Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WEAB
2.3. Methods
2.3.1. LSCM
2.3.2. DSC
2.3.3. DMA
2.3.4. Viscosity–Time Behavior
2.3.5. Tensile Properties
3. Results and Discussion
3.1. Viscosity versus Time
3.2. Glass Transition Temperature
3.2.1. Differential Scanning Calorimetry
3.2.2. Dynamic Mechanical Analysis
3.3. Damping Properties
3.4. Storage Modulus
3.5. Cole–Cole Plots
3.6. Mechanical Properties
3.7. Phase-Separated Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Li, C.; Wang, Q. Thermosetting polymer modified asphalts: Current status and challenges. Polym. Rev. 2024, 64, 690–759. [Google Scholar] [CrossRef]
- Balala, B. Studies leading to choice of epoxy asphalt for pavement on steel orthotropic bridge deck of San Mateo-Hayward Bridge. Highw. Res. Rec. 1969, 287, 12–18. [Google Scholar]
- Maggenti, R.; Shatnawi, S. Initial and replacement riding surface for the orthotropic San Mateo/Hayward Bridge. Bridge Struct. 2017, 13, 81–92. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Liu, J.; Chen, S.; Wang, J.; Wang, X. Advances in the application and research of steel bridge deck pavement. Structures 2022, 45, 1156–1174. [Google Scholar] [CrossRef]
- Xie, H.; Li, C.; Wang, Q. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr. Build. Mater. 2022, 326, 126792. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Gong, J.; Han, X.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. Thermal and bonding properties of epoxy asphalt bond coats. J. Therm. Anal. Calorim. 2022, 147, 2013–2025. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, Z.; Chen, L.; Zhang, M.; Zhang, X.; Sun, J.; Hu, J. Evaluation of epoxy asphalt rubber with silane coupling agent used as tack coat for seasonally frozen orthotropic steel bridge decks. Constr. Build. Mater. 2020, 241, 117957. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Ding, G.; Si, J.; Zhang, M.; Jiang, Z. Dynamic mechanical behavior of cold-mixed epoxy asphalt under high strain rates. J. Mater. Civ. Eng. 2023, 35, 04023068. [Google Scholar] [CrossRef]
- Si, J.; Li, Y.; Yu, X. Curing behavior and mechanical properties of an eco-friendly cold-mixed epoxy asphalt. Mater. Struct. 2019, 52, 81. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Si, J.; Zhao, S.; Wei, W.; Ding, G. Comparative analysis of cold-mixed epoxy asphalt models for molecular dynamics simulation: Structural, curing and mechanical properties. Mater. Struct. 2024, 57, 61. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Zhang, Z.; Du, C.; Liu, P.; Oeser, M. Influence of preparation methods on the performance of cold-mixed epoxy bitumen. Mater. Struct. 2021, 54, 74. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Z.; Yang, X.; Lu, Q.; Yin, J. Construction technology of warm and hot mix epoxy asphalt paving for long-span steel bridge. J. Constr. Eng. Manag. 2019, 145, 04019074. [Google Scholar] [CrossRef]
- Wang, Q.; Min, Z.; Wong, Y.D.; Shi, Z.; Huang, W. Aging degradation of anhydride-cured epoxy asphalt binder subjected to ultraviolet exposure. Int. J. Pavement Eng. 2023, 24, 2171037. [Google Scholar] [CrossRef]
- Li, K.; Xie, J.; Pan, Y.; Liu, Y.; Wang, Z. A novel cold-mixed epoxy concrete and its comparison with hot-mixed epoxy asphalt concrete. Adv. Mater. Sci. Eng. 2022, 2022, 9626824. [Google Scholar] [CrossRef]
- Nie, W.; Wang, D.; Yan, J.; Zhang, X. Optimal design of mix proportion of hot-mix epoxy asphalt mixture for steel bridge decks and its anti-slip performance. Buildings 2022, 12, 437. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Ma, T.; Gu, L.; Shi, S. Study on the performances of epoxy asphalt binders influenced by the dosage of epoxy resin and its application to steel bridge deck pavement. Constr. Build. Mater. 2024, 432, 136683. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, R.; Wang, R.; Xi, Z.; Yuan, Z.; Zhang, J.; Wang, Q. Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements. Constr. Build. Mater. 2021, 294, 123598. [Google Scholar] [CrossRef]
