Novel Application of Metal–Organic Frameworks as Efficient Sorbents for Solid-Phase Extraction of Chemical Warfare Agents and Related Compounds in Water Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Effect of Desorption Conditions
2.3. Effect of Amount of the MOF in SPE Columns
2.4. Method Validation
2.5. Analysis of an Environmental Sample—Water from the Baltic Sea
2.6. Comparison with Other Methods
2.7. Possible Mechanism for the Analytes Sorption on Selected MOFs
3. Experimental
3.1. Materials
3.1.1. Apparatus and GC Conditions
3.1.2. Reagents
3.2. Methodology
3.2.1. Preparation of MIL-100(Fe)
3.2.2. Preparation of ZIF-8(Zn)
3.2.3. Preparation of UiO-66(Zr)
3.2.4. Preparation of Standard Solutions
3.2.5. Sample Preparation
3.2.6. SPE Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Resolution No. A/RES/47/39. Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction. In Proceedings of the 74th Plenary Meeting, New York, NY, USA, 30 November 1992.
- Wexler, P. (Ed.) Encyclopedia of Toxicology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1–9, ISBN 978-0-12-824315-2. [Google Scholar]
- United States Chemical Weapons Convention Web Site. Available online: https://web.archive.org/web/20120103055850/http://www.cwc.gov/ (accessed on 7 October 2023).
- Vucinic, S.; Tang, C. The OPCW. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 7, pp. 121–128. [Google Scholar]
- Czub, M.; Nawała, J.; Popiel, S.; Brzeziński, T.; Maszczyk, P.; Sanderson, H.; Maser, E.; Gordon, D.; Dziedzic, D.; Dawidziuk, B.; et al. Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna. Aquat. Toxicol. 2021, 230, 105693. [Google Scholar] [CrossRef]
- Knobloch, T.; Bełdowski, J.; Böttcher, C.; Söderström, M.; Rühl, N.P.; Sternheim, J. Chemical Munitions Dumped in the Baltic Sea. Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI), HELCOM. 2013. Available online: https://helcom.fi/wp-content/uploads/2019/10/Chemical-Munitions-Dumped-in-the-Baltic-Sea-Report-of-the-ad-hoc-Expert-Group.pdf (accessed on 3 July 2024).
- Bełdowski, J.; Klusek, Z.; Szubska, M.; Turja, R.; Bulczak, A.I.; Rak, D.; Brenner, M.; Lang, T.; Kotwicki, L.; Grzelak, K.; et al. Chemical Munitions Search & Assessment-An evaluation of the dumped munitions problem in the Baltic Sea. Deep Sea Res. Part II 2016, 128, 85–95. [Google Scholar]
- Biological and Chemical Terrorism: Strategic Plan for Preparedness and Response. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4904a1.htm (accessed on 15 May 2022).
- Chalela, J.A.; Thomas Burnett, W. Chemical terrorism for the intensivist. Mil. Med. 2012, 177, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Nawała, J.; Czupryński, K.; Popiel, S.; Dziedzic, D.; Bełdowski, J. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples. Anal. Chim. Acta 2016, 933, 103–116. [Google Scholar] [CrossRef]
- Popiel, S.; Sankowska, M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. J. Chromatogr. A 2011, 1218, 8457–8479. [Google Scholar] [CrossRef]
- Jakacki, J.; Andrzejewski, J.; Przyborska, A.; Muzyka, M.; Gordon, D.; Nawała, J.; Popiel, S.; Golenko, M.; Zhurbas, V.; Paka, V. High resolution model for assessment of contamination by chemical warfare agents dumped in the Baltic Sea. Mar. Environ. Res. 2020, 161, 105079. [Google Scholar] [CrossRef]
- Vanninen, P.; Östin, A.; Bełdowski, J.; Pedersen, E.A.; Söderström, M.; Szubska, M.; Grabowski, M.; Siedlewicz, G.; Czub, M.; Popiel, S.; et al. Exposure status of sea-dumped chemical warfare agents in the Baltic Sea. Mar. Environ. Res 2020, 161, 105112. [Google Scholar] [CrossRef] [PubMed]
