Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition and Structural Changes of Lignocellulosic Melon By-Products (LMB) after Pectin Extraction
2.2. Microcrystalline Cellulose (MCC) Extraction and Structural Composition
2.3. X-ray Diffraction
2.4. FTIR Analysis
2.5. Morphology Analysis by SEM
3. Materials and Methods
3.1. Chemicals
3.2. Biorefinery Approach: Deconstruction of Melon-Peels Biomass in Different Fractions and Value-Added Compounds
3.3. Extraction of Cellulose from Melon-Peel Residues
3.3.1. Traditional Method
3.3.2. Thermo-Alkaline Method
3.4. Microcrystalline Cellulose (MCC) from Cellulose of Melon Residues
3.5. Chemical Characterization of Melon-Peel Residues and Cellulose Samples
3.5.1. Dry Matter and Moisture Contents
3.5.2. Ash Content
3.5.3. Protein Content
3.5.4. Determination of Structural Carbohydrates Composition
3.5.5. Fat Content
3.5.6. Total Carbohydrates
3.6. Powder X-ray Diffraction (PXRD)
3.7. FTIR
3.8. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldfield, T.L.; White, E.; Holden, N.M. An Environmental Analysis of Options for Utilising Wasted Food and Food Residue. J. Environ. Manag. 2016, 183, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; García, I.L.; Sáez-Bastante, J.; Pinzi, S.; Koutinas, A.A.; Dorado, M.P. Food Waste from Restaurant Sector—Characterization for Biorefinery Approach. Bioresour. Technol. 2020, 301, 122779. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Liguori, R.; Faraco, V. Biological Processes for Advancing Lignocellulosic Waste Biorefinery by Advocating Circular Economy. Bioresour. Technol. 2016, 215, 13–20. [Google Scholar] [CrossRef]
- Cassoni, A.C.; Costa, P.; Vasconcelos, M.W.; Pintado, M. Systematic Review on Lignin Valorization in the Agro-Food System: From Sources to Applications. J. Environ. Manag. 2022, 317, 115258. [Google Scholar] [CrossRef]
- Yusuf, M. Agro-Industrial Waste Materials and Their Recycled Value-Added Applications: Review. In Handbook of Ecomaterials; Springer: Cham, Switzerland, 2017; pp. 1–11. [Google Scholar]
- Dahiya, S.; Kumar, A.N.; Shanthi Sravan, J.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Vance, C.; Sweeney, J.; Murphy, F. Space, Time, and Sustainability: The Status and Future of Life Cycle Assessment Frameworks for Novel Biorefinery Systems. Renew. Sustain. Energy Rev. 2022, 159, 112259. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Gómez-García, R.; Marçal, S.; Vilas-Boas, A.M.; Campos, D.A.; Pintado, M. Chapter 12—Case Study 1: Fruit and Vegetable Waste Valorization—World Scenario. In Fruit and Vegetable Waste Utilization and Sustainability; Mandavgane, S.A., Chakravarty, I., Jaiswal, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 229–251. ISBN 978-0-323-91743-8. [Google Scholar]
- Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H. Biotransformation of Lignocellulosic Materials into Value-Added Products—A Review. Int. J. Biol. Macromol. 2017, 98, 447–458. [Google Scholar] [CrossRef]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable Biorefinery Concept for Biofuel Production through Holistic Volarization of Food Waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Diamantis, V.; Michailidou, A.V.; Baginetas, K.; Aidonis, D. Supporting Decision Making to Achieve Circularity via a Biodegradable Waste-to-Bioenergy and Compost Facility. J. Environ. Manag. 2021, 285, 112215. [Google Scholar] [CrossRef]
- Rolim, P.M.; Seabra, L.M.J.; de Macedo, G.R. Melon By-Products: Biopotential in Human Health and Food Processing. Food Rev. Int. 2020, 36, 15–38. [Google Scholar] [CrossRef]
