The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders
Abstract
:1. Introduction
2. Anti-Aging Effects and UV Protection
3. Anti-Melanogenesis and Skin Whitening
4. Wound Healing, Reduction of Skin Irritation and Scarring Prevention
5. Protection against Skin Oxidation, Anti-Inflammatory and Antiseptic Properties
6. Bioavailability, Safety of Use, and Potential Harmful Effects
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hatalska, N. Mapa Trendów. 2024. Available online: https://infuture.institute/mapa-trendow/ (accessed on 17 May 2024).
- Szulc, J.; Błaszak, B.; Wenda-Piesik, A.; Gozdecka, G.; Zary-Sikorska, E.; Bąk, M.; Bauza-Kaszewska, J. Zero Waste Technology of Soybeans Processing. Sustainability 2023, 15, 14873. [Google Scholar] [CrossRef]
- Hejna, A.; Szulc, J.; Błaszak, B. Brewers’ Spent Grain—Simply Waste or Potential Ingredient of Functional Food? Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2024, 30, 5–23. [Google Scholar] [CrossRef]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. 5—Extraction of Bioactive Compounds from Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 105–135. ISBN 978-0-12-809870-7. [Google Scholar]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Acree, W.E. On the Solubility of Quercetin. J. Mol. Liq. 2014, 197, 157–159. [Google Scholar] [CrossRef]
- Rich, G.T.; Buchweitz, M.; Winterbone, M.S.; Kroon, P.A.; Wilde, P.J. Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids. Nutrients 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Antonio Tamayo-Ramos, J.; Martel, S.; Barros, R.; Bol, A.; Atilhan, M.; Aparicio, S. On the Behavior of Quercetin + Organic Solvent Solutions and Their Role for C60 Fullerene Solubilization. J. Mol. Liq. 2022, 345, 117714. [Google Scholar] [CrossRef]
- Lakhanpal, P.; Rai, D.K. Quercetin: A Versatile Flavonoid. Internet J. Med. Update 2007, 2. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Oku, S.; Aoki, K.; Honjo, M.; Muro, T.; Tsukazaki, H. Temporal Changes in Quercetin Accumulation and Composition in Onion (Allium cepa L.) Bulbs and Leaf Blades. Hortic. J. 2021, 90, 326–333. [Google Scholar] [CrossRef]
- Mogren, L.M.; Olsson, M.E.; Gertsson, U.E. Quercetin Content in Field-Cured Onions (Allium cepa L.): Effects of Cultivar, Lifting Time, and Nitrogen Fertilizer Level. J. Agric. Food Chem. 2006, 54, 6185–6191. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant Polyphenol Content, Soil Fertilization and Agricultural Management: A Review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Hallmann, E.; Góralska-Walczak, R.; Kopczyńska, K.; Rembiałkowska, E.; Górski, J.; Leifert, C.; Rempelos, L.; et al. The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion. Agronomy 2021, 11, 883. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; et al. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan. Nutrients 2015, 7, 2345–2358. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Stecher, G.; Huck, C.W.; Popp, M.; Bonn, G.K. Determination of Flavonoids and Stilbenes in Red Wine and Related Biological Products by HPLC and HPLC-ESI-MS-MS. Fresenius J. Anal. Chem. 2001, 371, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, M.; Alizadeh, M.; Ebrahimi, P. Evaluation of the Total Phenolics and Quercetin Content of Foliage in Mycorrhizal Grape (Vitis Vinifera L.) Varieties and Effect of Postharvest Drying on Quercetin Yield. Ind. Crops Prod. 2012, 38, 160–165. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; Tommasi, N.D. Polyphenol Constituents and Antioxidant Activity of Grape Pomace Extracts from Five Sicilian Red Grape Cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Osojnik Črnivec, I.G.; Skrt, M.; Šeremet, D.; Sterniša, M.; Farčnik, D.; Štrumbelj, E.; Poljanšek, A.; Cebin, N.; Pogačnik, L.; Smole Možina, S.; et al. Waste Streams in Onion Production: Bioactive Compounds, Quercetin and Use of Antimicrobial and Antioxidative Properties. Waste Manag. 2021, 126, 476–486. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Yao, L.; Gu, W.; Zhao, S.; Shen, Z.; Lin, Z.; Liu, W.; Yan, T. Pharmacological Activity of Quercetin: An Updated Review. Evid. Based Complement. Altern. Med. 2022, 2022, 3997190. [Google Scholar] [CrossRef] [PubMed]
