Development and Optimization Method for Determination of the Strawberries’ Aroma Profile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fiber and Column Polarity Effect
2.2. Sample Weight Influence
2.3. Ionic Strength Influence
2.4. Temperature and Time Influence
2.4.1. Incubation Temperature
2.4.2. Incubation Time
2.4.3. Extraction Time
2.5. Area Normalization
3. Materials and Methods
3.1. Plant Material
3.2. GC-MS Analysis
3.3. SPME Analysis
3.4. Sample Preparation
3.5. Graphical Presentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kafkas, E.; Kafkas, S.; Koch-Dean, M.; Schwab, W.; Larkov, O.; Lavid, N.; Ravid, U.; Lewinsohn, E. Comparison of Methodologies for the Identification of Aroma Compounds in Strawberry. Turk. J. Agric. For. 2005, 29, 383–390. [Google Scholar]
- Flavourings | EFSA. Available online: https://www.efsa.europa.eu/en/topics/topic/flavourings (accessed on 13 June 2024).
- (PDF) The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage. Available online: https://www.researchgate.net/publication/266228165_The_Composition_of_Strawberry_Aroma_Is_Influenced_by_Cultivar_Maturity_and_Storage (accessed on 13 June 2024).
- Strawberry Flavour Excipient | Uses, Suppliers, and Specifications. PharmaCentral Mater. Knowl. Platf. Available online: https://pharmacentral.com/product/strawberry-flavour-pharmaceutical-grade/ (accessed on 13 June 2024).
- Annex to the European Commission Guideline on “Excipients in the Labelling and Package Leaflet of Medicinal Products for Human Use” | European Medicines Agency. Available online: https://www.ema.europa.eu/en/annex-european-commission-guideline-excipients-labelling-package-leaflet-medicinal-products-human-use (accessed on 13 June 2024).
- Strawberry: What Is It and Where Is It Used? Available online: https://www.drugs.com/inactive/strawberry-116.html (accessed on 13 June 2024).
- Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The Roles of Strawberry and Honey Phytochemicals on Human Health: A Possible Clue on the Molecular Mechanisms Involved in the Prevention of Oxidative Stress and Inflammation. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 86, 153170. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Strawberry: Composition, Nutritional Quality, and Impact on Human Health. Nutr. Burbank Los Angel. Cty. Calif 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- STRAWBERRY: Overview, Uses, Side Effects, Precautions, Interactions, Dosing and Reviews. Available online: https://www.webmd.com/vitamins/ai/ingredientmono-362/strawberry (accessed on 13 June 2024).
- Mcfadden, W.H.; Teranishi, R.; Corse, J.; Black, D.R.; Mon, T.R. Volatiles from strawberries. II. combined mass spectrometry and gas chromatography on complex mixtures. J. Chromatogr. 1965, 18, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Schieberle, P.; Hofmann, T. Evaluation of the Character Impact Odorants in Fresh Strawberry Juice by Quantitative Measurements and Sensory Studies on Model Mixtures. J. Agric. Food Chem. 1997, 45, 227–232. [Google Scholar] [CrossRef]
- Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of Selected Aroma-Active Compounds in Strawberries by Headspace Solid-Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis. J. Food Sci. 2007, 72, S487–S496. [Google Scholar] [CrossRef] [PubMed]
