Chemical Composition and Nutritive Value of Sea Buckthorn Leaves
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Chemical Analyses
3.2.1. Proximate Composition
3.2.2. Amino Acids
3.2.3. Estimation of Nutritive Values of SBT Protein
3.2.4. Dietary Fiber Fractions
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binder, E.V. Alternative Food and Feed Products. In Proceedings of the First FAO/WHO/AU International Food Safety Conference, Addis Ababa, Ethiopia, 12–13 February 2019; p. IFSC-1/19/TS2.5. Available online: https://www.who.int/docs/default-source/resources/bp-alternative-food-and-feed-products.pdf (accessed on 3 June 2024).
- Andersone, A.; Janceva, S.; Lauberte, L.; Zaharova, N.; Chervenkov, M.; Jurkjane, V.; Jashina, L.; Rieksts, G.; Telysheva, G. Granulated Animal Feed and Fuel Based on Sea Buckthorn Agro-Waste Biomass for Sustainable Berry Production. Sustainability 2023, 15, 11152. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Khanam, F.; Mathivanan, G.P.; Vetter, S.; Hussain, S.G.; Pilat, A.L.; Shahrin, S.; Hossain, M.K.; Sarker, N.R.; Krupnik, T.J. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Sci. Total Environ. 2021, 786, 147344. [Google Scholar] [CrossRef]
- Gâtlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef] [PubMed]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Pundir, S.; Garg, P.; Dviwedi, A.; Ali, A.; Kapoor, V.K.; Kapoor, D.; Kulshrestha, S.; Ranjan Lal, U.; Negi, P. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review. J. Ethnopharmacol. 2021, 266, 113434. [Google Scholar] [CrossRef]
- Chen, A.; Feng, X.; Dorjsuren, B.; Chimedtseren, C.; Damda, T.A.; Zhang, C. Traditional food, modern food and nutritional value of Sea buckthorn (Hippophae rhamnoides L.): A review. J. Future Foods 2023, 3, 191–205. [Google Scholar] [CrossRef]
- International Seabuckthrn Association. Available online: http://www.isahome.net/ (accessed on 1 May 2024).
- Bayır, H.; Şimşek, B.İ.; Bayır, Y. Hippophae rhamnoides L. Botanical, Medicinal, Traditional, and Current Use of Plant and Fruits: A Review. New Trend Med. Sci. 2024, 5, 35–44. [Google Scholar] [CrossRef]
- Dannenberger, D.; Tuchscherer, M.; Nürnberg, G.; Schmicke, M.; Kanitz, E. Sea Buckthorn pomace supplementation in the diet of growing pigs-effects on fatty acid metabolism, HPA activity and immune status. Int. J. Mol. Sci. 2018, 19, 596. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, T.; Cao, Y.; Deng, B.; Zhang, J.; Zhao, J. Effects of dietary sea buckthorn pomace supplementation on skeletal muscle mass and meat quality in lambs. Meat Sci. 2020, 166, 108141. [Google Scholar] [CrossRef]
- Mei, D.; Ma, X.; Fu, F.; Cao, F. Research Status and Development Prospects of Sea buckthorn (Hippophae rhamnoides L.) Resources in China. Forests 2023, 14, 2461. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Yang, B.; Dong, Y.; Wang, B.; Wang, J.; Kallio, H.P. Effects of sea buckthorn (Hippophae rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. Fitoterapia 2002, 73, 644–650. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6761–6782. [Google Scholar] [CrossRef]
- Hamieau, M.; Loulergue, P.; Szydłowska-Czerniak, A. Green Solvent Extraction of Antioxidants from Herbs and Agro-Food Wastes: Optimization and Capacity Determination. Appl. Sci. 2024, 14, 2936. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef] [PubMed]