- Naidu, N.; Biyani, D.; Umekar, M.; Burley, V. An Overview of a Versatile Compound: Quercetin. Int. J. Pharm. Sci. Rev. Res. 2021, 69, 248–257. [Google Scholar] [CrossRef]
- Jan, A.T.; Kamli, M.; Murtaza, I.; Singh, J.; Ali, A.; Haq, Q. Dietary Flavonoid Quercetin and Associated Health Benefits—An Overview. Food Rev. Int. 2010, 26, 302–317. [Google Scholar] [CrossRef]
- Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic Application of Quercetin in Aging-Related Diseases: SIRT1 as a Potential Mechanism. Front. Immunol. 2022, 13, 943321. [Google Scholar] [CrossRef] [PubMed]
- Amić, A.; Lučić, B.; Stepanić, V.; Marković, Z.; Marković, S.; Dimitrić Marković, J.M.; Amić, D. Free Radical Scavenging Potency of Quercetin Catecholic Colonic Metabolites: Thermodynamics of 2H+/2e− Processes. Food Chem. 2017, 218, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, C.; Lissi, E.A. Comparison of the Free Radical Scavenger Activities of Quercetin and Rutin An Experimental and Theoretical Study. Can. J. Chem. 2004, 82, 1668–1673. [Google Scholar] [CrossRef]
- Sato, S.; Mukai, Y. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. J. Inflamm. Res. 2020, 13, 421–431. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Lim, H.-J.; Kang, S.-H.; Song, Y.-J.; Jeon, Y.-D.; Jin, J.-S. Inhibitory Effect of Quercetin on Propionibacterium Acnes-Induced Skin Inflammation. Int. Immunopharmacol. 2021, 96, 107557. [Google Scholar] [CrossRef] [PubMed]
- Maramaldi, G.; Togni, S.; Pagin, I.; Giacomelli, L.; Cattaneo, R.; Eggenhöffner, R.; Burastero, S.E. Soothing and Anti-Itch Effect of Quercetin Phytosome in Human Subjects: A Single-Blind Study. Clin. Cosmet. Investig. Dermatol. 2016, 9, 55–62. [Google Scholar] [CrossRef]
- Shin, E.J.; Lee, J.S.; Hong, S.; Lim, T.-G.; Byun, S. Quercetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int. J. Mol. Sci. 2019, 20, 5262. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-H.; Shin, H.-J. Anti-Melanogenesis Effect of Quercetin. Cosmetics 2016, 3, 18. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Lu, G.; Gu, J. Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients 2023, 15, 2231. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, F.T.M.C.; He, T.; Shao, Y.; Fonseca, M.J.V.; Verri, W.A.; Fisher, G.J.; Xu, Y. Quercetin Inhibits UV Irradiation-Induced Inflammatory Cytokine Production in Primary Human Keratinocytes by Suppressing NF-NF-κB pathway. J. Dermatol. Sci. 2011, 61, 162–168. [Google Scholar] [CrossRef]
- Kim, D.H.; Auh, J.-H.; Oh, J.; Hong, S.; Choi, S.; Shin, E.J.; Woo, S.O.; Lim, T.-G.; Byun, S. Propolis Suppresses UV-Induced Photoaging in Human Skin through Directly Targeting Phosphoinositide 3-Kinase. Nutrients 2020, 12, 3790. [Google Scholar] [CrossRef] [PubMed]
- Nebus, J.; Vassilatou, K. Clinical Improvements in Facial Photoaged Skin Using a Novel Oak Quercetin Topical Preparation. J. Am. Acad. Dermatol. 2011, 64, AB73. [Google Scholar] [CrossRef]
- Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-Ageing and Rejuvenating Effects of Quercetin. Exp. Gerontol. 2010, 45, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The Role of Quercetin in Plants. Plant Physiol. Biochem. 2021, 166, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J.M. Quercetin and Rutin as Potential Sunscreen Agents: Determination of Efficacy by an in Vitro Method. J. Nat. Prod. 2008, 71, 1117–1118. [Google Scholar] [CrossRef]