- Vanninen, P. (Ed.) Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament; University of Helsinki: Helsinki, Finland, 2023. [Google Scholar]
- Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Zhang, C.; Xing, H.; Yang, L.; Fei, P.; Liu, H. Development trend and prospect of solid phase extraction technology. Chin. J. Chem. Eng. 2022, 42, 245–255. [Google Scholar] [CrossRef]
- Containing, F.; Rectangular, L. Hydrothermal synthesis of a Metal-Organic Framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. Introduction to Reticular Chemistry; Wiley-VCH, Verlag GmbH & Co KG Aa: Weinheim, Germany, 2019. [Google Scholar]
- Samanidou, V.F.; Deliyanni, E.A. Metal Organic Frameworks, Synthesis and Application. Molecules 2020, 25, 960. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.; Navalon, S. (Eds.) Metal-Organic Frameworks: Application in Spearations and Catalysis; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Augustus, E.N.; Nimibofa, A.; Kesiye, I.A.; Donbebe, W. Metal-organic Frameworks as Novel Adsorbents: A Preview. Am. J. Environ. Prot. 2017, 5, 61–67. [Google Scholar]
- Gutiérrez-Serpa, A.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Metal–organic frameworks as key materials for solid-phase microextraction devices—A review. Separations 2019, 6, 47. [Google Scholar] [CrossRef]
- Vellingiri, K.; Philip, L.; Kim, K.-H. Metal–organic frameworks as media for the catalytic degradation of chemical warfare agents. Coord. Chem. Rev. 2017, 353, 159–179. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52, 5367–5377. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Yang, W.; Gu, F.; Xu, H.; Wang, T.; Sun, D.; Hou, X. Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta 2019, 194, 514–521. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Q.; Han, Q.; Wan, W.; Ding, M. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 2016, 141, 4219–4226. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M. Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Anal. Chim. Acta 2017, 965, 36–53. [Google Scholar] [CrossRef]
- Pang, J.; Liao, Y.; Huang, X.; Ye, Z.; Yuan, D. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples. Talanta 2019, 199, 499–506. [Google Scholar] [CrossRef]
- Ghani, M.; Font Picó, M.F.; Salehinia, S.; Palomino Cabello, C.; Maya, F.; Berlier, G.; Saraji, M.; Cerdà, V.; Turnes Palomino, G. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. J. Chromatogr. A 2017, 1488, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Dou, Y.; Gao, J.; Gao, Y.; Fan, W.; Li, G.; You, J. Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. J. Chromatogr. A 2020, 1619, 460949. [Google Scholar] [CrossRef]
- Bi, J.R.; Zheng, Y.; Fang, L.Q.; Guan, Y.C.; Ma, A.Q.; Wu, J. Nano-Sized MIL-100(Fe) as a Carrier Material for Nitidine Chloride Reduces Toxicity and Enhances Anticancer Effects In Vitro. J. Inorg. Organomet. Polym. 2020, 30, 3388–3395. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Zhang, Q.; Wang, T.; Hou, X. Macro-microporous zeolitic imidazole framework-8/cellulose aerogel for semi-automated pipette tip solid phase extraction of fluoroquinolones in water. Anal. Chim. Acta 2021, 1184, 338984. [Google Scholar] [CrossRef]
- Shang, H.-B.; Yang, C.-X.; Yan, X.-P. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J. Chromatogr. A 2014, 1357, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Leng, X.; Luo, J.; You, L.; Qu, C.; Dong, X.; Huang, H.; Yin, X.; Ni, J. In vitro toxicity study of a porous iron(III) metal-organic framework. Molecules 2019, 24, 1211. [Google Scholar] [CrossRef]
- Materials Center. Available online: http://www.chm.tu-dresden.de/ac1/materials_center/adsorbentien_engl.shtml (accessed on 6 May 2023).