- Abouelenein, D.; Mustafa, A.M.; Angeloni, S.; Borsetta, G.; Vittori, S.; Maggi, F.; Sagratini, G.; Caprioli, G. Influence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams. Molecules 2021, 26, 4153. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Kecke, S.; Olbricht, K. What Do We Know about the Chemistry of Strawberry Aroma? J. Agric. Food Chem. 2018, 66, 3291–3301. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Woodhead Publishing. Flavour Development, Analysis and Perception in Food and Beverages; Parker, J.K., Elmore, J.S., Methven, L., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2015; pp. xiii–xxv. ISBN 978-1-78242-103-0. [Google Scholar]
- Noguchi, Y.; Mochizuki, T.; Sone, K. Breeding of a New Aromatic Strawberry by Interspecific Hybridization Fragaria x ananassa×F. Nilgerrensis. J. Jpn. Soc. Hortic. Sci. 2002, 71, 208–213. [Google Scholar] [CrossRef]
- Bebek Markovinović, A.; Putnik, P.; Duralija, B.; Krivohlavek, A.; Ivešić, M.; Mandić Andačić, I.; Palac Bešlić, I.; Pavlić, B.; Lorenzo, J.M.; Bursać Kovačević, D. Chemometric Valorization of Strawberry (Fragaria x Ananassa Duch.) Cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods 2022, 11, 640. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, M.A. The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage. HortScience 2000, 35, 1022–1026. [Google Scholar] [CrossRef]
- Morales-Quintana, L.; Ramos, P. Chilean Strawberry (Fragaria Chiloensis): An Integrative and Comprehensive Review. Food Res. Int. 2019, 119, 769–776. [Google Scholar] [CrossRef]
- Aharoni, A.; Giri, A.P.; Verstappen, F.W.A.; Bertea, C.M.; Sevenier, R.; Sun, Z.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J. Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species. Plant Cell 2004, 16, 3110–3131. [Google Scholar] [CrossRef]
- Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Gas Chromatography-Olfactometry in Food Flavour Analysis. J. Chromatogr. A 2008, 1186, 123–143. [Google Scholar] [CrossRef]
- Gomes Da Silva, M.D.; Chaves Das Neves, H.J. Complementary Use of Hyphenated Purge-and-Trap Gas Chromatography Techniques and Sensory Analysis in the Aroma Profiling of Strawberries (Fragaria Ananassa). J. Agric. Food Chem. 1999, 47, 4568–4573. [Google Scholar] [CrossRef]
- Lewers, K.S.; Newell, M.J.; Park, E.; Luo, Y. Consumer Preference and Physiochemical Analyses of Fresh Strawberries from Ten Cultivars. Int. J. Fruit Sci. 2020, 20, 733–756. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace Solid-Phase Microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Drakula, S.; Mustač, N.Č.; Novotni, D.; Voučko, B.; Krpan, M.; Hruškar, M.; Ćurić, D. Optimization and Validation of a HS-SPME/GC–MS Method for the Analysis of Gluten-Free Bread Volatile Flavor Compounds. Food Anal. Methods 2022, 15, 1155–1170. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Rapid Determination of Volatile Compounds in Grapes by HS-SPME Coupled with GC-MS. Talanta 2005, 66, 1152–1157. [Google Scholar] [CrossRef]
- Olbricht, K.; Grafe, C.; Weiss, K.; Ulrich, D. Inheritance of Aroma Compounds in a Model Population of Fragaria × Ananassa Duch. Plant Breed. 2008, 127, 87–93. [Google Scholar] [CrossRef]
- Ulrich, D.; Olbricht, K. A Search for the Ideal Flavor of Strawberry—Comparison of Consumer Acceptance and Metabolite Patterns in Fragaria × Ananassa Duch. J. Appl. Bot. Food Qual. 2016, 89, 223–234. [Google Scholar] [CrossRef]
- Vandendriessche, T.; Nicolai, B.M.; Hertog, M.L.A.T.M. Optimization of HS SPME Fast GC-MS for High-Throughput Analysis of Strawberry Aroma. Food Anal. Methods 2013, 6, 512–520. [Google Scholar] [CrossRef]
- Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Borsetta, G.; Caprioli, G.; Mannozzi, C.; Marconi, R.; Piatti, D.; Santanatoglia, A.; Sagratini, G.; et al. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Mol. Basel Switz. 2023, 28, 5810. [Google Scholar] [CrossRef]
- Padilla-Jiménez, S.M.; Angoa-Pérez, M.V.; Mena-Violante, H.G.; Oyoque-Salcedo, G.; Montañez-Soto, J.L.; Oregel-Zamudio, E. Identification of Organic Volatile Markers Associated with Aroma during Maturation of Strawberry Fruits. Molecules 2021, 26, 504. [Google Scholar] [CrossRef]
- Cozzolino, R.; Amato, G.; Siano, F.; Picariello, G.; Stocchero, M.; Morra, L.; Mignoli, E.; Sicignano, M.; Petriccione, M.; Malorni, L. New Biodegradable Mulching Films for Strawberry (Fragaria × Ananassa Duch.): Effects on the Volatile Profiles of the Fruit. Agronomy 2022, 12, 2514. [Google Scholar] [CrossRef]
- Sheng, L.; Ni, Y.; Wang, J.; Chen, Y.; Gao, H. Characteristic-Aroma-Component-Based Evaluation and Classification of Strawberry Varieties by Aroma Type. Mol. Basel Switz. 2021, 26, 6219. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Akhatou, I.; Fernández-Recamales, Á. Volatile Profiling of Strawberry Fruits Cultivated in a Soilless System to Investigate Cultivar-Dependent Chemical Descriptors. Foods 2020, 9, 768. [Google Scholar] [CrossRef]
- Urrutia, M.; Rambla, J.; Alexiou, K.; Granell, A.; Monfort, A. Genetic Analysis of the Wild Strawberry (Fragaria Vesca) Volatile Composition. Plant Physiol. Biochem. 2017, 121, 99–117. [Google Scholar] [CrossRef]
- Al-Taher, F.; Nemzer, B. Identification of Aroma Compounds in Freeze-Dried Strawberries and Raspberries by HS-SPME-GC-MS. J. Food Res. 2020, 9, 30. [Google Scholar] [CrossRef]
- Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of Wild Strawberries, Fragaria Vesca L., Compared to Those of Cultivated Berries, Fragaria.Times. Ananassa Cv Senga Sengana. J. Agric. Food Chem. 1979, 27, 19–22. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Schieberle, P. Compound Identification: A Journal of Agricultural and Food Chemistry Perspective. J. Agric. Food Chem. 2007, 55, 4625–4629. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, G.; Barringer, S. Effect of Enzymes on Strawberry Volatiles during Storage, at Different Ripeness Level, in Different Cultivars, and during Eating. J. Food Sci. 2011, 76, C324–C333. [Google Scholar] [CrossRef] [PubMed]
- Vandendriessche, T.; Vermeir, S.; Mayayo, C.; Hendrickx, Y.; Lammertyn, J.; Nicolaï, B.; Hertog, M. Effect of Ripening and Inter-Cultivar Differences on Strawberry Quality. LWT—Food Sci. Technol. 2013, 52, 62–70. [Google Scholar] [CrossRef]
- Suutarinen, J.; Honkapää, K.; Heiniö, R.-L.; Autio, K.; Mokkila, M. The Effect of Different Prefreezing Treatments on the Structure of Strawberries Before and After Jam Making. LWT—Food Sci. Technol. 2000, 33, 188–201. [Google Scholar] [CrossRef]
- Suutarinen, J.; Änäkäinen, L.; Autio, K. Comparison of Light Microscopy and Spatially Resolved Fourier Transform Infrared (FT-IR) Microscopy in the Examination of Cell Wall Components of Strawberries. LWT—Food Sci. Technol. 1998, 31, 595–601. [Google Scholar] [CrossRef]
- Bianchi, G.; Lucchi, P.; Maltoni, M.L.; Fagherazzi, A.; Baruzzi, G. Analysis of Aroma Compounds in New Strawberry Advanced Genotypes. Acta Hortic. 2017, 1156, 673–678. [Google Scholar] [CrossRef]
- Flavor, Fragrance, and Odor Analysis. Available online: https://www.routledge.com/Flavor-Fragrance-and-Odor-Analysis/Marsili/p/book/9781138198579 (accessed on 13 June 2024).