- Rajnochová Svobodová, A.; Ryšavá, A.; Čížková, K.; Roubalová, L.; Ulrichová, J.; Vrba, J.; Zálešák, B.; Vostálová, J. Effect of the Flavonoids Quercetin and Taxifolin on UVA-Induced Damage to Human Primary Skin Keratinocytes and Fibroblasts. Photochem. Photobiol. Sci. 2022, 21, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiu, D.; Yang, T.; Su, J.; Liu, C.; Su, X.; Li, A.; Sun, P.; Li, J.; Yan, L.; et al. Research Progress of Dihydroquercetin in the Treatment of Skin Diseases. Molecules 2023, 28, 6989. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, R.; Georgetti, S.R.; Verri, W.A.; Dorta, D.J.; dos Santos, A.C.; Fonseca, M.J.V. Protective Effect of Topical Formulations Containing Quercetin against UVB-Induced Oxidative Stress in Hairless Mice. J. Photochem. Photobiol. B 2006, 84, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, N.; Wang, Y.; Ding, L.; Chen, H.; Yu, Y.; Shi, X. Protective Effects of Quercetin on UVB Irradiation-induced Cytotoxicity through ROS Clearance in Keratinocyte Cells. Oncol. Rep. 2017, 37, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural Skin-Whitening Compounds for the Treatment of Melanogenesis (Review). Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a Tyrosinase Inhibitor: Inhibitory Activity, Conformational Change and Mechanism. Food Res. Int. 2017, 100, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.W.; Jung, W.S.; An, B.; Cho, J.H.; Jung, S.Y. Isolation of Compounds Having Inhibitory Activity toward Tyrosinase from Receptaculum Nelumbinis. Korean J. Pharmacogn. 2013, 44, 1–5. [Google Scholar]
- Morlière, P.; Mazière, J.-C.; Patterson, L.K.; Conte, M.-A.; Dupas, J.-L.; Ducroix, J.-P.; Filipe, P.; Santus, R. On the Repair of Oxidative Damage to Apoferritin: A Model Study with the Flavonoids Quercetin and Rutin in Aerated and Deaerated Solutions. Free Radic. Res. 2013, 47, 463–473. [Google Scholar] [CrossRef]
- Niu, C.; Aisa, H.A. Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo. Molecules 2017, 22, 1303. [Google Scholar] [CrossRef]
- Takekoshi, S.; Matsuzaki, K.; Kitatani, K. Quercetin Stimulates Melanogenesis in Hair Follicle Melanocyte of the Mouse. Tokai J. Exp. Clin. Med. 2013, 38, 129–134. [Google Scholar]
- Takeyama, R.; Takekoshi, S.; Nagata, H.; Osamura, R.Y.; Kawana, S. Quercetin-Induced Melanogenesis in a Reconstituted Three-Dimensional Human Epidermal Model. J. Mol. Histol. 2004, 35, 157–165. [Google Scholar] [CrossRef]
- Nagata, H.; Takekoshi, S.; Takeyama, R.; Homma, T.; Yoshiyuki Osamura, R. Quercetin Enhances Melanogenesis by Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human Melanocytes. Pigment. Cell Res. 2004, 17, 66–73. [Google Scholar] [CrossRef]
- Yamauchi, K.; Mitsunaga, T.; Batubara, I. Novel Quercetin Glucosides from Helminthostachys Zeylanica Root and Acceleratory Activity of Melanin Biosynthesis. J. Nat. Med. 2013, 67, 369–374. [Google Scholar] [CrossRef]
- Yamauchi, K.; Mitsunaga, T.; Batubara, I. Synthesis of Quercetin Glycosides and Their Melanogenesis Stimulatory Activity in B16 Melanoma Cells. Bioorg. Med. Chem. 2014, 22, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Saito, M. Inhibitory Effect of Quercetin Isolated from Rose Hip (Rosa canina L.) against Melanogenesis by Mouse Melanoma Cells. Biosci. Biotechnol. Biochem. 2009, 73, 1989–1993. [Google Scholar] [CrossRef]
- Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin Incorporated Collagen Matrices for Dermal Wound Healing Processes in Rat. Biomaterials 2003, 24, 2767–2772. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin Accelerated Cutaneous Wound Healing in Rats by Increasing Levels of VEGF and TGF-Β1. Indian J. Exp. Biol. 2016, 54, 187–195. [Google Scholar]
- Kant, V.; Jangir, B.L.; Kumar, V.; Nigam, A.; Sharma, V. Quercetin Accelerated Cutaneous Wound Healing in Rats by Modulation of Different Cytokines and Growth Factors. Growth Factors 2020, 38, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Doersch, K.M.; Newell-Rogers, M.K. The Impact of Quercetin on Wound Healing Relates to Changes in αV and Β1 Integrin Expression. Exp. Biol. Med. 2017, 242, 1424–1431. [Google Scholar] [CrossRef]