- Czub, M.; Nawała, J.; Popiel, S.; Dziedzic, D.; Brzeziński, T.; Maszczyk, P.; Sanderson, H.; Fabisiak, J.; Bełdowski, J.; Kotwicki, L. Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. Mar. Environ. Res. 2020, 161, 105077. [Google Scholar] [CrossRef]
- Lian, X.; Yan, B. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. ACS Appl. Mater. Interfaces 2018, 10, 14869–14876. [Google Scholar] [CrossRef]
- Dhummakupt, E.S.; Carmany, D.O.; Mach, P.M.; Tovar, T.M.; Ploskonka, A.M.; Demond, P.S.; DeCoste, J.B.; Glaros, T. Metal-Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry. ACS Appl. Mater. Interfaces 2018, 10, 8359–8365. [Google Scholar] [CrossRef]
- Ruffley, J.P.; Goodenough, I.; Luo, T.-Y.; Richard, M.; Borguet, E.; Rosi, N.L.; Johnson, J.K. Design, Synthesis, and Characterization of Metal-Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. J. Phys. Chem. C 2019, 123, 19748–19758. [Google Scholar] [CrossRef]
- Abuzalat, O.; Homayoonnia, S.; Wong, D.; Tantawy, H.R.; Kim, S. Facile and rapid synthesis of functionalized Zr-BTC for the optical detection of the blistering agent simulant 2-chloroethyl ethyl sulfide (CEES). Dalton Trans. 2021, 50, 3261–3268. [Google Scholar] [CrossRef]
- Yan, X.; Qu, H.; Chang, Y.; Pang, W.; Duan, X. A prototype portable instrument employing micro-preconcentrator and FBAR sensor for the detection of chemical warfare agents. Nanotechnol. Precis. Eng. 2022, 5, 013005. [Google Scholar] [CrossRef]
- Wong, D.; Kim, S.; Abuzalat, O. In situ encapsulation of ZrQ in UiO-66 (Zr-BDC) for pore size control to enhance detection of a nerve agent simulant dimethyl methyl phosphonate. Appl. Organomet. Chem. 2022, 36, e6769. [Google Scholar] [CrossRef]
- Yang, S.; Chen, C.; Yan, Z.; Cai, Q.; Yao, S. Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters. J. Sep. Sci. 2013, 36, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Jia, X.; Zhao, P.; Wang, T.; Wang, J.; Huang, P.; He, L.; Hou, X. A combined experimental/computational study on metal-organic framework MIL-101(Cr) as a SPE sorbent for the determination of sulphonamides in environmental water samples coupling with UPLC-MS/MS. Talanta 2016, 154, 581–588. [Google Scholar] [CrossRef]
- Sinha Roy, K.; Goud, D.R.; Chandra, B.; Dubey, D.K. Efficient Extraction of Sulfur and Nitrogen Mustards from Nonpolar Matrix and an Investigation on Their Sorption Behavior on Silica. Anal. Chem. 2018, 90, 8295–8299. [Google Scholar] [CrossRef]
- Roy, K.S.; Purohit, A.K.; Chandra, B.; Goud, D.R.; Pardasani, D.; Dubey, D.K. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix. Anal. Chem. 2018, 90, 7025–7032. [Google Scholar] [CrossRef]
- Jõul, P.; Vaher, M.; Kuhtinskaja, M. Evaluation of carbon aerogel-based solid-phase extraction sorbent for the analysis of sulfur mustard degradation products in environmental water samples. Chemosphere 2018, 198, 460–468. [Google Scholar] [CrossRef]
- Ke, F.; Yi, J.; Zhang, S.; Zhou, S.; Ravikovitch, P.I.; Kruk, M. Structures and dimensions of micelle-templated nanoporous silicas derived from swollen spherical micelles of temperature-dependent size. J. Colloid Interface Sci. 2019, 544, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Gwardiak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Benzene adsorption on synthesized and commercial metal–organic frameworks. J. Porous Mater. 2019, 26, 775–783. [Google Scholar] [CrossRef]