- Maarse, H.; van der Heij, D.G. Trends in Flavour Research, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1994; ISBN 978-0-444-81587-3. [Google Scholar]
- Schulbach, K.F.; Rouseff, R.L.; Sims, C.A. Relating Descriptive Sensory Analysis to Gas Chromatography/Olfactometry Ratings of Fresh Strawberries Using Partial Least Squares Regression. J. Food Sci. 2004, 69, 273–277. [Google Scholar] [CrossRef]
- Williams, A.; Ryan, D.; Olarte Guasca, A.; Marriott, P.; Pang, E. Analysis of Strawberry Volatiles Using Comprehensive Two-Dimensional Gas Chromatography with Headspace Solid-Phase Microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 817, 97–107. [Google Scholar] [CrossRef]
- Ruiz, J.; Quilez, J.; Mestres, M.; Guasch, J. Solid-Phase Microextraction Method for Headspace Analysis of Volatile Compounds in Bread Crumb. Cereal Chem. 2003, 80, 255–259. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits-A Review. Foods Basel Switz. 2022, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Oz, A.T.; Baktemur, G.; Kargi, S.P.; Kafkas, E. Volatile Compounds of Strawberry Varieties. Chem. Nat. Compd. 2016, 52, 507–509. [Google Scholar] [CrossRef]
- King, A.; Readman, J.; Zhou, J. The Application of Solid-Phase Micro-Extraction (SPME) to the Analysis of Polycyclic Aromatic Hydrocarbons (PAHs). Environ. Geochem. Health 2003, 25, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Passa, K.; Simal, C.; Tsormpatsidis, E.; Papasotiropoulos, V.; Lamari, F.N. Monitoring of Volatile Organic Compounds in Strawberry Genotypes over the Harvest Period. Plants 2023, 12, 1881. [Google Scholar] [CrossRef] [PubMed]
- Furan, 5-(1,5-Dimethyl-1,4-Hexadienyl)-2-Ethenyltetrahydro-2-Methyl-, [2S-[2.Alpha.,5.Beta.(E)]]-SpectraBase. Available online: https://spectrabase.com/compound/6chDistPevs#stereoisomerCompounds (accessed on 13 June 2024).
- Castioni, P.; Kapetanidis, I. Volatile Constituents from Brunfelsia Grandiflora Ssp. Grandiflora: Qualitative Analysis by Gc-Ms. Sci. Pharm. 1996, 64, 83–91. [Google Scholar]
- Martín-Del-Campo, S.T.; López-Ramírez, J.E.; Estarrón-Espinosa, M. Dataset of Volatile Compounds Identified, Quantified and GDA Generated of the Maturation Process of Silver Tequila in New French Oak Barrels. Data Brief 2019, 27, 104707. [Google Scholar] [CrossRef] [PubMed]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [PubMed]
- PubChem Furaneol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/19309 (accessed on 13 June 2024).
- Ducki, S.; Miralles-Garcia, J.; Zumbé, A.; Tornero, A.; Storey, D.M. Evaluation of Solid-Phase Micro-Extraction Coupled to Gas Chromatography-Mass Spectrometry for the Headspace Analysis of Volatile Compounds in Cocoa Products. Talanta 2008, 74, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, C.; Jiang, B.; Mo, X.; Wang, Z. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Mol. Basel Switz. 2021, 26, 5808. [Google Scholar] [CrossRef]