- Moravvej, H.; Memariani, M.; Memariani, H. Quercetin: A Potential Treatment for Keloids. Sultan Qaboos Univ. Med. J. 2019, 19, e372–e373. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Zeng, X.; Zhang, F.; Wang, X. Influence of Quercetin and X-Ray on Collagen Synthesis of Cultured Human Keloid-Derived Fibroblasts. Chin. Med. Sci. J. 2006, 21, 179–183. [Google Scholar]
- Hosnuter, M.; Payasli, C.; Isikdemir, A.; Tekerekoglu, B. The Effects of Onion Extract on Hypertrophic and Keloid Scars. J. Wound Care 2007, 16, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Mathangi Ramakrishnan, K.; Babu, M.; Lakshmi Madhavi, M.S. Response of Keloid Fibroblasts to Vitamin D3 and Quercetin Treatment—In Vitro Study. Ann. Burn. Fire Disasters 2015, 28, 187–191. [Google Scholar]
- Si, L.-B.; Zhang, M.-Z.; Han, Q.; Huang, J.-N.; Long, X.; Long, F.; Zhao, R.C.-H.; Huang, J.-Z.; Liu, Z.-F.; Zhao, R.; et al. Sensitization of Keloid Fibroblasts by Quercetin through the PI3K/Akt Pathway Is Dependent on Regulation of HIF-1α. Am. J. Transl. Res. 2018, 10, 4223–4234. [Google Scholar]
- Yin, G.; Wang, Z.; Wang, Z.; Wang, X. Topical Application of Quercetin Improves Wound Healing in Pressure Ulcer Lesions. Exp. Dermatol. 2018, 27, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Watanabe, K. Molecular Targets of Quercetin with Anti-Inflammatory Properties in Atopic Dermatitis. Drug Discov. Today 2016, 21, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Beken, B.; Serttas, R.; Yazicioglu, M.; Turkekul, K.; Erdogan, S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. Pediatr. Allergy Immunol. Pulmonol. 2020, 33, 69–79. [Google Scholar] [CrossRef]
- Hou, D.-D.; Zhang, W.; Gao, Y.-L.; Sun, Y.-Z.; Wang, H.-X.; Qi, R.-Q.; Chen, H.-D.; Gao, X.-H. Anti-Inflammatory Effects of Quercetin in a Mouse Model of MC903-Induced Atopic Dermatitis. Int. Immunopharmacol. 2019, 74, 105676. [Google Scholar] [CrossRef]
- Ukleja-Sokołowska, N.; Bartuzi, Z. IL 25, IL 33 i TSLP w chorobach atopowych—Obecny stan wiedzy. Alerg. Astma Immunol. 2020, 25, 59. [Google Scholar]
- Cheng, S.-C.; Huang, W.-C.; S. Pang, J.-H.; Wu, Y.-H.; Cheng, C.-Y. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int. J. Mol. Sci. 2019, 20, 2957. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, X.; Wu, Y.; Xu, W.; Xia, H.; Jia, R.; Liu, Y.; Shen, S.; Xu, Y.; Cheng, Z. Antioxidant Activity of Quercetin-Containing Liposomes-in-Gel and Its Effect on Prevention and Treatment of Cutaneous Eczema. Pharmaceuticals 2023, 16, 1184. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Górecki, M. Fitosomy—Fosfolipidowe Nośniki Jako Alternatywa Dla Liposomów w Nowoczesnych Kosmetykach. Pol. J. Cosmetol. 2015, 18, 117–118. [Google Scholar]
- Lu, B.; Huang, Y.; Chen, Z.; Ye, J.; Xu, H.; Chen, W.; Long, X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules 2019, 24, 2322. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, X.; Wang, Z.; Liu, Y.; Guo, J.; Zhu, Y.; Shao, J.; Li, J.; Wang, L.; Wang, K. Antibacterial, Antioxidant and Biocompatible Nanosized Quercetin-PVA Xerogel Films for Wound Dressing. Colloids Surf. B Biointerfaces 2022, 209, 112175. [Google Scholar] [CrossRef] [PubMed]
- Nalini, T.; Khaleel Basha, S.; Mohamed Sadiq, A.; Sugantha Kumari, V. Fabrication and Evaluation of Nanoencapsulated Quercetin for Wound Healing Application. Polym. Bull. 2023, 80, 515–540. [Google Scholar] [CrossRef]
- Yang, C.-C.; Hung, Y.-L.; Li, H.-J.; Lin, Y.-F.; Wang, S.-J.; Chang, D.-C.; Pu, C.-M.; Hung, C.-F. Quercetin Inhibits Histamine-Induced Calcium Influx in Human Keratinocyte via Histamine H4 Receptors. Int. Immunopharmacol. 2021, 96, 107620. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Davoy, E.; Xenos, K.; Armenaka, M.; Theoharides, T.C. Effect of an Antioxidant (Quercetin) on Sodium-Lauryl-Sulfate-Induced Skin Irritation. Contact Dermat. 2000, 42, 85–89. [Google Scholar] [CrossRef]
- Fu, J.; Huang, J.; Lin, M.; Xie, T.; You, T. Quercetin Promotes Diabetic Wound Healing via Switching Macrophages from M1 to M2 Polarization. J. Surg. Res. 2020, 246, 213–223. [Google Scholar] [CrossRef]