- Jagiello, J.; Olivier, J.P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 2013, 55, 70–80. [Google Scholar] [CrossRef]
- Guesh, K.; Caiuby, C.A.D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017, 17, 1806–1813. [Google Scholar] [CrossRef]
- Zhao, J.; Nunn, W.T.; Lemaire, P.C.; Lin, Y.; Dickey, M.D.; Oldham, C.J.; Walls, H.J.; Peterson, G.W.; Losego, M.D.; Parsons, G.N. Facile Conversion of Hydroxy Double Salts to Metal-Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. J. Am. Chem. Soc. 2015, 137, 13756–13759. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.J.; Brown, Z.J.; Colón, Y.J.; Siu, P.W.; Scheidt, K.A.; Snurr, R.Q.; Hupp, J.T.; Farha, O.K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449–9451. [Google Scholar] [CrossRef]
- Bondzic, A.M.; Lazarevic Pasti, T.D.; Pasti, I.A.; Bondzic, B.P.; Momcilovic, M.D.; Loosen, A.; Parac-Vogt, T.N. Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. ACS Appl. Nano Mater. 2022, 5, 3312–3324. [Google Scholar] [CrossRef]
Synthesized | Commercial | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MOF | SBET m2 g−1 | Vt cm3 g−1 | Vultra cm3 g−1 | Vmicro cm3 g−1 | Vmeso cm3 g−1 | Micro Porosity % | w nm | SBET m2 g−1 | Pore Opening nm | Pore Diameter nm | Ref. |
ZIF-8(Zn) | 1479 | 0.76 | 0.10 | 0.67 | 0.09 | 88 | 0.82 | 1626 | 0.34 | 1.16 | [20] |
MIL-100(Fe) | 805 | 0.46 | 0.14 | 0.32 | 0.14 | 70 | 0.64 1.93 | 2155 | 0.5 0.9 | 2.5 2.9 | |
UiO-66(Zr) | 392 | 0.33 | 0.15 | 0.19 | 0.14 | 58 | 0.55 | 1390 | 0.6 | 0.8 1.1 |
Analyte | LOD ng mL−1 | LOQ ng mL−1 | Enrichment Factor (EF) | LOD with EF ng mL−1 | LOQs with EF ng mL−1 | Linear Range ng mL−1 | R2 | Precision (RSD, n = 7), 10 ng mL−1, (50 ng mL−1 for TPA-O) Intra-Day, % |
---|---|---|---|---|---|---|---|---|
DBS | 2.11 | 6.33 | 5 | 0.42 | 1.27 | 1.27–1000 | 0.9981 | 7.13 |
TDG, 2 TMS Derivative | 0.19 | 0.57 | 5 | 0.04 | 0.11 | 0.11–1000 | 0.9969 | 2.01 |
TDGO, 2 TMS Derivative | 3.84 | 11.51 | 5 | 0.77 | 2.30 | 2.30–1000 | 0.9954 | 1.90 |
1,4-Dithiane | 1.24 | 3.71 | 5 | 0.25 | 0.74 | 0.74–1000 | 0.9998 | 7.98 |
1,4-Thioxane | 1.71 | 5.13 | 5 | 0.34 | 1.03 | 1.03–1000 | 0.9999 | 8.01 |
DPAA, PrSH Derivative | 3.12 | 9.35 | 5 | 0.62 | 1.87 | 1.87–1000 | 0.9988 | 1.73 |
TPAO | 37.69 | 113.08 | 5 | 7.54 | 22.62 | 22.62–1000 | 0.9997 | 8.45 |
PAA, 2 PrSH Derivative | 1.32 | 3.97 | 5 | 0.26 | 0.79 | 0.79–1000 | 0.9981 | 1.18 |
CAP | 1.77 | 5.30 | 5 | 0.35 | 1.06 | 1.06–1000 | 0.9974 | 8.32 |
Lewisite I, 2 PrSH Derivative | 6.38 | 19.14 | 5 | 1.28 | 3.83 | 3.83–1000 | 0.9900 | 2.43 |
TMP | 1.03 | 3.08 | 5 | 0.21 | 0.62 | 0.62–1000 | 0.9967 | 7.54 |
TEP | 1.28 | 3.84 | 5 | 0.26 | 0.77 | 0.77–1000 | 0.9946 | 6.04 |
Malathion | 7.22 | 21.66 | 5 | 1.44 | 4.33 | 4.33–1000 | 0.9996 | 5.98 |
Analyte | MOF | Spiked ng mL−1 | Recovery % | RSD (n = 5) % |
---|---|---|---|---|
DBS | MIL-100(Fe) | 10 | 8.01 | 8.43 |
20 | 8.23 | 7.99 | ||
TDG, 2 TMS Derivative | MIL-100(Fe) | 10 | 7.35 | 10.14 |
20 | 8.02 | 5.85 | ||
TDGO, 2 TMS Derivative | MIL-100(Fe) | 10 | 20.58 | 5.11 |
20 | 20.54 | 2.49 | ||
1,4-Dithiane | UiO-66(Zr) | 10 | 40.12 | 6.90 |
20 | 38.43 | 9.58 | ||
1,4-Thioxane | MIL-100(Fe) | 10 | 7.14 | 7.54 |
20 | 9.15 | 7.90 | ||
DPAA, PrSH Derivative | ZIF-8(Zn) | 10 | 104.83 | 4.47 |
20 | 102.17 | 1.35 | ||
TPAO | MIL-100(Fe) | 50 | 42.77 | 4.30 |
100 | 45.16 | 7.07 | ||
PAA, 2 PrSH Derivative | ZIF-8(Zn) | 10 | 34.95 | 5.41 |
20 | 30.15 | 10.15 | ||
CAP | MIL-100(Fe) | 10 | 99.31 | 8.03 |
