Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser
Abstract
1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perepezko, J.H. The Hotter the Engine, the Better. Science 2009, 326, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Trinkle, D.R.; Woodward, C. The Chemistry of Deformation: How Solutes Soften Pure Metals. Science 2006, 310, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, X.; Jin, S.; Yang, L.; Li, Y.; He, X.; Zhang, W.; Wu, Y.; Hui, Z.; Yang, Z.; et al. Revealing the room temperature superplasticity in bulk recrystallized molybdenum. Nat. Commun. 2023, 14, 8336. [Google Scholar] [CrossRef] [PubMed]
- Jing, K.; Liu, R.; Xie, Z.M.; Ke, J.G.; Wang, X.P.; Fang, Q.F.; Liu, C.S.; Wang, H.; Li, G.; Wu, X.B. Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum. Acta Mater. 2022, 227, 117725. [Google Scholar] [CrossRef]
- Braun, J.; Kaserer, L.; Stajkovic, J.; Kestler, H.; Leichtfried, G. Grain refinement mechanisms of alloying molybdenum with carbon manufactured by laser powder bed fusion. Mater. Des. 2022, 215, 110507. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.-H.; Chou, K.-C. Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. Int. J. Refract. Met. Hard Mater. 2016, 59, 100–104. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Simak, S.I.; Kochetov, A.E.; Johansson, B.; Burakovsky, L.; Preston, D.L. High-Pressure Melting of Molybdenum. Phys. Rev. Lett. 2004, 92, 195701. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Zhang, S.; Sheng, X.; Zhang, C.; Wang, R.; Che, Y.; He, J. Regulation mechanism of morphology and particle size of ultrafine molybdenum powder prepared via hydrogen reduction of gaseous molybdenum trioxides. Int. J. Refract. Met. Hard Mater. 2024, 120, 106614. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.J.; Jiang, F.; Ding, X.D.; Sun, Y.J.; Sun, J.; Ma, E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 2013, 12, 344–350. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Tournier, J.-M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J. Nucl. Mater. 2005, 340, 93–112. [Google Scholar] [CrossRef]
- Duan, B.-H.; Zhang, Z.; Wang, D.-Z.; Zhou, T. Microwave sintering of Mo nanopowder and its densification behavior. Trans. Nonferrous Met. Soc. China 2019, 29, 1705–1713. [Google Scholar] [CrossRef]
- Sun, G.-D.; Zhang, G.-H.; Ji, X.-P.; Liu, J.-K.; Zhang, H.; Chou, K.-C. Size-controlled synthesis of nano Mo powders via reduction of commercial MoO3 with carbon black and hydrogen. Int. J. Refract. Met. Hard Mater. 2019, 80, 11–22. [Google Scholar] [CrossRef]
- Migliato Marega, G.; Ji, H.G.; Wang, Z.; Pasquale, G.; Tripathi, M.; Radenovic, A.; Kis, A. A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories. Nat. Electron. 2023, 6, 991–998. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W.; Liu, J.; Han, J.; Xi, G. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 2017, 8, 14903. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, K.; Chen, Q.; Zhang, B.; Hao, P.; Wang, Y.; Wang, Q. Controllable Preparation of Spherical Molybdenum Nano-Powders by One-Step Reduction of APM in Radio Frequency Hydrogen Plasma. Materials 2022, 15, 2019. [Google Scholar] [CrossRef] [PubMed]
- Bolitschek, J.; Luidold, S.; O Sullivan, M. A study of the impact of reduction conditions on molybdenum morphology. Int. J. Refract. Met. Hard Mater. 2018, 71, 325–329. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, G.-H.; Chou, K.-C. Study on kinetics of hydrogen reduction of MoO2. Int. J. Refract. Met. Hard Mater. 2013, 41, 356–362. [Google Scholar] [CrossRef]
- Jaenicke, S.; Loh, W. Preparation of highly dispersed molybdenum on alumina by thermal decomposition of Mo(CO)6. Catal. Today 1999, 98, 123–130. [Google Scholar] [CrossRef]