- Wong-paz, J.E.; Muñiz-márquez, D.B.; Aguilar-zárate, P.; Cruz, K.; Reyes-luna, C.; Rodríguez, R.; Aguilar, C.N. Extraction of Bioactive Phenolic Compounds by Alternative Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128115213. [Google Scholar]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A Chemical Valorisation of Melon Peels towards Functional Food Ingredients: Bioactives Profile and Antioxidant Properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorization of Melon Fruit (Cucumis melo L.) by-Products: Phytochemical and Biofunctional Properties with Emphasis on Recent Trends and Advances. Trends Food Sci. Technol. 2020, 99, 507–519. [Google Scholar] [CrossRef]
- Cassoni, A.C.; Gómez-García, R.; Pintado, M. Valorization of Agricultural Lignocellulosic Plant Byproducts following Biorefinery Approach Toward Circular Bioeconomy. In Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production; Ramawat, K.G., Mérillon, J.-M., Arora, J., Eds.; Springer Nature: Singapore, 2023; pp. 109–137. ISBN 978-981-19-8774-8. [Google Scholar]
- Vilas-Boas, A.A.; Gómez-García, R.; Campos, D.A.; Correia, M.; Pintado, M. Integrated Biorefinery Strategy for Orange Juice By-Products Valorization: A Sustainable Protocol to Obtain Bioactive Compounds. In Food Waste Conversion; Aguilar Gonzalez, C.N., Gómez-García, R., Kuddus, M., Eds.; Springer: New York, NY, USA, 2023; pp. 113–124. ISBN 978-1-0716-3303-8. [Google Scholar]
- Hasanin, M.S.; Kassem, N.; Hassan, M.L. Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Convers. Biorefinery 2023, 13, 5015–5022. [Google Scholar] [CrossRef]
- Randis, R.; Darmadi, D.B.; Gapsari, F.; Sonief, A.A.A. Isolation and characterization of microcrystalline cellulose from oil palm fronds biomass using consecutive chemical treatments. Case Stud. Chem. Environ. Eng. 2024, 9, 100616. [Google Scholar] [CrossRef]
- Thielemans, K.; De Bondt, Y.; Van den Bosch, S.; Bautil, A.; Roye, C.; Deneyer, A.; Sels, B.F. Decreasing the degree of polymerization of microcrystalline cellulose by mechanical impact and acid hydrolysis. Carbohydr. Polym. 2022, 294, 119764. [Google Scholar] [CrossRef]
- Wan, X.; Yao, F.; Tian, D.; Shen, F.; Hu, J.; Zeng, Y.; Yang, G.; Zhang, Y.; Deng, S. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules 2019, 9, 844. [Google Scholar] [CrossRef]
- Anis Yohana, C.; Sriwidodo, S.; Marline, A. Microcrystalline cellulose as pharmaceutical excipient. In Pharmaceutical Formulation Design-Recent Practices; IntechOpen: Rijeka, Croatia, 2019; Chapter 3. [Google Scholar]
- Reddy, M.I.; Sethuramalingam, P.; Sahu, R.K. Isolation of microcrystalline cellulose from Musa paradisiaca (banana) plant leaves: Physicochemical, thermal, morphological, and mechanical characterization for lightweight polymer composite applications. J. Polym. Res. 2024, 31, 114. [Google Scholar] [CrossRef]
- Tkachenko, T.; Sheludko, Y.; Yevdokymenko, V.; Kamenskyh, D.; Khimach, N.; Povazhny, V.; Kashkovsky, V. Physico-chemical properties of flax microcrystalline cellulose. Appl. Nanosci. 2022, 12, 1007–1020. [Google Scholar] [CrossRef]
- Hosseinzadeh, J.; Abdulkhani, A.; Ashori, A.; Dmirievich, P.S.; Hajiahmad, A.; Abdolmaleki, H.; Echresh Zadeh, Z. Sustainable Production of Microcrystalline Cellulose Through Gas Phase Hydrolysis for Pharmaceutical Applications: Characterization and Life Cycle Assessment. J. Polym. Environ. 2024, 32, 2729–2745. [Google Scholar] [CrossRef]