- Skalski, B.; Kontek, B.; Lis, B.; Olas, B.; Grabarczyk, Ł.; Stochmal, A.; Żuchowski, J. Biological properties of Elaeagnus rhamnoides (L.) A. Nelson twig and leaf extracts. BMC Complement. Altern. Med. 2019, 19, 148. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Stangherlin, I.D.C. Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing. Technol. Forecast. Soc. 2021, 168, 120749. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Panaite, T.D.; Varzaru, I.; Oancea, A.G.; Turcu, R.P.; Vlaicu, P.A. Effects of supplementing sea buckthorn leaves (Hippophae rhamnoides L.) and chromium (III) in broiler diet on the nutritional quality and lipid oxidative stability of meat. Antioxidants 2022, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Gradt, I.; Kühn, S.; Mörsel, J.T.; Zvaigzne, G. Chemical composition of sea buckthorn leaves, branches and bark. In: Proceedings of the Latvian Academy of Sciences. Sect. B Nat. Exact Appl. Sci. 2017, 71, 211–216. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A. The nutritional value of leaves of selected berry species. Sci. Agr. 2016, 74, 405–410. [Google Scholar] [CrossRef]
- Stobdan, T.; Korekar, G.; Srivastava, R.B. Nutritional Attributes and Health Application of Seabuckthorn (Hippophae rhamnoides L.)—A Review. Curr. Nutr. Food Sci. 2013, 9, 151–165. [Google Scholar] [CrossRef]
- Jaroszewska, A.; Biel, W. Chemical composition and antioxidant activity of leaves of mycorrhized sea-buckthorn (Hippophae rhamnoides L.). Chil. J. Agric. Res. 2017, 77, 155–162. [Google Scholar] [CrossRef]
- Li, T.S.C.; Wardle, D. Effect of harvest period on the protein content in sea buckthorn leaves. Can. J. Plant Sci. 2003, 83, 409–410. [Google Scholar] [CrossRef]
- Christaki, E. Hippophae Rhamnoides L. (Sea Buckthorn): A potential source of nutraceuticals. Food Public Health 2012, 2, 69–72. [Google Scholar] [CrossRef]
- Naumenko, L.; Popova, N. Bioactive substances of sea buckthorn leaves. NJD-iScience 2020, 43–41, 38–41. [Google Scholar]
- Ye, S.X.; Shah, B.R.; Li, J.; Liang, H.S.; Zhan, F.C.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Bośko, P.; Biel, W.; Smetanska, I.; Witkowicz, R.; Piątkowska, E. Sea buckthorn leaves as a potential source of antioxidant substances. Appl. Sci. 2024, 14, 5038. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Lauberte, L.; Zaharova, N.; Telysheva, G.; Krasilnikova, J.; Rieksts, G. A Comparative assessment of sea buckthorn (Hippophae rhamnoides L.) pruning waste as a potential source of serotonin. BioResources 2024, 19, 886. [Google Scholar] [CrossRef]
- Liang, T.A.N.; Jing, Z.H.A.O.; Jia-lin, M.A.; Tian, J.I.; Qi, D.; Jian-wei, S.H.E.N. Analysis of nutritional compositions and nutritional quality evaluation in different parts of yushu hippophae (Hippophae rhamnoides L. subsp. sinensis). NPRD 2018, 30, 807. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophae) lipids. Trends Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical composition and biological activity of berries and leaves from four romanian sea buckthorn (Hippophae Rhamnoides L.) varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Saris, W.H.; Brouns, F.; Halliday, D.; Wagenmakers, J.M. Effects of carbohydrate (CHO) and fat supplementation on CHO metabolism during prolonged exercise. Metabolism 1996, 45, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Scanes, C.G. Carbohydrate metabolism. In Sturkie’s Avian Physiology; Colin, G.S., Sami, D., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 613–645. [Google Scholar] [CrossRef]
- Sheikh, G.G.; Majeed, G.; Ajaz, A.G. Nutritional evaluation of some tree leaves, feeds and fodders of Ladakh. Indian J. Anim. Nutr. 2011, 28, 427–431. [Google Scholar]
- Djordjević, M.; Djordjević, M.; Šoronja-Simović, D.; Nikolić, I.; Šereš, Z. Delving into the role of dietary fiber in gluten-free bread formulations: Integrating fundamental rheological, technological, sensory, and nutritional aspects. Polysaccharides 2022, 3, 59–82. [Google Scholar] [CrossRef]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Farías-Kovac, C.; Nicodemus, N.; Delgado, R.; Ocasio-Vega, C.; Noboa, T.; Abdelrasoul, R.A.-S.; Carabaño, R.; García, J. Effect of Dietary Insoluble and Soluble Fibre on growth performance, digestibility, and nitrogen, energy, and mineral retention efficiency in growing rabbits. Animals 2020, 10, 1346. [Google Scholar] [CrossRef]
