Copper(I)-Catalyzed Formal [4 + 2] Cyclocondensation of ortho-Hydroxybenzyl Alcohol, Aromatic Terminal Alkynes, and Sulfonyl Azides: An Alternative Approach to 2-Sulfonyliminocoumarins
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Typical Experimental Procedure for the Synthesis of 4-Methyl-N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamide (4a)
3.3. Characterization Data of Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.A.; Spillere, A.R.; das Neves, G.M.; Kagami, L.P.; von Poser, G.L.; Canto, R.F.S.; Eifler-Lima, V. Natural and synthetic coumarins as antileishmanial agents: A review. Eur. J. Med. Chem. 2020, 203, 112514. [Google Scholar] [CrossRef] [PubMed]
- Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Bukhari, S.N.A.; Foroumadi, A.; Küçükkilinç, T.T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3,4-heterocycle-fused coumarins. Eur. J. Med. Chem. 2021, 212, 113034. [Google Scholar] [CrossRef] [PubMed]
- Deryabin, D.; Inchagova, K.; Rusakova, E.; Duskaev, G. Coumarin’s anti-quorum sensing activity can be enhanced when combined with other plant-derived small molecules. Molecules 2021, 26, 208. [Google Scholar] [CrossRef] [PubMed]
- Volmajer, J.; Toplak, R.; Leban, I.; Le Marechal, A.M. Synthesis of new iminocoumarins and their transformations into N-chloro and hydrazono compounds. Tetrahedron 2005, 61, 7012–7021. [Google Scholar] [CrossRef]
- Guo, D.; Chen, T.; Ye, D.; Xu, J.; Jiang, H.; Chen, K.; Wang, H.; Liu, H. Cell-permeable iminocoumarine-based fluorescent dyes for mitochondria. Org. Lett. 2011, 13, 2884–2887. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.-R.; Man, N.-N.; Yuan, W.-K.; Li, M. Direct construction of 2-aryliminochromenes from arynes, N, S-keteneacetals, and DMF. J. Org. Chem. 2016, 81, 5942–5948. [Google Scholar] [CrossRef] [PubMed]
- Perin, N.; Cindrić, M.; Vervaeke, P.; Liekens, S.; Mašek, T.; Starčević, K.; Hranjec, M. Benzazole substituted iminocoumarins as potential antioxidants with antiproliferative activity. Med. Chem. 2021, 17, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Laws, S.W.; Moore, L.C.; Di Maso, M.J.; Nguyen, Q.N.N.; Tantillo, D.J.; Shaw, J.T. Diastereoselective base-catalyzed formal [4 + 2] cycloadditions of N-sulfonyl imines and cyclic anhydrides. Org. Lett. 2017, 19, 2466–2469. [Google Scholar] [CrossRef]
- Hopkins, M.D.; Scott, K.A.; DeMier, B.C.; Morgan, H.R.; Macgruder, J.A.; Lamar, A.A. Formation of N-sulfonyl imines from iminoiodinanes by iodine-promoted, N-centered radical sulfonamidation of aldehydes. Org. Biomol. Chem. 2017, 15, 9209–9216. [Google Scholar] [CrossRef]
- Shirataki, H.; Ono, T.; Ohashi, M.; Ogoshi, S. Ni(0)-catalyzed three-component coupling reaction of tetrafluoroethylene and N-sulfonyl-substituted imines with silanes via aza-nickelacycles. Org. Lett. 2019, 21, 851–856. [Google Scholar] [CrossRef]
- Cui, S.-L.; Lin, X.-F.; Wang, Y.-G. Novel and efficient synthesis of iminocoumarins via copper-catalyzed multicomponent reaction. Org. Lett. 2006, 8, 4517–4520. [Google Scholar] [CrossRef]
- Mandal, P.K. Copper-catalyzed one-pot synthesis of glycosylated iminocoumarins and 3-triazolyl-2-iminocoumarins. RSC Adv. 2014, 4, 5803–5814. [Google Scholar] [CrossRef]