- Kant, V.; Jangir, B.L.; Sharma, M.; Kumar, V.; Joshi, V.G. Topical Application of Quercetin Improves Wound Repair and Regeneration in Diabetic Rats. Immunopharmacol. Immunotoxicol. 2021, 43, 536–553. [Google Scholar] [CrossRef]
- Zhou, Y.; Qian, C.; Tang, Y.; Song, M.; Zhang, T.; Dong, G.; Zheng, W.; Yang, C.; Zhong, C.; Wang, A.; et al. Advance in the Pharmacological Effects of Quercetin in Modulating Oxidative Stress and Inflammation Related Disorders. Phytother. Res. 2023, 37, 4999–5016. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. Quercetin Derivatives: Drug Design, Development, and Biological Activities, a Review. Eur. J. Med. Chem. 2022, 229, 114068. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. BioMed Res. Int. 2019, 2019, 7039802. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.T.; Rahmawati, L.; You, L.; Hossain, M.A.; Kim, J.-H.; Cho, J.Y. Anti-Inflammatory, Antioxidant, Moisturizing, and Antimelanogenesis Effects of Quercetin 3-O-β-D-Glucuronide in Human Keratinocytes and Melanoma Cells via Activation of NF-κB and AP-1 Pathways. Int. J. Mol. Sci. 2021, 23, 433. [Google Scholar] [CrossRef]
- Mansi, K.; Kumar, R.; Narula, D.; Pandey, S.K.; Kumar, V.; Singh, K. Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D. ACS Appl. Bio Mater. 2022, 5, 5762–5778. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Manthaisong, A.; Okonogi, S.; Tadtong, S.; Samee, W. Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int. J. Mol. Sci. 2021, 23, 142. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, N.; Abbas, G.; Mahmood, K.; Aziz, M.; Rasul, S.; Ahmed, N.; Shah, S.; Uzair, M.; Usman, M.; Khan, W.S.; et al. Concomitant Effect of Quercetin and Its Copper Complex in the Development of Sustained-Release Nanoparticles of Polycaprolactone, Used for the Treatment of Skin Infection. Mol. Pharm. 2023, 20, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.P.C.; Santos, R.; Reed, P.; Fonseca, L.P.; Oliva, A. Design of Quercetin-Loaded Natural Oil-Based Nanostructured Lipid Carriers for the Treatment of Bacterial Skin Infections. Molecules 2022, 27, 8818. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, M.; Giannino, N.; Barreira, S.; Catita, J.; Gonçalves, H.; Ribeiro, A.; Fernandes, E.; Carvalho, I.; Pinho, H.; Cerqueira, F.; et al. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023, 15, 2078. [Google Scholar] [CrossRef]
- Gabr, S.A.; Alghadir, A.H. Evaluation of the Biological Effects of Lyophilized Hydrophilic Extract of Rhus Coriaria on Myeloperoxidase (MPO) Activity, Wound Healing, and Microbial Infections of Skin Wound Tissues. Evid. Based Complement. Altern. Med. 2019, 2019, 5861537. [Google Scholar] [CrossRef]
- Perera, M.M.N.; Dighe, S.N.; Katavic, P.L.; Collet, T.A. Antibacterial Potential of Extracts and Phytoconstituents Isolated from Syncarpia Hillii Leaves In Vitro. Plants 2022, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Portillo-Reyes, J.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Izquierdo-Vega, J.; Delgado-Olivares, L.; Vargas-Mendoza, N.; Álvarez-González, I.; Morales-González, Á.; et al. Opuntia Spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. Plants 2022, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, G.N.; Owusu, F.W.A.; Archer, M.-A.; Kyene, M.O.; Kumadoh, D.; Ayertey, F.; Mintah, S.O.; Atta-Adjei Junior, P.; Appiah, A.A. Bridelia Ferruginea Benth.; An Ethnomedicinal, Phytochemical, Pharmacological and Toxicological Review. Heliyon 2022, 8, e10366. [Google Scholar] [CrossRef] [PubMed]
- Sekandi, P.; Namukobe, J.; Byamukama, R.; Nagawa, C.B.; Barbini, S.; Bacher, M.; Böhmdorfer, S.; Rosenau, T. Antimicrobial, Antioxidant, and Sun Protection Potential of the Isolated Compounds from Spermacoce Princeae (K. Schum). BMC Complement. Med. Ther. 2023, 23, 201. [Google Scholar] [CrossRef] [PubMed]