- Howard, K.L.; Mike, J.H.; Riesen, R. Validation of a Solid-Phase Microextraction Method for Headspace Analysis of Wine Aroma Components. Am. J. Enol. Vitic. 2005, 56, 37–45. [Google Scholar] [CrossRef]
- Ma, Q.L.; Hamid, N.; Bekhit, A.E.D.; Robertson, J.; Law, T.F. Optimization of Headspace Solid Phase Microextraction (HS-SPME) for Gas Chromatography Mass Spectrometry (GC–MS) Analysis of Aroma Compounds in Cooked Beef Using Response Surface Methodology. Microchem. J. 2013, 111, 16–24. [Google Scholar] [CrossRef]
- Ruiz-Hernández, V.; Roca, M.J.; Egea-Cortines, M.; Weiss, J. A Comparison of Semi-Quantitative Methods Suitable for Establishing Volatile Profiles. Plant Methods 2018, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Noonan, M.J.; Tinnesand, H.V.; Buesching, C.D. Normalizing Gas-Chromatography-Mass Spectrometry Data: Method Choice Can Alter Biological Inference. BioEssays News Rev. Mol. Cell. Dev. Biol. 2018, 40, e1700210. [Google Scholar] [CrossRef] [PubMed]
- Schmarr, H.-G.; Bernhardt, J. Profiling Analysis of Volatile Compounds from Fruits Using Comprehensive Two-Dimensional Gas Chromatography and Image Processing Techniques. J. Chromatogr. A 2010, 1217, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Hoberg, E.; Rapp, A.; Kecke, S. Analysis of Strawberry Flavour—Discrimination of Aroma Types by Quantification of Volatile Compounds. Z. Für Leb.-Forsch. A 1997, 205, 218–223. [Google Scholar] [CrossRef]
- Li, X.-X.; Fukuhara, K.; Hayata, Y. Concentrations of Character Impact Odorants in ‘Toyonoka’ Strawberries Quantified by Standard Addition Method and PQ Column Extraction with GC-MS Analysis. J. Jpn. Soc. Hortic. Sci. 2009, 78, 200–205. [Google Scholar] [CrossRef]
- Lin, J.; Dai, Y.; Guo, Y.; Xu, H.; Wang, X. Volatile Profile Analysis and Quality Prediction of Longjing Tea (Camellia Sinensis) by HS-SPME/GC-MS. J. Zhejiang Univ. Sci. B 2012, 13, 972–980. [Google Scholar] [CrossRef]
- Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor, C.; et al. The Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 175–178. [Google Scholar] [CrossRef]
- New in JMP 16 and JMP Pro 16 | JMP. Available online: https://www.jmp.com/en_is/events/mastering/topics/new-in-jmp16-and-jmp-pro16.html (accessed on 13 June 2024).
Compound | RTX-Wax Column and PDMS/CAR/DVB Fiber | RTX-5Sil Column and PDMS Fiber |
---|---|---|
AREA % | AREA % | |
Esters | ||
Methyl butanoate | 1.94 | ND * |
Ethyl butanoate | 3.1 | ND |
Methyl butanoate | 1.29 | ND |
Butyl butanoate | 1.26 | ND |
Ethyl hexanoate | 0.85 | ND |
3-methyl-, butyl butanoate | 0.28 | ND |
1-Hexyl acetate | 0.47 | ND |
Octyl butyrate | 0.8 | ND |
Octyl acetate | 0.82 | ND |
Butanoic acid, octyl ester | 2.52 | ND |
n-Octyl 2-methyl butanoate | 0.67 | 0.26 |
Octyl isovalerate | 0.98 | ND |
1-Methyl butyl butanoate | 0.31 | ND |
Benzyl acetate | 0.2 | ND |
Ethylene glycol di-n-butanoate | 0.99 | ND |
2-methyl-,1,2-dimethyl propyl butanoate | 0.27 | ND |