- Hetland, H.; Choct, M.; Svihus, B. Role of insoluble non-starch polysaccharides in poultry nutrition. Worlds Poult. Sci. J. 2004, 60, 415–422. [Google Scholar] [CrossRef]
- Kayser, E.; Finet, S.E.; de Godoy, M.R. The role of carbohydrates in canine and feline nutrition. Anim. Front. 2024, 14, 28–37. [Google Scholar] [CrossRef]
- Deehan, E.C.; Mocanu, V.; Madsen, K.L. Effects of dietary fibre on metabolic health and obesity. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 301–318. [Google Scholar] [CrossRef]
- Sadeghi, A.; Toghyani, M.; Gheisari, A. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poult. Sci. 2015, 94, 2734–2743. [Google Scholar] [CrossRef]
- Mohanto, K.; Aye, A.T. An analysis of health risk and potential elimination strategies of anti-nutritional factors in cereals and legumes. Asian Food Sci. J. 2024, 23, 44–51. [Google Scholar] [CrossRef]
- Roomi, I.; Khan, T.; Ali, S.; Naqvi, A.N. Investigations into chemical composition and in-sacco degradability of sea-buckthorn leaves for ruminant livestock in Gilgit-Baltistan, Pakistan. JBES 2015, 7, 97–102. [Google Scholar]
- Azmir, S.; Ferdousi, M.; Liu, Y.; Adam, S.; Siahmansur, T.; Ponirakis, G.; Marshall, A.; Petropoulos, J.N.; Ho, J.H.; Syed, A.A.; et al. The role of abnormalities of lipoproteins and HDL functionality in small fibre dysfunction in people with severe obesity. Sci. Rep. 2021, 11, 12573. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.-Y.; Lee, J.; Kim, Y.J.; Do, A.; Choi, J.-Y.; Cho, S.-J.; Jung, U.J.; Lee, M.-K.; Park, Y.B.; Choi, M.-S. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves ameliorates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obesity. Nutrients 2017, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yin, Y.; Wu, G. Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Exp. Biol. Med. 2015, 240, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, essential amino acids. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Pomeranz, Y.; Meloan, C.E. Carbohydrates. In Food Analysis: Theory and Practice; Pomeranz, Y., Meloan, C.E., Eds.; Springer: Boston, MA, USA, 1994; pp. 625–677. ISBN 978-1-4615-6998-5. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Block, R.J.; Mitchell, H.H. The correlation of the amino acid composition of proteins with their nutritive value. Nutr. Abstr. Rev. 1946, 16, 249. [Google Scholar]
- FAO/WHO. Protein quality evaluation. Report of a Joint FAO–WHO Expert Consultation. In Food and Nutrition 51; FAO: Rome, Italy, 1991. [Google Scholar]
- FAO/WHO/UNU. Energy and Protein Requirements. Report of a Joint FAO-WHO Nutritional Meeting; Technical Report Series 273; FAO/WHO/UNU: Geneva, Switzerland, 1985. [Google Scholar]
- Hidvégi, M.; Béké, F. Mathematical modeling of protein quality from amino acid composition. In Proceedings of International Association of Cereal Chemistry Symposium; Lásztity, R., Hidvégi, M., Eds.; Akademiai Kiado: Budapest, Hungary, 1984; pp. 205–286. [Google Scholar]
- Oser, B.L. An integrated essential amino acid index for predicting biological value of proteins. In Protein and Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: New York, NY, USA, 1959; pp. 295–311. [Google Scholar]
- Oser, B.L. Method for integrating essential amino acid content in the nutritional evaluation of protein. J. Am. Diet. Assoc. 1951, 27, 396. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- TIBCO Software. TIBCO. Available online: https://www.scribd.com/document/321061529/STATISTICA-Electronic-Manual (accessed on 30 March 2024).