- Li, K.; Xie, J.; Pan, Y.; Wang, Z.; Liu, Y. Influence of short-term heat treatment on the second-order curing epoxy tack coat in steel deck pavements. Constr. Build. Mater. 2022, 357, 129266. [Google Scholar] [CrossRef]
- Petrie, E. Epoxy Adhesives Formulations; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Li, K.; Xie, J.; Liu, Y.; Pan, Y.; Tan, Y. Development and characterization of anti-cracking epoxy asphalt for steel deck pavement. Constr. Build. Mater. 2024, 438, 137047. [Google Scholar] [CrossRef]
- Zhu, L.; Jing, H.; Luo, C.; Li, M.; Deng, J.; Yan, L. Modification of epoxy asphalt by low-doping PE-GMA and PE-MAH. J. Appl. Polym. Sci. 2024, 141, e55143. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, Y.; Chen, B.; Huang, P.; Yi, X.; Wu, Y.; Wang, H.; Yang, J.; Huang, W. Material design and mechanism explanation of epoxy asphalt toughened with SBS/CR and CSR. J. Mater. Civ. Eng. 2024, 36, 04024215. [Google Scholar] [CrossRef]
- Zeng, G.; Xu, W.; Huang, H.; Zhang, X. Study on the microstructure and properties of hot-mix epoxy asphalt. Int. J. Pavement Res. Technol. 2019, 12, 147–153. [Google Scholar] [CrossRef]
- Liu, M.; Hu, J.; Sun, J.; Li, Y.; Luo, S. Characterization of roadway epoxy asphalt binder with different epoxy contents. J. Mater. Civ. Eng. 2023, 35, 04023144. [Google Scholar] [CrossRef]
- Luo, S.; Sun, J.; Hu, J.; Liu, S. Performance evolution mechanism of hot-mix epoxy asphalt binder and mixture based on component characteristics. J. Mater. Civ. Eng. 2022, 34, 04022235. [Google Scholar] [CrossRef]
- Tian, J.; Luo, S.; Lu, Q.; Liu, S. Effects of epoxy resin content on properties of hot mixing epoxy asphalt binders. J. Mater. Civ. Eng. 2022, 34, 04022145. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Jiang, Y.; Li, C.; Xi, Z.; Cai, J.; Xie, H. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr. Build. Mater. 2018, 165, 163–172. [Google Scholar] [CrossRef]
- D’Melo, D.; Taylor, R. Constitution and structure of bitumens. In The Shell Bitumen Handbook; Hunter, R.N., Self,, A., Read,, J., Eds.; ICE Publishing: London, UK, 2015; pp. 47–63. [Google Scholar]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef]
- Blank, W.J.; He, Z.A.; Picci, M. Catalysis of the epoxy-carboxyl reaction. J. Coat. Technol. 2002, 74, 33–41. [Google Scholar] [CrossRef]
- Hamerton, I.; Howlin, B.J.; Jepson, P. Metals and coordination compounds as modifiers for epoxy resins. Coord. Chem. Rev. 2002, 224, 67–85. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Thomas, S. (Eds.) Introduction: Polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. In Compatibilization of Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–29. [Google Scholar]
- Brostow, W.; Chiu, R.; Kalogeras, I.M.; Vassilikou-Dova, A. Prediction of glass transition temperatures: Binary blends and copolymers. Mater. Lett. 2008, 62, 3152–3155. [Google Scholar] [CrossRef]
- Startsev, O.; Vapirov, Y.M.; Lebedev, M.; Kychkin, A. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mech. Compos. Mater. 2020, 56, 227–240. [Google Scholar] [CrossRef]
- Jing, F.; Wang, R.; Zhao, R.; Li, C.; Cai, J.; Ding, G.; Wang, Q.; Xie, H. Enhancement of bonding and mechanical performance of epoxy asphalt bond coats with graphene nanoplatelets. Polymers 2023, 15, 412. [Google Scholar] [CrossRef] [PubMed]
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Fan, R.; Meng, G.; Yang, J.; He, C. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles. J. Sound Vib. 2009, 319, 58–76. [Google Scholar] [CrossRef]
- Yao, S. Means to widen the temperature range of high damping behavior by IPN formation. In Advances in Interpenetrating Polymer Networks; Klempner, D., Frisch, K.C., Eds.; Technomic Publishing Company: Lancaster, PA, USA, 1994; Volume IV, pp. 243–286. [Google Scholar]