Octyl hexanoate | 0.96 | ND |
Benzyl butanoate | 0.18 | ND |
2,2,4-Trimethyl-1,3-pentanediol di isobutyrate | 0.32 | 2.5 |
Ethyl 3-hydroxy hexanoate | 0.17 | ND |
Isopropyl myristate | 0.24 | 1.4 |
Isopropyl palmitate | ND | 0.37 |
Methyl palmitate | ND | 0.24 |
n-Decyl acetate | ND | 0.16 |
Aldehydes | ||
Octanal | 0.45 | ND |
Nonanal | 0.94 | ND |
Decanal | 0.26 | 0.28 |
Benzaldehyde | 0.15 | ND |
2-Nonenal | 0.16 | ND |
Alchocol | ND | ND |
2-ethylHexanol, | 0.16 | ND |
1-Octanol | 0.72 | ND |
Benzyl alcohol | 0.32 | ND |
1-Dodecanol | 0.24 | 0.07 |
1-Decanol | ND | 0.13 |
Epiglobulol | ND | 0.77 |
Farnesyl alcohol | ND | 1.75 |
n-Pentadecanol | ND | 0.29 |
Acids | ||
Butanoic acid | 0.27 | ND |
Hexanoic acid | 1.48 | ND |
Decanoic acid | 0.4 | ND |
Ketones | ||
Trans-beta-Damascenone | ND | 0.18 |
Alpha Isomethyl ionone | ND | 0.38 |
1,3-dimetylcyclohex-3-yl-ethyl-ketone | ND | 4.8 |
Geranylacetone | ND | 0.23 |
Lactones | ||
Gamma-Decanolactone | 30.3 | 1.23 |
Gamma-Dodecalactone | 8.16 | 5.23 |
Terpenoids | ||
Cis-Linalool oxide | 0.15 | 0.52 |
Trans-Linalool oxide | 0.7 | 0.34 |
Linalool | 7.23 | 3.77 |
(E)-.beta.-Famesene | 1.43 | 0.54 |
L-.alpha.-Terpineol | 0.97 | 1.22 |
Alpha/beta.-Bisabolene | 0.55 | 1.85 |
Trans-.alpha.-Bergamotene | 0.18 | 0.14 |
Geraniol | 0.48 | 0.4 |
Nerolidol | 22.2 | 26 |
.Alpha.-Bisabolol | 0.31 | 3.68 |
Nerol | ND | 0.14 |
Alpha.-Bisabolol oxide | ND | 7.18 |
Cis Bisabol-12-ol | ND | 1.95 |
Furans | ||
Mesifuran; 4-methoxy-2,5-dimethyl-3(2H)-Furanone | 0.67 | ND |
5-(1,5-dimethyl-1,4-hexadienyl)-2-ethenyltetrahydro-2-methyl -furan | 0.81 | 12.2 |
5-(1,5-dimethyl-1,4-hexadienyl)-2-ethenyltetrahydro-2-methyl furan | 0.79 | 16.5 |
Furaneol; 2,5-dimethyl-4-hydroxy-3[2H]-furanone | 0.49 | ND |
1 | 2 | 3 | 4 | 5 | 6 | ||
---|---|---|---|---|---|---|---|
60/15/15 ** | 60/15/15 | 80/15/15 | 60/15/15 | 60/30/15 | 60/30/30 | ||
Chemical Class | Compound | 1 g Sample—No NaCl Added | 5 g—No NaCl Added | 5 g—No NaCl Added | 5 g—NaCl Added | 5 g—NaCl Added | 5 g—NaCl Added |
ester | Methyl butanoate | ND * | ND | 738,282 | 1,315,683 | 707,398 | 830,957 |
ester | Ethyl butanoate | ND | ND | 206,725 | 1,060,169 | 406,838 | 450,179 |
ester | Isopropyl butanoate | ND | ND | ND | 267,049 | ND | ND |
ester | Methyl hexanoate | ND | 68,855 | ND | 224,954 | 181,137 | 145,866 |
ester | Butyl butanoate | ND | 256,712 | 85,848 | 561,824 | 95,841 | 59,241 |
ester | Ethyl hexanoate | ND | 698,129 | 57,261 | 826,499 | 164,429 | 113,573 |
ester | Hexyl acetate | ND | 156,936 | 46,806 | 202,327 | 99,420 | 63,675 |
ester | 1-methylbutyl butanoate | ND | 32,885 | ND | 25,673 | 31,605 | ND |
ester | Isopropyl hexanoate | ND | 27,487 | ND | 48,863 | ND | ND |
ester | Butyl 2-methylbutanoate | ND | ND | ND | 32,895 | ND | ND |
ester | Butyl isovalerate | ND | 56,652 | ND | 66,437 | ND | ND |
furane | 2,5-Dimethyl-4-methoxy-3(2H)-furanone (mesifuran) | ND | 116,677 | ND | 225,405 | 86,645 | 72,332 |