- Shen, Y.; Cui, S.; Wang, J.; Chen, X.; Lu, P.; Wang, Y. Copper-catalyzed three-component synthesis of 2-iminodihydrocoumarins and 2-iminocoumarins. Adv. Synth. Catal. 2010, 352, 1139–1144. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, S.; Huang, Y.; Zhang, L.; Yi, W. An efficient one-pot protocol for the synthesis of polysubstituted 4-amino-iminocoumarins and 4-aminoquinolines by a copper-catalyzed three-component reaction. Eur. J. Org. Chem. 2017, 102–110. [Google Scholar] [CrossRef]
- Murugavel, G.; Punniyamurthy, T. Novel copper-catalyzed multicomponent cascade synthesis of iminocoumarin aryl methyl ethers. Org. Lett. 2013, 15, 3828–3831. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.S.; Kumar, A.V. Three-component one-pot synthesis of N-arylsulfonyl-2-iminocoumarins. Tetrahedron 2018, 74, 1900–1907. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, S.; Jiang, W.; Zhu, F.; Chen, Y.; Zhao, Y. Multicomponent synthesis of iminocoumarins via rhodium-catalyzed C-H bond activation. J. Org. Chem. 2020, 85, 11006–11013. [Google Scholar] [CrossRef]
- Wu, B.; Hua, R. Palladium-catalyzed [3+2+1] cyclocarbonylative coupling of 1,3-cyclohexanediones, alkynes, and carbon monoxide: An atom-economic route to chromene-2,5-dione derivatives. Tetrahedron Lett. 2010, 51, 6433–6435. [Google Scholar] [CrossRef]
- Zheng, Q.; Hua, R.; Jiang, J.; Zhang, L. A general approach to arylated furans, pyrroles, and thiophenes. Tetrahedron 2014, 70, 8252–8256. [Google Scholar] [CrossRef]
- Nizami, T.A.; Hua, R. Synthesis of 3H-naphtho [2.1-b]pyran-2-carboxamides from cyclocoupling of β-naphthol, propargyl alcohols and isocyanide in the presence of Lewis acids. Tetrahedron 2018, 74, 3776–3780. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Hua, R. Base-promoted chemodivergent formation of 1,4-benzoxazepin-5(4H)-ones and 1,3-benzoxazin-4(4H)-ones switched by solvents. Molecules 2019, 24, 3773. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Hua, R. C–H activation and alkyne annulation via automatic or intrinsic directing groups: Towards high step economy. Chem. Rec. 2018, 18, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Merijan, A.; Gardner, P.D. Quinone methides. Base-catalyzed condensation reactions of hydroxybenzyl alcohols and ethers. J. Org. Chem. 1965, 30, 3965–3967. [Google Scholar] [CrossRef]
- Pathak, T.P.; Sigman, M.S. Applications of ortho-quinone methide intermediates in catalysis and asymmetric synthesis. J. Org. Chem. 2011, 76, 9210–9215. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, A.A.; Scheidt, K.A. Emerging roles of in situ generated quinone methides in metal-free catalysis. J. Org. Chem. 2016, 81, 10145–10153. [Google Scholar] [CrossRef]
- Yoo, E.J.; Bae, I.; Cho, S.H.; Han, H.; Chang, S. A facile access to N-sulfonylimidates and their synthetic utility for the transformation to amidines and amides. Org. Lett. 2006, 8, 1347–1350. [Google Scholar] [CrossRef]
- Raushel, J.; Fokin, V.V. Efficient synthesis of 1-sulfonyl-1,2,3-triazoles. Org. Lett. 2010, 12, 4952–4955. [Google Scholar] [CrossRef]
- Yavari, I.; Ghazanfarpour-Darjani, M.; Nematpour, M. Copper-catalyzed tandem synthesis of 2-(sulfonylimino)alkanamides from N-sulfonylketenimines and alkyl isocyanides. Tetrahedron Lett. 2015, 56, 2416–2417. [Google Scholar] [CrossRef]
- The Structural Data for 4a Are Available Free of Charge from the Cambridge Crystallographic Data Centre with Reference Number CCDC2312012. Available online: https://www.ccdc.cam.ac.uk (accessed on 4 December 2023).