- Ventura-Cruz, S.; Tecante, A. Nanocellulose and Microcrystalline Cellulose from Agricultural Waste: Review on Isolation and Application as Reinforcement in Polymeric Matrices. Food Hydrocoll. 2021, 118, 106771. [Google Scholar] [CrossRef]
- Divakaran, D.; Sriariyanun, M.; Basha, S.A.; Suyambulingam, I.; Sanjay, M.R.; Siengchin, S. Physico-chemical, thermal, and morphological characterization of biomass-based novel microcrystalline cellulose from Nelumbo nucifera leaf: Biomass to biomaterial approach. Biomass Convers. Biorefinery 2023, 1–15. [Google Scholar] [CrossRef]
- Bangar, S.P.; Esua, O.J.; Nickhil, C.; Whiteside, W.S. Microcrystalline Cellulose for Active Food Packaging Applications: A Review. Food Packag. Shelf Life 2023, 36, 101048. [Google Scholar] [CrossRef]
- Bangar, S.P.; Harussani, M.M.; Ilyas, R.A.; Ashogbon, A.O.; Singh, A.; Trif, M.; Jafari, S.M. Surface Modifications of Cellulose Nanocrystals: Processes, Properties, and Applications. Food Hydrocoll. 2022, 130, 107689. [Google Scholar] [CrossRef]
- Möttönen, N.B.; Karttunen, A.J. Mechanical Properties of Polypropylene—Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method. Molecules 2023, 28, 1115. [Google Scholar] [CrossRef]
- Lupidi, G.; Pastore, G.; Marcantoni, E.; Gabrielli, S. Recent Developments in Chemical Derivatization of Microcrystalline Cellulose (MCC): Pre-Treatments, Functionalization, and Applications. Molecules 2023, 28, 2009. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Mariano, M.; Rabelo, S.C.; Gouveia, R.F.; Lona, L.M.F. Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro- to a Nano-Scale View. Appl. Surf. Sci. 2018, 436, 1113–1122. [Google Scholar] [CrossRef]
- Kharismi, R.R.A.Y.; Sutriyo; Suryadi, H. Preparation and Characterization of Microcrystalline Cellulose Produced from Betung Bamboo (Dendrocalamus Asper) through Acid Hydrolysis. J. Young Pharm. 2018, 10, s79–s83. [Google Scholar] [CrossRef]
- Harini, K.; Chandra Mohan, C. Isolation and Characterization of Micro and Nanocrystalline Cellulose Fibers from the Walnut Shell, Corncob and Sugarcane Bagasse. Int. J. Biol. Macromol. 2020, 163, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Beroual, M.; Boumaza, L.; Mehelli, O.; Trache, D.; Tarchoun, A.F.; Khimeche, K. Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Esparto Grass Using Different Delignification Approaches. J. Polym. Environ. 2021, 29, 130–142. [Google Scholar] [CrossRef]
- Vallejo, M.; Cordeiro, R.; Dias, P.A.N.; Moura, C.; Henriques, M.; Seabra, I.J.; Malça, C.M.; Morouço, P. Recovery and Evaluation of Cellulose from Agroindustrial Residues of Corn, Grape, Pomegranate, Strawberry-Tree Fruit and Fava. Bioresour. Bioprocess. 2021, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.R.; Atatoprak, T.; Çabuk, D.; Sousa, F.; Pullar, R.C.; Pintado, M. Extraction and Characterisation of Cellulose Nanocrystals from Pineapple Peel. Int. J. Food Stud. 2018, 7, 24–33. [Google Scholar] [CrossRef]
- Ventura-Cruz, S.; Flores-Alamo, N.; Tecante, A. Preparation of Microcrystalline Cellulose from Residual Rose Stems (Rosa spp.) by Successive Delignification with Alkaline Hydrogen Peroxide. Int. J. Biol. Macromol. 2020, 155, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Naduparambath, S.; Purushothaman, E. Sago Seed Shell: Determination of the Composition and Isolation of Microcrystalline Cellulose (MCC). Cellulose 2016, 23, 1803–1812. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, Z.; Lin, X.; Ren, Z.; Li, B.; Zhang, Y. Preparation and Characterization of Microcrystalline Cellulose (MCC) from Tea Waste. Carbohydr. Polym. 