alcohol | 1-Octanol | 71,907 | 111,901 | ND | 103,199 | 35,391 | ND |
monoterpene | Linalool oxide | 25,514 | 16,361 | 44,240 | 29,820 | 34,715 | ND |
monoterpene | Linalool | 423,746 | 476,308 | 692,883 | 763,605 | 687,195 | 501,058 |
ester | Butyl hexanoate | 46,282 | 167,048 | ND | ND | ND | ND |
ester | Methyl octanoate | ND | ND | ND | 18,472 | 17,033 | ND |
ester | Ethyl octanoate | ND | 26,820 | ND | ND | ND | ND |
ester | Hexyl hexanoate | 14,518 | ND | 44,537 | 225,887 | ND | 30,143 |
monoterpene | L-.alpha.-Terpineol | ND | ND | 117,009 | 98,177 | 71,803 | 45,080 |
ester | Octyl acetate | 86,302 | 529,189 | 82,090 | 315,916 | 124,460 | 63,368 |
ester | Methylbutyl isobutyrate | ND | ND | ND | 38,437 | ND | 28,389 |
monoterpene | Nerol | ND | ND | ND | ND | ND | ND |
monoterpene | Geraniol | ND | ND | 47,063 | 26,609 | 70,671 | 16,849 |
alcohol | 1-Decanol | 46,194 | 23,315 | 25,954 | 37,982 | ND | ND |
ester | Nonanyl acetate | ND | 27,434 | ND | 19,472 | 15,105 | 22,499 |
ester | Octyl isobutanoate | ND | 26,276 | 177,820 | 10,348 | ND | ND |
ester | Hexyl hexanoate | ND | 23,183 | ND | ND | ND | ND |
ester | Octyl butanoate | 403,518 | 893,533 | ND | 678,059 | 167,528 | 79,103 |
ester | Decyl acetate | 23,603 | 68,323 | 21,553 | 39,048 | ND | 12,517 |
ester | Linalyl butanoate | 14,001 | 74,437 | 177,243 | 37,273 | 20,719 | 11,959 |
ester | Octyl 2-methylbutanoate | 167,334 | 318,109 | 101,486 | 190,279 | 132,282 | 63,319 |
ester | Octyl 3-methylbutanoate | 494,073 | 547,450 | ND | 228,347 | 192,827 | 87,736 |
ketone | trans-Geranylacetone | 6009 | 14,190 | 39,572 | 14,751 | 26,223 | 17,848 |
sesquiterpene | beta.-Famesene | 132,821 | 150,650 | 105,368 | 145,111 | 133,660 | 124,198 |
lactone | gamma.-Decalactone | 2,961,011 | 3,159,451 | 2,378,656 | 3,665,747 | 3,788,141 | 2,401,025 |
sesquiterpene | alpha.-Bergamotene | ND * | 39,914 | 26,378 | ND | 23,288 | 22,563 |
furane | 5-(1,5-dimethyl-1,4-hexadienyl)-2-ethenyltetrahydro-2-methyl-furan | 143,723 | 105,763 | 792,449 | 153,029 | ND | 195,733 |
sesquiterpene | alpha.-Farnesene | 69,286 | 57,115 | 62,259 | 60,480 | ND | 59,104 |
furane | 5-(1,5-dimethyl-1,4-hexadienyl)-2-ethenyltetrahydro-2-methyl-furan | 211,162 | 135,746 | 101,2693 | 227,222 | ND | 289,369 |
sesquiterpene | beta.-Bisabolene | ND | ND | ND | 25,982 | ND | 33,752 |
sesquiterpene | Nerolidol | 4,129,991 | 4,293,677 | 511,0598 | 3,446,089 | 5,449,318 | 3,745,010 |
ester | Octyl hexanoate | 220,594 | 332,034 | 48,661 | 169,774 | 48,289 | 19,301 |
ester | Decyl butyrate | ND | ND | ND | 47,917 | ND | ND |
hydrocarbon | Hexadecane | 91,956 | 22,169 | 35,650 | 23,703 | ND | 47,748 |
ester | Decyl-2-methylbutanoate | 12,298 | 17,486 | ND | 10,367 | ND | ND |
ester | Decyl isovalerate | 27,487 | 38,586 | ND | 16,267 | ND | ND |
sesquiterpene | cis-Bisabol-12-ol | ND | ND | 222,004 | ND | 95,699 | ND |