- Kovács, T.N.; Hunyadi, D.; de Lucena, A.L.A.; Szilágyi, I.M. Thermal decomposition of ammonium molybdates. J. Therm. Anal. Calorim. 2016, 124, 1013–1021. [Google Scholar] [CrossRef]
- Liu, B.; Gu, H.; Chen, Q. Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method. Mater. Chem. Phys. 1999, 59, 204–209. [Google Scholar] [CrossRef]
- Mai, G.; Zhang, C.; Song, J.; Che, Y.; He, J. Preparation of highly uniform molybdenum powder by the short-process reduction of molybdenum trioxide with hydrogen. Int. J. Refract. Met. Hard Mater. 2021, 100, 105644. [Google Scholar] [CrossRef]
- Manukyan, K.; Davtyan, D.; Bossert, J.; Kharatyan, S. Direct reduction of ammonium molybdate to elemental molybdenum by combustion reaction. Chem. Eng. J. 2011, 168, 925–930. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Deng, X.; Zhang, H.; Lu, L.; Hou, Z.; Zhang, S. Low temperature molten salt preparation of molybdenum nanoparticles. Int. J. Refract. Met. Hard Mater. 2016, 54, 315–321. [Google Scholar] [CrossRef]
- Busey, R.H.; Keller, O.L. Structure of the Aqueous Pertechnetate Ion by Raman and Infrared Spectroscopy. Raman and Infrared Spectra of Crystalline KTcO4, KReO4, Na2MoO4, Na2WO4, Na2MoO4·2H2O and Na2WO4·2H2O. J. Chem. Phys. 1964, 41, 215–225. [Google Scholar] [CrossRef]
- Pillai, V.M.; Pradeep, T.; Bushiri, M.J.; Jayasree, R.S.; Nayar, V.U. Vibrational spectroscopic studies of FeClMoO4, Na2MoO4 and Na2MoO4·2H2O/D2O. Spectrochim. Acta Part A 1997, 53, 867–876. [Google Scholar] [CrossRef]
- Chae, B.; Jung, Y.M.; Wu, X.; Kim, S.B. Characterization of a series of sodium molybdate structures by two-dimensional Raman correlation analysis. J. Raman Spectrosc. 2003, 34, 451–458. [Google Scholar] [CrossRef]
- Chatterjee, S.; Barik, S.K.; Choudhary, R.N.P. Studies of structural, spectroscopic and electrical properties of sodium molybdate ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 3359–3364. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H. Sodium molybdate as a corrosion inhibitor for aluminium in H3PO4 solution. Corros. Sci. 2011, 53, 2748–2753. [Google Scholar] [CrossRef]
- Lopez-Garrity, O.; Frankel, G.S. Corrosion Inhibition of Aluminum Alloy 2024-T3 by Sodium Molybdate. J. Electrochem. Soc. 2014, 161, 95–106. [Google Scholar] [CrossRef]
- Saraiva, G.D.; Paraguassu, W.; Maczka, M.; Freire, P.T.C.; Lima, J.A.; Paschoal, C.W.A.; Mendes Filho, J.; Souza Filho, A.G. Temperature-dependent Raman scattering studies of Na2MoO4. J. Raman Spectrosc. 2008, 39, 937–941. [Google Scholar] [CrossRef]
- Chouard, N.; Caurant, D.; Majérus, O.; Dussossoy, J.L.; Klimin, S.; Pytalev, D.; Baddour-Hadjean, R.; Pereira-Ramos, J.P. Effect of MoO3, Nd2O3, and RuO2 on the crystallization of soda–lime aluminoborosilicate glasses. J. Mater. Sci. 2014, 50, 219–241. [Google Scholar] [CrossRef]
- Luz-Lima, C.; Saraiva, G.D.; Filho, A.G.S.; Paraguassu, W.; Freire, P.T.C.; Mendes Filho, J. Raman spectroscopy study of Na2MoO4·2H2O and Na2MoO4 under hydrostatic pressure. J. Raman Spectrosc. 2009, 41, 576–581. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Aziz, S.B.; Saber, D.R.; Abdullah, R.M.; Hanna, R.R.; Saeed, S.R. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes. J. Mater. Sci. Mater. Electron. 2017, 28, 8928–8936. [Google Scholar] [CrossRef]
- Simon, J.A.; Pope, Y.D.W. Use of the FT Raman spectrum of Na2MoO4 to study sample heating by the laser. Spectrochim. Acta Part A 1995, 51, 2011–2017. [Google Scholar]
- Clark, G.M.; Doyle, W.P. Infra-red spectra of anhydrous molybdates and tungstates. Spectrochim. Acta 1966, 22, 1441–1447. [Google Scholar]