- Musini, A.; Singh, H.N.; Vulise, J.; Pammi, S.S.S.; Giri, A. Quercetin’s Antibiofilm Effectiveness against Drug Resistant Staphylococcus Aureus and Its Validation by in Silico Modeling. Res. Microbiol. 2024, 175, 104091. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Zeng, H.; Chen, W. Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus Epidermidis. Front. Microbiol. 2021, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.Q.; Xie, T.T.; Zeng, H.; Chen, W.; Wan, C.X.; Zhang, L.L. Streptomyces-Derived Actinomycin D Inhibits Biofilm Formation via Downregulating Ica Locus and Decreasing Production of PIA in Staphylococcus Epidermidis. J. Appl. Microbiol. 2020, 128, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence. PLoS ONE 2015, 10, e0134684. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Hsu, C.-Y.; Lin, Y.-K.; Fang, J.-Y. Cutaneous Delivery of Natural Antioxidants: The Enhancement Approaches. Curr. Pharm. Des. 2015, 21, 2745–2757. [Google Scholar] [CrossRef]
- Hung, C.-F.; Fang, C.-L.; Al-Suwayeh, S.A.; Yang, S.-Y.; Fang, J.-Y. Evaluation of Drug and Sunscreen Permeation via Skin Irradiated with UVA and UVB: Comparisons of Normal Skin and Chronologically Aged Skin. J. Dermatol. Sci. 2012, 68, 135–148. [Google Scholar] [CrossRef]
- Lin, C.-F.; Leu, Y.-L.; Al-Suwayeh, S.A.; Ku, M.-C.; Hwang, T.-L.; Fang, J.-Y. Anti-Inflammatory Activity and Percutaneous Absorption of Quercetin and Its Polymethoxylated Compound and Glycosides: The Relationships to Chemical Structures. Eur. J. Pharm. Sci. 2012, 47, 857–864. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Gras Notice for High-Purity Quercetin 2010. Available online: https://web.archive.org/web/20171031050012/http://www.fda.gov/downloads/food/ingredientspackaginglabeling/gras/noticeinventory/ucm269540.pdf (accessed on 16 May 2024).
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sgrò, P.; Sabatini, S.; Di Luigi, L.; Sacchetti, M.; Felici, F. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage. Nutrients 2019, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Subramanian, V.; Nadanasabapathi, S. Health Benefits of Quercetin. Def. Life Sci. J. 2017, 2, 142. [Google Scholar] [CrossRef]
- Jazvinšćak Jembrek, M.; Čipak Gašparović, A.; Vuković, L.; Vlainić, J.; Žarković, N.; Oršolić, N. Quercetin Supplementation: Insight into the Potentially Harmful Outcomes of Neurodegenerative Prevention. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lin, J.; Hong, J.; Han, D.; Zhang, A.D.; Lan, R.; Fu, L.; Wu, Z.; Lin, J.; Zhang, W.; et al. Potential Toxicity of Quercetin: The Repression of Mitochondrial Copy Number via Decreased POLG Expression and Excessive TFAM Expression in Irradiated Murine Bone Marrow. Toxicol. Rep. 2014, 1, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Mieszkowski, J.; Pałys, A.; Budzisz, E. Quercetin—Structure, Function and Clinical Usage. Farm. Pol. 2011, 67, 18–23. [Google Scholar]
- Wangsawangrung, N.; Choipang, C.; Chaiarwut, S.; Ekabutr, P.; Suwantong, O.; Chuysinuan, P.; Techasakul, S.; Supaphol, P. Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels 2022, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Guo, C.; Wu, X. Development of Quercetin Loaded Silk Fibroin/Soybean Protein Isolate Hydrogels for Burn Wound Healing. Chem. Eng. J. 2024, 481, 148458. [Google Scholar] [CrossRef]
- Zawani, M.; Maarof, M.; Tabata, Y.; Motta, A.; Fauzi, M.B. Quercetin-Embedded Gelastin Injectable Hydrogel as Provisional Biotemplate for Future Cutaneous Application: Optimization and In Vitro Evaluation. Gels 2022, 8, 623. [Google Scholar] [CrossRef]
Reference | Amount [mg 100 g−1] | Form | Product |
---|---|---|---|
[16] | 4.0 * | Fresh crop | Apple |
[16,17] | 14.0–23.6 * | Fresh crop | Asparagus |
[16,18] | 2.4–14.6 * | Fresh crop | Blueberry |
[18] | 15.8 * | Fresh crop | Whortleberry |
[18] | 14.6 * | Fresh crop | Lingonberry |
[18] | 8.9 * | Fresh crop | Chokeberry |
[18] | 6.3 * | Fresh crop | Rowanberry |
[18] | 5.6 * | Fresh crop | Crowberry |
[18] | 0.6 *** | Juice | Elderberry |
[16,18] | 12.1–25.0 * | Fresh crop | Cranberry |
[16] | 17.4 * | Fresh crop | Cherry |