- Chang, M.C.O.; Thomas, D.A.; Sperling, L.H. Characterization of the area under loss modulus and tan δ–temperature curves: Acrylic polymers and their sequential interpenetrating polymer networks. J. Appl. Polym. Sci. 1987, 34, 409–422. [Google Scholar] [CrossRef]
- Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Duncan, J. Principles and applications of mechanical thermal analysis. In Principles and Applications of Thermal Analysis; Gabbott, P., Ed.; Blackwell Publishing: Oxford, UK, 2008; pp. 119–163. [Google Scholar]
- Hu, R.; Dimonie, V.L.; El-Aasser, M.S.; Pearson, R.A.; Hiltner, A.; Mylonakis, S.G.; Sperling, L.H. Multicomponent latex IPN materials: 2. Damping and mechanical behavior. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 1501–1514. [Google Scholar] [CrossRef]
- Peiliang, C.; Jianying, Y.; Shuanfa, C. Effects of epoxy resin contents on the rheological properties of epoxy-asphalt blends. J. Appl. Polym. Sci. 2010, 118, 3678–3684. [Google Scholar] [CrossRef]
- Taguet, A. Rheological characterization of compatibilized polymer blends. In Compatibilization of Polymer Blends; Ajitha, A.R., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 453–487. [Google Scholar]
- Su, W.; Han, X.; Gong, J.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. Toughening epoxy asphalt binder using core-shell rubber nanoparticles. Constr. Build. Mater. 2020, 258, 119716. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and toughness of polymers and other materials. Mater. Lett. 2015, 159, 478–480. [Google Scholar] [CrossRef]
- Robeson, L.M. Polymer Blends a Comprehensive Review; Hanser Publishers: München, Germany, 2007. [Google Scholar]
Property | Standard | Value |
---|---|---|
Penetration (25 °C, 0.1 mm) | ASTM D5-06 | 73 |
Ductility (10 °C, cm) | ASTM D113-07 | 15.8 |
Softening point (°C) | ASTM D36-06 | 48.2 |
Viscosity (120 °C, mPa·s) | ASTM D4402-06 | 173 |
Saturates (%) | ASTM D4124-09 | 20.0 |
Aromatics (%) | 31.5 | |
Resins (%) | 37.1 | |
Asphaltenes (%) | 6.8 |
ER (%) | CD (mol/m3) | Tg of Bitumen (°C) | Tg of Cured Epoxy (°C) | |||
---|---|---|---|---|---|---|
E″ | tan δ | E″ | tan δ | |||
50 | 30.8 | −10.6 | −6.7 | 18.5 | 29.8 | |
60 | 28.3 | −15.6 | −11.5 | 13.4 | 24.5 | |
70 | 28.1 | −16.4 | −15.5 | 11.8 | 22.1 | |
80 | 6.8 | −18.9 | −20.6 | 8.4 | 20.4 | |
90 | 3.4 | − | − | 7.3 | 18.5 |
ER (%) | (tan δ)max | ΔT (°C) | At (K) |
---|---|---|---|
50 | 1.49 | 40.9 (14.5–55.4) | 45.4 |
60 | 1.60 | 41.9 (10.8–52.7) | 46.2 |
70 | 1.66 | 44.5 (8.5–53.0) | 48.0 |
80 | 1.81 | 57.2 (6.8–64.0) | 59.9 |
90 | 1.83 | 64.4 (5.0–69.4) | 69.2 |
ER (wt%) | dn (μm) | dw (μm) | PDI |
---|---|---|---|
10 | 6.6 ± 0.5 | 6.8 ± 0.4 | 1.03 |
20 | 13.1 ± 0.9 | 15.2 ± 1.1 | 1.16 |
30 | 39.3 ± 2.7 | 49.8 ± 2.3 | 1.27 |
40 | 32.3 ± 1.4 | 36.8 ± 1.8 | 1.14 |
50 | 15.4 ± 1.4 | 19.6 ± 1.7 | 1.27 |
60 | 17.1 ± 0.5 | 22.7 ± 0.9 | 1.33 |
70 | 17.2 ± 0.5 | 35.6 ± 3.1 | 2.06 |
80 | 14.0 ± 0.9 | 21.3 ± 0.2 | 1.52 |
90 | 6.2 ± 0.1 | 6.4 ± 0.2 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Yang, H.; Cui, X.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations. Molecules 2024, 29, 3251. https://doi.org/10.3390/molecules29143251
Wu C, Yang H, Cui X, Cai J, Yuan Z, Zhang J, Xie H. Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations. Molecules. 2024; 29(14):3251. https://doi.org/10.3390/molecules29143251
Chicago/Turabian StyleWu, Chengwei, Haocheng Yang, Xinpeng Cui, Jun Cai, Zuanru Yuan, Junsheng Zhang, and Hongfeng Xie. 2024. "Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations" Molecules 29, no. 14: 3251. https://doi.org/10.3390/molecules29143251
APA StyleWu, C., Yang, H., Cui, X., Cai, J., Yuan, Z., Zhang, J., & Xie, H. (2024). Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations. Molecules, 29(14), 3251. https://doi.org/10.3390/molecules29143251