- Abbas, S.A.; Mahmood, I.; Sajjad, M.; Noor, N.A.; Mahmood, Q.; Naeem, M.A.; Mahmood, A.; Ramay, S.M. Spinel-type Na2MoO4 and Na2WO4 as promising optoelectronic materials: First-principle DFT calculations. Chem. Phys. 2020, 538, 110902. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Y.-N.; Liu, S.; Jiang, Y.; Liu, X.-Y.; Zhang, P. Theoretical Study of Efficient Photon–Phonon Resonance Absorption in the Tungsten-Related Vibrational Mode of Scheelite. ACS Omega 2024, 9, 10517–10521. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-N.; Guo, Q.; Liu, S.-C.; Liu, X.-Y.; Jiang, Y.; Yin, Y.; Zhang, P. Computational Assignment of Tantalum-related Strong Absorption Peaks in the Infrared Spectrum of Potassium Heptafluorotantalate. ACS Omega 2023, 9, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Venkateswaran, C.S. The Raman Spectra of Some Inorganic Compounds. Proc. Math. Sci. 1938, 7, 144–155. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Cao, J.-W.; Qin, X.-L.; Jiang, L.; Gu, Y.; Wang, H.-C.; Liu, Y.; Kolesnikov, A.I.; Zhang, P. Origin of two distinct peaks of ice in the THz region and its application for gas hydrate dissociation. J. Phys. Chem. C 2020, 124, 1165–1170. [Google Scholar] [CrossRef]
Wavenumber | Activity | IR Exp. | Raman Exp. | Assignment |
---|---|---|---|---|
120 | Raman | 116 a 124 b 121 e 120 f | MoO42− translation | |
120 | Raman | MoO42− translation | ||
120 | Raman | MoO42− translation | ||
124 | Not active | Relative rotation | ||
124 | Not active | Relative rotation | ||
124 | Not active | Relative rotation | ||
177 | IR | 177 b 177 f | Relative rotation | |
177 | IR | Relative rotation | ||
177 | IR | Relative rotation | ||
192 | Not active | MoO42− rotation | ||
192 | Not active | MoO42− rotation | ||
192 | Not active | MoO42− rotation | ||
202 | Not active | Relative rotation | ||
202 | Not active | Relative rotation | ||
227 | IR | 230 b 290 d 230 e 230 f | Relative rotation | |
227 | IR | Relative rotation | ||
227 | IR | Relative rotation | ||
256 | Not active | Relative rotation | ||
256 | Not active | Relative rotation | ||
256 | Not active | Relative rotation | ||
284 | Not active | Na+ translation | ||
296 | Raman | 303 a 311 b 330 c 319 c 317 c 305 e 305 f | MoO42− bending | |
296 | Raman | MoO42− bending | ||
300 | IR | 325 a 317 b 313 d 317 f | MoO42− bending | |
300 | IR | MoO42− bending | ||
300 | IR | MoO42− bending | ||
364 | Not active | MoO42− bending | ||
364 | Not active | MoO42− bending | ||
366 | Raman | 381 a 388 b 383 e 383 f | MoO42− bending | |
366 | Raman | MoO42− bending | ||
366 | Raman | MoO42− bending | ||
848 | Raman | 808 a 849 b 845 c 823 c 841 c 811 e 811 f | MoO42− stretching | |
848 | Raman | MoO42− stretching | ||
848 | Raman | MoO42− stretching | ||
858 | IR | 838 a 816 b 830 d 816 f | MoO42− stretching | |
858 | IR | MoO42− stretching | ||
858 | IR | MoO42− stretching | ||
896 | Not active | MoO42− stretching | ||
901 | Raman | 892 a 897 b 898 c 891 c 894 f | MoO42− stretching |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Li, Y.; Yin, Y.; Liu, S.; Zhang, J.; Zhang, J.; Li, P.; Wang, Z.; Zhang, P. Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser. Molecules 2024, 29, 3348. https://doi.org/10.3390/molecules29143348
Ren H, Li Y, Yin Y, Liu S, Zhang J, Zhang J, Li P, Wang Z, Zhang P. Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser. Molecules. 2024; 29(14):3348. https://doi.org/10.3390/molecules29143348
Chicago/Turabian StyleRen, Haoxin, Yining Li, Yi Yin, Sicheng Liu, Jingqi Zhang, Jingyu Zhang, Peilin Li, Zhe Wang, and Peng Zhang. 2024. "Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser" Molecules 29, no. 14: 3348. https://doi.org/10.3390/molecules29143348
APA StyleRen, H., Li, Y., Yin, Y., Liu, S., Zhang, J., Zhang, J., Li, P., Wang, Z., & Zhang, P. (2024). Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser. Molecules, 29(14), 3348. https://doi.org/10.3390/molecules29143348