2018, 184, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Rasheed, M.; Jawaid, M.; Karim, Z. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Molecules 2020, 25, 2824. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. A Hydrocolloid Based Biorefinery Approach to the Valorisation of Mango Peel Waste. Food Hydrocoll. 2018, 77, 142–151. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Yang, F.; Tang, C.; Huang, Q. Effect of H2O2 Bleaching Treatment on the Properties of Finished Transparent Wood. Polymers 2019, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Palacios, S.; Ruiz, H.A.; Ramos-Gonzalez, R.; Martínez, J.; Segura, E.; Aguilar, M.; Aguilera, A.; Michelena, G.; Aguilar, C.; Ilyina, A. Comparison of Physicochemical Pretreatments of Banana Peels for Bioethanol Production. Food Sci. Biotechnol. 2017, 26, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- John, I.; Yaragarla, P.; Muthaiah, P.; Ponnusamy, K.; Appusamy, A. Statistical Optimization of Acid Catalyzed Steam Pretreatment of Citrus Peel Waste for Bioethanol Production. Resour.-Effic. Technol. 2017, 3, 429–433. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Ventura-Cruz, S.; Tecante, A. Extraction and Characterization of Cellulose Nanofibers from Rose Stems (Rosa spp.). Carbohydr. Polym. 2019, 220, 53–59. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Judeh, A.A.; Hakeem, A.S.; Ul-Hamid, A.; Umar, Y.; Ahmad, A. Isolation and Characterization of Microcrystalline Cellulose from Date Seeds (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2020, 155, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Moriana, R.; Vilaplana, F.; Ek, M. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro-to Nano-Dimensions. Carbohydr. Polym. 2016, 139, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.F.; Qin, Y.H.; Ma, J.Y.; Yang, L.; Wu, Z.K.; Wang, T.L.; Wang, W.G.; Wang, C.W. Depolymerization of Microcrystalline Cellulose by the Combination of Ultrasound and Fenton Reagent. Ultrason. Sonochem. 2016, 31, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Rahimian Koloor, S.S.; Petrů, M. Micro-and Nanocellulose in Polymer Composite Materials: A Review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, A.; Allen, A.; Zoldan, J.; Huang, Y.; Chen, J.Y. Regenerated Cellulose Micro-Nano Fi Ber Matrices for Transdermal Drug Release. Mater. Sci. Eng. C 2017, 74, 485–492. [Google Scholar] [CrossRef]
- Ahmadi, M.; Madadlou, A.; Sabouri, A.A. Isolation of Micro- and Nano-Crystalline Cellulose Particles and Fabrication of Crystalline Particles-Loaded Whey Protein Cold-Set Gel. Food Chem. 2015, 174, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L.; Dutta, R.S.; Hauzel, L.; Devi, T.B.; Deka, D. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Carbohydr. Polym. 2019, 206, 336–343. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Biological Protein Precipitation: A Green Process for the Extraction of Cucumisin from Melon (Cucumis melo L. inodorus) by-Products. Food Hydrocoll. 2021, 116, 106650. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Crocker, D.; Templeton, D. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Lee, S.C.; Prosky, L.; Vries, J.W. De Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 1992, 75, 395–416. [Google Scholar] [CrossRef]
- Araújo, L.; Machado, A.R.; Sousa, S.; Ramos, Ó.L.; Ribeiro, A.B.; Casanova, F.; Pintado, M.E.; Vieira, E.; Moreira, P. Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment. Agriculture 2023, 13, 1905. [Google Scholar] [CrossRef]
Component (%) * | LMB | RHCl | RCA | RTA |
---|---|---|---|---|