Factor | Factor Level | DM 2 | CP | EE | CF | CA | NFE |
---|---|---|---|---|---|---|---|
g/100 g | g/100 g DM | ||||||
Year | 2014 | 95.14 b 3 | 20.77 c | 6.87 c | 10.47 a | 5.76 c | 56.14 a |
2015 | 95.35 c | 15.66 a | 5.35 b | 10.50 a | 4.06 a | 64.43 c | |
2016 | 92.98 a | 18.34 b | 5.00 a | 11.90 b | 5.21 b | 59.55 b | |
Cultivar | Ascola | 94.22 a | 18.76 c | 5.29 a | 12.14 c | 5.19 b | 58.61 a |
Hergo | 94.22 a | 17.18 a | 5.84 b | 10.21 b | 4.69 a | 61.49 b | |
Habego | 94.65 b | 19.08 c | 5.97 b | 11.88 c | 5.09 b | 57.97 a | |
Leikora | 94.86 c | 18.00 b | 5.84 b | 9.59 a | 5.07 b | 61.49 b |
Factor | Factor Level | NDF 3 | ADF | ADL | HCEL | CEL |
---|---|---|---|---|---|---|
Year | 2014 | 31.61 c 4 | 20.81 c | 6.18 b | 10.80 b | 14.64 c |
2015 | 25.61 b | 18.63 b | 6.55 c | 6.99 a | 12.08 b | |
2016 | 21.06 a | 13.79 a | 5.09 a | 7.28 a | 8.70 a | |
Cultivar | Ascola | 27.37 c | 18.90 b | 6.02 a | 8.47 a | 12.88 b |
Hergo | 24.38 a | 15.92 a | 5.75 a | 8.47 a | 10.17 a | |
Habego | 25.97 b | 18.47 b | 6.08 a | 7.50 a | 12.38 b | |
Leikora | 26.67 b c | 17.68 b | 5.90 a | 8.98 a | 11.78 b |
Factor | Factor Level | Lysine | Sulfur-Containing Amino Acids | Threonine | Isoleucine | Tryptophan | Valine | Leucine | Histidine | Aromatic Amino Acid | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methionine | Cystine | Phenyloalanine | Tyrosine | |||||||||
Year | 2014 | 5.24 b 2 | 7.93 a | 1.22 b | 4.49 b | 3.62 b | 0.27 a | 4.37 b | 7.19 c | 2.02 c | 4.18 b | 3.00 a |
2015 | 3.90 a | 7.62 a | 0.92 a | 3.07 a | 2.83 a | 0.42 c | 3.66 a | 4.81 a | 1.17 a | 3.34 a | 2.78 a | |
2016 | 4.88 b | 8.07 a | 1.23 b | 3.97 b | 3.14 a b | 0.37 b | 4.15 a b | 6.18 b | 1.93 a b | 3.86 b | 2.93 a | |
Cultivar | Ascola | 4.70 a | 7.86 a | 1.19 a b | 3.93 a | 3.45 a | 0.31 a | 4.22 a | 6.18 a | 2.09 a | 3.91 a | 3.30 b |
Hergo | 4.51 a | 7.69 a | 0.91 a | 3.73 a | 2.81 a | 0.45 b | 3.99 a | 5.91 a | 1.82 a | 3.76 a | 2.25 a | |
Habego | 4.82 a | 8.25 a | 1.28 b | 4.16 a | 3.24 a | 0.33 a | 4.04 a | 6.60 a | 1.88 a | 3.82 a | 3.26 b | |
Leikora | 4.66 a | 7.70 a | 1.10 a b | 3.55 a | 3.28 a | 0.31 a | 3.99 a | 5.55 a | 1.82 a | 3.68 a | 2.80 a b |