[19,20] | 0.46 *** | Juice from fresh Italian grape (Chianti) | Grape |
[21] | 54–119 ** | Grape waste (pomace): Methanolic extract from waste (skins, stalks, seeds) | |
[20] | 0.62–1.02 ** | Dried grape leaves | |
[20] | 0.68–0.82 ** | Dried grape stems | |
[16] | 3.16 *** | Beverage | Red wine |
[16] | 22.6 * | Fresh crop | Kale |
[16] | 14.7 * | Fresh crop | Lettuce |
[17] | 12.0 * | Fresh crop | Romaine lettuce |
[17] | 30.6–10.3 * | Fresh crop | Red leaf lettuce |
[17] | 1.6 * | Fresh crop | Tomato |
[16,17] | 11.0–45.0 * | Fresh crop | Yellow onion |
[22] | 792.0 ** | Waste (peels): water and ethanol extracts | |
[22] | 41.9 ** | Edible part water and ethanol extracts | Red onion |
[22] | 1625.0 * | Waste (peels) water and ethanol extracts | |
[22] | 40.0 ** | Edible part water and ethanol extracts | Red shallot |
[22] | 1161.0 * | Waste (peels) water and ethanol extracts |
Full Name | Abbreviation |
---|---|
Kelch-like ECH-associated protein 1 | KEAP1 |
nuclear respiratory factor 2 | NRF2 |
antioxidant response element | ARE |
4-hydroxynonenal | 4-HNE |
3,4-methylenedioxyamphetamine | MDA |
superoxide dismutase | SOD |
Glutathione | GSH |
Catalase | CAT |
Quercetin | QUE |
cyclooxygenase-2 | COX-2 |
inducible nitric oxide synthase | INOS |
activator protein-1 | AP-1 |
p38 mitogen-activated protein kinases | p38PAPK |
nuclear factor-κB | NF-κB |
NLR family pyrin domain containing 3 | NLRP3 |
tumor necrosis factor-α | TNF-α |
monocyte chemoattractant protein-1 | MCP-1 |
interleukin-10 | IL-10 |
interleukin-6 | IL-6 |
interleukin-1β | IL-1β |
interleukin-8 | IL-8 |
protein kinase B | AKT |
mammalian target of rapamycin | mTOR |
extracellular signal-regulated kinase family | ERK |
extracellular signal-related kinases 1 and 2 | ERK1/2 |
kinase c-Jun N terminal | JNK |
signal transducers and activator of transcription 3 | STAT3 |
protein kinase Cδ | PKCδ |
Janus kinase-2 | JAK-2 |
phosphoinositide-dependent protein kinase-1 | PDK-1 |
heme oxygenase-1 | HO-1 |
human fetal lung fibroblast-1 | HFL-1 |
transforming growth factor-β1 | TGB-β1 |
vascular endothelial growth factor | VEGF |
transforming growth factor-β1 | TGF-β1 |
hypoxia-inducible factor-1 | HIF-1 |
phosphoinositide 3-kinase | PI3K |
mitogen-activated protein kinases | MAPK |
matrix metalloproteinase-1 | MMP-1 |
matrix metalloproteinase-2 | MMP-2 |
matrix metalloproteinase-9 | MMP-9 |
extracellular signal-regulated kinase 1 | ERK1 |
signal transducers and activator of transcription 6 | STAT6 |
CC chemokine ligand 17 | CCL17 |
CC chemokine ligand 22 | CCL22 |
interleukin-4 | IL-4 |
interferon gamma | IFN-γ |
Toll-like receptor-2 | TLR-2 |
growth-associated protein-43 | GAP-43 |
matrix metalloproteinase-8 | MMP-8 |
Myeloperoxidase | MPO |
caspase 3 | CASP3 |
NAD(P)H quinone dehydrogenase 1 | NQO1 |
Thymic stromal lymphopoietin | TSLP |
Superoxide dismutase 1 | SOD1 |
Superoxide dismutase 2 | SOD2 |
glutathione peroxidase | GPX |
transient receptor potential cation channel subfamily V member 1 | TRPV1 |
Reference | MOA | Compound |
---|---|---|
Anti-aging effects and UV protection | ||
[35] | Inhibition of MMP-1 and COX-2 expression | quercetin |
[35,38] | Inhibition of AP-1 and NF-κB activity | quercetin |
[38] | Inhibition of IL-1β, IL-6, IL-8, and TNF-α inflammatory cytokines | quercetin |
[39] | Inhibition of PDK-1 and AKT phosphorylation | quercetin, caffeic acid ester and apigenin |
[43] | Reduction of UVA radiation effects | quercetin + rutin + titanium dioxide |
[44] | Prevention of ROS creation, GSH depletion, CASP3 activation. Increased HO-1, NQO1, CAT expression | quercetin |
[38,46] | Reduction in GSH depletion, reduction in metalloproteinase activity | quercetin |
[47] | Blocked ROS production, slowed leakage of cytochrome c, inhibition of keratinocyte apoptosis | quercetin |
[41] | Activation of proteasome, improvement in HFL-1 fibroblasts viability | quercetin, quercetin caprylate |
Anti-melanogenesis and skin-whitening | ||