Moisture | 7.89 ± 0.51 | 11.12 ± 1.13 | 11.46 ± 0.46 | 12.16 ± 0.63 |
Total protein | 8.80 ± 0.19 | 4.76 ± 0.24 | 2.77 ± 0.96 | 2.98 ± 0.13 |
Fat | 1.74 ± 0.92 | 0.46 ± 0.16 | 0.67 ± 0.11 | 0.87 ± 0.47 |
Ash | 1.67 ± 0.82 | 0.99 ± 0.11 | 1.16 ± 0.43 | 1.04 ± 0.19 |
Total carbohydrates ** | 79.90 ± 0.55 | 82.76 ± 1.29 | 83.94 ± 1.53 | 82.95 ± 1.89 |
Total fiber | 37.10 ± 0.15 | 77.71 ± 0.56 | 49.60 ± 0.26 | 55.51 ± 0.34 |
Insoluble dietary fiber | 35.51 ± 0.19 | 73.24 ± 0.45 | 46.67 ± 0.21 | 49.55 ± 0.47 |
Soluble dietary fiber | 1.60 ± 0.10 | 4.47 ± 0.95 | 2.99 ± 1.33 | 5.96 ± 0.16 |
Component (g/100 g DM) | LMB | RHCl | RCA | RTA |
---|---|---|---|---|
Cellulose | 24.24 ± 3.01 | 58.84 ± 6.00 | 40.13 ± 6.47 | 42.74 ± 7.03 |
Hemicellulose | 11.04 ± 1.92 | 27.50 ± 2.24 | 21.33 ± 1.88 | 22.81 ± 3.08 |
Lignin | 12.05 ± 1.53 | 29.46 ± 2.14 | 18.39 ± 0.72 | 20.4 ± 0.76 |
Step | Treatment | |||||
---|---|---|---|---|---|---|
Thermo-Alkaline (2% NaOH-DB) | Traditional (4.5% NaOH) | |||||
RHCl | RCA | RTA | RHCl | RCA | RTA | |
Residues | 39.21 ± 1.52 | 63.12 ± 3.88 | 57.83 ± 5.32 | 39.21 ± 1.53 | 63.12 ± 3.90 | 57.83 ± 5.34 |
Delignification | 77.50 ± 4.21 | 83.54 ± 4.01 | 69.42 ± 5.41 | 53.66 ± 3.84 | 41.74 ± 5.31 | 40.18 ± 7.65 |
Bleaching | 53.67 ± 1.94 | 49.81 ± 2.63 | 43.39 ± 1.25 | 71.59 ± 1.42 | 77.85 ± 3.73 | 77.04 ± 2.28 |
Acid hydrolysis (L-MCC) | 13.04 ± 0.86 | 8.02 ± 0.53 | 10.15 ± 0.94 | 23.81 ± 1.07 | 19.23 ± 1.33 | 14.66 ± 1.75 |
Final yield | 9.15 ± 2.87 | 4.76 ± 0.07 | 5.95 ± 0.01 | 2.58 ± 0.09 | 2.32 ± 0.10 | 3.29 ± 0.30 |
MCC Component (g/100 g DM) | Treatment | |||||
---|---|---|---|---|---|---|
Thermo-Alkaline (2% NaOH-DB) | Traditional (4.5% NaOH) | |||||
RHCl | RCA | RTA | RHCl | RCA | RTA | |
Cellulose | 48.34 ± 4.15 | 44.89 ± 6.19 | 46.31 ± 3.32 | 55.03 ± 3.12 | 51.40 ± 5.4 | 52.51 ± 4.61 |
Hemicellulose | 27.21 ± 2.63 | 23.45 ± 3.87 | 25.83 ± 3.13 | 36.21 ± 1.36 | 29.20 ± 3.9 | 33.31 ± 5.18 |
Lignin | 2.53 ± 1.18 | 3.54 ± 3.05 | 2.24 ± 5.45 | 1.76 ± 0.81 | 2.71 ± 0.32 | 1.84 ± 0.56 |
Ash | 1.21 ± 0.66 | 2.22 ± 0.51 | 1.93 ± 0.25 | 0.94 ± 0.41 | 1.74 ± 0.77 | 1.32 ± 0.22 |
Moisture | 4.43 ± 0.63 | 5.23 ± 0.72 | 4.10 ± 0.93 | 3.90 ± 0.21 | 4.14 ± 1.41 | 4.06 ± 1.08 |
Treatment (%DC) | |||||
---|---|---|---|---|---|
Sample | Hot-Acid Process (Residues) | Thermo-Alkaline (2% NaOH) | Thermo-Alkaline (2% NaOH-DB) | Traditional (4.5% NaOH) | |
LMB | 31.82 ± 1.53 | ||||
MCC-HCl | 47.75 ± 0.34 | 52.01 ± 0.30 | 61.94 ± 0.59 | 54.80 ± 5.58 | |
MCC-CA | 42.35 ± 0.53 | 49.72 ± 1.44 | 51.51 ± 0.97 | 54.87 ± 1.08 | |
MCC-TA | 44.13 ± 0.24 | 47.03 ± 1.92 | 56.53 ± 0.60 | 55.07 ± 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-García, R.; Sousa, S.C.; Ramos, Ó.L.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules 2024, 29, 3285. https://doi.org/10.3390/molecules29143285
Gómez-García R, Sousa SC, Ramos ÓL, Campos DA, Aguilar CN, Madureira AR, Pintado M. Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules. 2024; 29(14):3285. https://doi.org/10.3390/molecules29143285
Chicago/Turabian StyleGómez-García, Ricardo, Sérgio C. Sousa, Óscar L. Ramos, Débora A. Campos, Cristóbal N. Aguilar, Ana R. Madureira, and Manuela Pintado. 2024. "Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach" Molecules 29, no. 14: 3285. https://doi.org/10.3390/molecules29143285
APA StyleGómez-García, R., Sousa, S. C., Ramos, Ó. L., Campos, D. A., Aguilar, C. N., Madureira, A. R., & Pintado, M. (2024). Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules, 29(14), 3285. https://doi.org/10.3390/molecules29143285