20 | 101.15 | 1.45 | ||
Lewisite I, 2 PrSH Derivative | MIL-100(Fe) | 10 | 19.61 | 7.67 |
20 | 20.69 | 8.82 | ||
Malathion | MIL-100(Fe) | 10 | 66.59 | 2.55 |
20 | 67.08 | 3.44 |
MOF/Sorbent | Analyte | Matrix | Method | LOD | Ref. |
---|---|---|---|---|---|
Eu or Gd@UiO-67(Hf) composite | MPA, DMMP, DIMP, DEMP, EMP, TEP, CEES, EtOH | Wastewater and Plants | Luminescent Sensing Experiment (Spectrophotometer) | 0.4 ppm | [40] |
The die-cut glass fiber filters treated with MOFs (HKUST-1, UiO-66, and 67) | GB, GD, GF, MPO | − | Paper spray mass spectrometry (PS-MS) | − | [41] |
UiO-67, 67-NH2 and 67-CH3 | DMMP | − | Computational and practical study of adsorption capabilities | − | [42] |
Zr-BTC | CEES | − | UV-Vis spectrometer | 48 ppb | [43] |
UiO-66 | DMMP | Gas samples | Portable gas sensing, MEMS-MOF, FBAR sensor | 2.64 ppm | [44] |
UiO-66, and ZrQ@UiO-66 | DMMP | Ethanol | Fluorescence quenching | 8.3 nM | [45] |
MOF-5 | PAHs | Environmental water | HPLC-FLD | 0.4–40 ng/L | [46] |
MIL-101(Cr)@Graphene hybrid aerogel | NSAIDs | Deionized water, Tap water | HPLC-UV-Vis | 0.01–0.10 ng/mL | [29] |
MIL-101(Cr) and (Fe) | 4 sulphonamides | Environmental water | UPLC-MS/MS | 0.03–0.08 µg/L | [47] |
Polymeric (MAA + EGDMA) | Sulfur and Nitrogen mustards | Non-polar organic mediums | GC-MS | 0.075–0.150 µg/mL | [48] |
Polymeric, Poly(MAA-co-EGDMA) | Nerve agents and organophosphorus esters | Non-polar organic matrices (n-hexane) | GC-MS | 0.015–0.075 µg/mL | [49] |
Carbon aerogel (CA) | 10 degradation products of HD | Environmental water samples | HPLC-DAD and CE-DAD | 0.17–0.50 µM | [50] |
MIL-100(Fe), ZIF-8(Zn), UiO-66(Zr) | 13 CWAs, their degradation products, or simulants | Water | GC-MS/MS | 0.04–7.54 ng/mL | This work-study |
No. | Analyte | Estimated Particle Size (Length) nm |
---|---|---|
1 | DBS | 1.22 |
2 | TDG | 0.92 |
3 | TDGO | 0.91 |
4 | 1,4-Dithiane | 0.53 |
5 | 1,4-Thioxane | 0.50 |
6 | DPAA (Clark I) | 0.93 |
7 | TPA-O | 0.98 |
8 | PAA | 0.72 |
9 | CAP | 0.79 |
10 | Lewisite I | 0.56 |
11 | TMP | 0.61 |
12 | TEP | 0.88 |
13 | Malathion | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, J.; Popiel, S.; Nawała, J.; Szczęśniak, B.; Choma, J.; Zasada, D. Novel Application of Metal–Organic Frameworks as Efficient Sorbents for Solid-Phase Extraction of Chemical Warfare Agents and Related Compounds in Water Samples. Molecules 2024, 29, 3259. https://doi.org/10.3390/molecules29143259
Woźniak J, Popiel S, Nawała J, Szczęśniak B, Choma J, Zasada D. Novel Application of Metal–Organic Frameworks as Efficient Sorbents for Solid-Phase Extraction of Chemical Warfare Agents and Related Compounds in Water Samples. Molecules. 2024; 29(14):3259. https://doi.org/10.3390/molecules29143259
Chicago/Turabian StyleWoźniak, Jakub, Stanisław Popiel, Jakub Nawała, Barbara Szczęśniak, Jerzy Choma, and Dariusz Zasada. 2024. "Novel Application of Metal–Organic Frameworks as Efficient Sorbents for Solid-Phase Extraction of Chemical Warfare Agents and Related Compounds in Water Samples" Molecules 29, no. 14: 3259. https://doi.org/10.3390/molecules29143259
APA StyleWoźniak, J., Popiel, S., Nawała, J., Szczęśniak, B., Choma, J., & Zasada, D. (2024). Novel Application of Metal–Organic Frameworks as Efficient Sorbents for Solid-Phase Extraction of Chemical Warfare Agents and Related Compounds in Water Samples. Molecules, 29(14), 3259. https://doi.org/10.3390/molecules29143259