Factor | Factor Level | Aspartic Acid | Serine | Glutamic Acid | Proline | Glycine | Alanine | Arginine |
---|---|---|---|---|---|---|---|---|
Year | 2014 | 10.55 c 2 | 4.12 c | 8.87 a | 4.79 c | 5.31 c | 2.87 a | 4.26 a |
2015 | 6.19 a | 2.88 a | 8.88 a | 3.22 a | 3.52 a | 2.91 a | 4.65 a | |
2016 | 8.39 b | 3.50 b | 9.00 a | 4.00 b | 4.43 b | 2.93 a | 4.45 a | |
Cultivar | Ascola | 8.35 a | 3.37 a b | 9.30 a | 3.51 a | 4.41 a b | 2.79 a | 4.37 a |
Hergo | 8.07 a | 3.73 b c | 8.63 a | 4.34 b | 4.42 a b | 3.02 a | 5.01 a | |
Habego | 9.02 b | 4.01 c | 8.46 a | 4.03 a b | 4.78 b | 3.07 a | 4.31 a | |
Leikora | 8.08 a | 2.89 a | 9.29 a | 4.14 a b | 4.06 a | 2.73 a | 4.13 a |
Factor | Factor Level | EAAI 2 MH 5 | EAAI WE 6 | CS 3 MH | CS WE | EAAs 4 MH | EAAs WE |
---|---|---|---|---|---|---|---|
Year | 2014 | 41.51 b 7 | 43.52 b | 26.87 a | 15.81 a | 80.67 b | 66.96 b |
2015 | 33.35 a | 35.11 a | 42.02 c | 24.72 c | 72.45 a | 57.94 a | |
2016 | 38.77 b | 40.70 b | 34.43 b | 20.82 b | 80.11 b | 64.75 b | |
Cultivar | Ascola | 39.05 a | 41.14 a | 30.79 a | 18.11 a | 78.37 a | 64.90 a |
Hergo | 36.03 a | 37.84 a | 42.70 b | 25.87 b | 77.86 a | 62.27 a | |
Habego | 39.80 a | 41.68 a | 33.17 a | 19.51 a | 78.85 a | 64.71 a | |
Leikora | 36.63 a | 38.45 a | 31.12 a | 18.30 a | 75.91 a | 60.99 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bośko, P.; Biel, W.; Witkowicz, R.; Piątkowska, E. Chemical Composition and Nutritive Value of Sea Buckthorn Leaves. Molecules 2024, 29, 3550. https://doi.org/10.3390/molecules29153550
Bośko P, Biel W, Witkowicz R, Piątkowska E. Chemical Composition and Nutritive Value of Sea Buckthorn Leaves. Molecules. 2024; 29(15):3550. https://doi.org/10.3390/molecules29153550
Chicago/Turabian StyleBośko, Paulina, Wioletta Biel, Robert Witkowicz, and Ewa Piątkowska. 2024. "Chemical Composition and Nutritive Value of Sea Buckthorn Leaves" Molecules 29, no. 15: 3550. https://doi.org/10.3390/molecules29153550
APA StyleBośko, P., Biel, W., Witkowicz, R., & Piątkowska, E. (2024). Chemical Composition and Nutritive Value of Sea Buckthorn Leaves. Molecules, 29(15), 3550. https://doi.org/10.3390/molecules29153550