furane | 2-Furanmethanol | ND | ND | 525,319 | 38,681 | 40,385 | 26,206 |
lactone | gamma.-Dodecalactone | 932,616 | 1,222,723 | 2,661,323 | 1,586,906 | 2,395,865 | 1,247,452 |
sesquiterpene | alpha.-Bisabolol | ND | ND | 705,355 | 199,679 | 260,118 | 108,620 |
ester | Nerolidyl acetate | 53,232 | 149,778 | 197,391 | 199,895 | 216,020 | 70,630 |
sesquiterpene | Farnesol | ND | ND | 256,784 | ND | ND | ND |
total esters | 1,549,795 | 4,443,636 | 1,788,312 | 6,704,870 | 2,404,911 | 2,081,825 | |
total monoterpenes | 535,562 | 1,021,858 | 866,276 | 1,135,950 | 917,041 | 581,275 | |
total sesquiterpenes | 4,332,098 | 4,541,356 | 6,231,962 | 3,877,341 | 5,962,083 | 4,093,247 | |
total furans | 354,885 | 358,186 | 2,330,461 | 644,337 | 127,030 | 583,640 |
GC Parameters | ||
---|---|---|
Start temperature | 40 °C | |
Temperature program | 40 °C 5 min | |
10 °C/min | 230 °C 5 min | |
10 °C/min | 250 °C 5 min | |
Gas | Helium | |
Flow rate | 1 mL/min | |
MS parameters | ||
Ion source | 230 °C | |
Interface | 260 °C | |
Detector voltage | 0.8 kV |
PDMS Fiber | |
---|---|
Conditioning temperature | 260 °C |
Pre-condition time | 5 min |
Incubation temperature | 40 °C/60 °C/80 °C |
Incubation time | 15 min/30 min |
Sample vial depth | 22 mm |
Sample extract. time | 15 min/30 min |
Sample desorp. time | 10 min |
Post-condition. time | 5 min |
DVB/CAR/PDMS Fiber | |
Conditioning temperature | 260 °C |
Pre-condition time | 5 min |
Incubation temperature | 40 °C/60 °C/80 °C |
Incubation time | 15 min/30 min |
Sample vial depth | 22 mm |
Sample extract. time | 15 min/30 min |
Sample desorp. time | 10 min |
Post-condition Time | 5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palac Bešlić, I.; Ivešić, M.; Mandić Andačić, I.; Bursać Kovačević, D.; Žuntar, I.; Bebek Markovinović, A.; Oštarić, F.; Krivohlavek, A. Development and Optimization Method for Determination of the Strawberries’ Aroma Profile. Molecules 2024, 29, 3441. https://doi.org/10.3390/molecules29143441
Palac Bešlić I, Ivešić M, Mandić Andačić I, Bursać Kovačević D, Žuntar I, Bebek Markovinović A, Oštarić F, Krivohlavek A. Development and Optimization Method for Determination of the Strawberries’ Aroma Profile. Molecules. 2024; 29(14):3441. https://doi.org/10.3390/molecules29143441
Chicago/Turabian StylePalac Bešlić, Iva, Martina Ivešić, Ivana Mandić Andačić, Danijela Bursać Kovačević, Irena Žuntar, Anica Bebek Markovinović, Fabijan Oštarić, and Adela Krivohlavek. 2024. "Development and Optimization Method for Determination of the Strawberries’ Aroma Profile" Molecules 29, no. 14: 3441. https://doi.org/10.3390/molecules29143441
APA StylePalac Bešlić, I., Ivešić, M., Mandić Andačić, I., Bursać Kovačević, D., Žuntar, I., Bebek Markovinović, A., Oštarić, F., & Krivohlavek, A. (2024). Development and Optimization Method for Determination of the Strawberries’ Aroma Profile. Molecules, 29(14), 3441. https://doi.org/10.3390/molecules29143441