c | 0.95 ± 0.05 c | 0.88 ± 0.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Xu, F.; Qiu, S.; Sun, C.; Lai, P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules 2024, 29, 3552. https://doi.org/10.3390/molecules29153552
Feng L, Xu F, Qiu S, Sun C, Lai P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules. 2024; 29(15):3552. https://doi.org/10.3390/molecules29153552
Chicago/Turabian StyleFeng, Linjie, Fan Xu, Shu Qiu, Chengqi Sun, and Pengxiang Lai. 2024. "Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L." Molecules 29, no. 15: 3552. https://doi.org/10.3390/molecules29153552
APA StyleFeng, L., Xu, F., Qiu, S., Sun, C., & Lai, P. (2024). Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules, 29(15), 3552. https://doi.org/10.3390/molecules29153552