- Bruker. SHELXTL. Structure Determination Programs, Version 5.10; Bruker AXS Inc.: Madison, WI, USA, 1997. [Google Scholar]
- International Tables for X-ray Crystallography: Volume C, Tables 4.2.6.8 and 6.1.1.4; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989.
- Oxford. CrysAlisPro, Agilent Technologies, Version 1.171.36.32; Oxford Diffraction Ltd.: Abingdon, UK, 2013. [Google Scholar]
Entry | Catalyst | Base | Solvent | Yield (%) b |
---|---|---|---|---|
1 | CuCl | TEA | THF | 65 |
2 | CuBr | TEA | THF | 70 |
3 | CuI | TEA | THF | 65 |
4 | CuI | DBU | THF | 30 |
5 | CuI | K2CO3 | THF | 40 |
6 | CuI | TEA | DCE | 78 |
7 | CuTC | TEA | THF | 75 |
8 | CuTC | TEA | dioxane | 78 |
9 | CuTC | TEA | DMF | 58 |
10 | CuTC | TEA | toluene | <5 |
11 | CuTC | TEA | DCE | 82 |
12 c | CuTC | TEA | DCE | 51 |
13 | - | TEA | DCE | - |
14 d | CuTC | TEA | DCE | 11 |
Ar | Product | Yield (%) |
---|---|---|
α-naphthyl | 4b | 65 |
β-naphthyl | 4c | 68 |
p-tolyl | 4d | 80 |
o-tolyl | 4e | 71 |
m-tolyl | 4f | 78 |
p-EtC6H4 | 4g | 75 |
p-n-PrC6H4 | 4h | 78 |
p-t-BuC6H4 | 4i | 81 |
p-MeOC6H4 | 4j | 76 |
m-MeOC6H4 | 4k | 65 |
p-FC6H4 | 4l | 73 |
o-FC6H4 | 4m | 68 |
m-ClC6H4 | 4n | 68 |
m-BrC6H4 | 4o | 62 |
2-thienyl | 4p | 76 |
4q | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.M.; Lv, J.; Hua, R. Copper(I)-Catalyzed Formal [4 + 2] Cyclocondensation of ortho-Hydroxybenzyl Alcohol, Aromatic Terminal Alkynes, and Sulfonyl Azides: An Alternative Approach to 2-Sulfonyliminocoumarins. Molecules 2024, 29, 3426. https://doi.org/10.3390/molecules29143426
Khan DM, Lv J, Hua R. Copper(I)-Catalyzed Formal [4 + 2] Cyclocondensation of ortho-Hydroxybenzyl Alcohol, Aromatic Terminal Alkynes, and Sulfonyl Azides: An Alternative Approach to 2-Sulfonyliminocoumarins. Molecules. 2024; 29(14):3426. https://doi.org/10.3390/molecules29143426
Chicago/Turabian StyleKhan, Dost Muhammad, Jiaying Lv, and Ruimao Hua. 2024. "Copper(I)-Catalyzed Formal [4 + 2] Cyclocondensation of ortho-Hydroxybenzyl Alcohol, Aromatic Terminal Alkynes, and Sulfonyl Azides: An Alternative Approach to 2-Sulfonyliminocoumarins" Molecules 29, no. 14: 3426. https://doi.org/10.3390/molecules29143426
APA StyleKhan, D. M., Lv, J., & Hua, R. (2024). Copper(I)-Catalyzed Formal [4 + 2] Cyclocondensation of ortho-Hydroxybenzyl Alcohol, Aromatic Terminal Alkynes, and Sulfonyl Azides: An Alternative Approach to 2-Sulfonyliminocoumarins. Molecules, 29(14), 3426. https://doi.org/10.3390/molecules29143426