[49,50,51] | Inhibition of tyrosinase | quercetin |
[36] | Reduction in melanin content | quercetin + vitamin C + arbutin |
[52,53,54] | Upregulation of tyrosinase activity | quercetin |
Wound healing, reduction in skin irritation and scarring prevention | ||
[59] | Inhibition of free radicals’ activity | quercetin |
[60] | TGB-β1 and VEGF activation, Promotion of fibroblast proliferation, TNF-α attenuation, inducing IL-10 levels | quercetin |
[61] | Increasing IL-10, VEGF, TGF-1 expressions, and decreasing expressions of TNF-α | quercetin in DMSO |
[62] | Reduction in integrin αV level; increasing integrin β1 expressions | quercetin |
[66] | Reduction in cell proliferation and collagen synthesis; inducing apoptosis | quercetin + vitamin D |
[64] | Inhibition of collagen synthesis in fibroblasts | quercetin + X-ray |
[67] | Inhibition of HIF-1 expression Reduction in AKT phosphorylation | quercetin |
[65] | Improvement in hypertrophic and keloid scars | quercetin |
[68] | Inhibition of MAPK signaling pathway; Reduction in inflammatory cytokines concentration | quercetin |
[70,73] | Reduction in IL-1β, IL-6, IL-8 expressions Increasing SOD1, SOD2, GPx, catalase expressions, IL-10 Increasing mRNA, E-cadherin, occludin expressions Decreasing MMP1, MMP2 and MMP9 expressions Inhibition of ERK1/2 MAPK phosphorylation Decreasing NF-κB expression | quercetin |
[71] | Reduction in CCL17, CCL22, IL-4, IL-6, IFN-γ and TNF-α expressions | quercetin |
[33] | Reduction in TLR-2 production Inhibition of p38, ERK and JNK MAPK Decreasing mRNA level for MMP-9 | quercetin |
[74] | Inhibition of malondialdehyde production | quercetin encapsulated in liposomes |
[78] | Inhibition of inflammatory cytokines, enhancing free radical scavenging ability, increasing reepithelialization | quercetin, chitosan, alginate |
[79] | Decreasing histamine 4 receptor-induced calcium influx through the TRPV1 channel | quercetin |
[81] | Decreasing inflammatory cytokines levels and INOS-positive cells Increasing CD206-positive cells activity Induction of macrophage polarization to M2 | quercetin |
[82] | Induction of VEGF, TGF-β Increasing GAP-43 concentration Reduction in MMP-9 and TNF-α | quercetin |
Protection against skin oxidation, anti-inflammatory, and antiseptic properties | ||
[85] | Changing electron cloud density, Inhibition of TNF-α, IL-1β and IL-6 cytokines | quercetin |
[87] | Antimicrobial activity | quercetin on CuO nanorods |
[89] | Antimicrobial activity | quercetin + copper complex + polycaprolactone |
[90] | Antimicrobial activity | quercetin-loaded lipid carriers |
[92] | Antimicrobial activity regulation of MMP-8 and MPO activity Increasing collagen and hydroxyproline deposition | extract of Rhus coriaria (quercetin) |
[93] | Antimicrobial activity | Extract of Syncarpia hillii (Querciturone) |
[94] | Antimicrobial activity | Extract of Opuntia spp. (quercetin and its glycosides) |
[95] | Antimicrobial activity | Extract of Bridelia ferruginea (quercetin) |
[96] | Antimicrobial activity UV protection | Extract of z Spermacoce princeae (quercetin) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaborowski, M.K.; Długosz, A.; Błaszak, B.; Szulc, J.; Leis, K. The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders. Molecules 2024, 29, 3206. https://doi.org/10.3390/molecules29133206
Zaborowski MK, Długosz A, Błaszak B, Szulc J, Leis K. The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders. Molecules. 2024; 29(13):3206. https://doi.org/10.3390/molecules29133206
Chicago/Turabian StyleZaborowski, Michał Kazimierz, Anna Długosz, Błażej Błaszak, Joanna Szulc, and Kamil Leis. 2024. "The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders" Molecules 29, no. 13: 3206. https://doi.org/10.3390/molecules29133206
APA StyleZaborowski, M. K., Długosz, A., Błaszak, B., Szulc, J., & Leis, K. (2024). The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders. Molecules, 29(13), 3206. https://doi.org/10.3390/molecules29133206