Iron-Catalyzed Sulfonylmethylation of Imidazo[1,2-α]pyridines with N,N-Dimethylacetamide and Sodium Sulfinates
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gladysz, R.; Adriaenssens, Y.; De Winter, H.; Joossens, J.; Lambeir, A.-M.; Augustyns, K.; Van der Veken, P. Discovery and SAR of novel and selective inhibitors of urokinase plasminogen activator (uPA) with an imidazo[1,2-α]pyridine scaffold. J. Med. Chem. 2015, 58, 9238–9257. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, J.J.; Doweyko, A.M. Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo [1,2-α] pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J. Med. Chem. 1997, 40, 427–436. [Google Scholar] [PubMed]
- Chen, X.; Xu, W.; Wang, K.; Mo, M.; Zhang, W.; Du, L.; Yuan, X.; Xu, Y.; Wang, Y.; Shen, J. Discovery of a novel series of imidazo[1,2-α]pyrimidine derivatives as potent and orally bioavailable lipoprotein-associated phospholipase A2 inhibitors. J. Med. Chem. 2015, 58, 8529–8541. [Google Scholar] [CrossRef] [PubMed]
- Hamdouchi, C.; Blas, J.D.; Prado, M.D.; Gruber, J.; Heinz, B.A.; Vance, L. 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl) vinyl] imidazo [1,2-α] pyridines as a novel class of inhibitors of human rhinovirus: Stereospecific synthesis and antiviral activity. J. Med. Chem. 1999, 42, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Panda, M.; Mukherjee, K.; Choudhury, N.R.; Tantry, S.J.; Kedari, C.K.; Ramachandran, V.; Sharma, S.; Ramya, V.K.; Guptha, S.; et al. Synthesis and structure activity relationship of imidazo [1,2-α] pyridine-8-carboxamides as a novel antimycobacterial lead series. Bioorg. Med. Chem. Lett. 2013, 23, 4996–5001. [Google Scholar] [CrossRef] [PubMed]
- Baviskar, A.T.; Madaan, C.; Preet, R.; Mohapatra, P.; Jain, V.; Agarwal, A.; Guchhait, S.K.; Kundu, C.N.; Banerjee, U.C.; Bharatam, P.V. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J. Med. Chem. 2011, 54, 5013–5030. [Google Scholar] [CrossRef] [PubMed]
- Bode, M.L.; Gravestock, D.; Moleele, S.S.; van der Westhuyzen, C.W.; Pelly, S.C.; Steenkamp, P.A.; Hoppe, H.C.; Khan, T.; Nkabinde, L.A. Imidazo [1,2-α] pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2011, 19, 4227–4237. [Google Scholar] [CrossRef] [PubMed]
- Moraski, G.C.; Markley, L.D.; Cramer, J.; Hipskind, P.A.; Boshoff, H.; Bailey, M.A.; Alling, T.; Ollinger, J.; Parish, T.; Miller, M.J. Advancement of imidazo[1,2-α]pyridines with improved pharmacokinetics and nM activity vs. mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013, 4, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Koubachi, J.; El Kazzouli, S.; Bousmina, M.; Guillaumet, G. Functionalization of imidazo [1,2-α] pyridines by means of metal-catalyzed cross-coupling reactions. Eur. J. Org. Chem. 2014, 2014, 5119–5123. [Google Scholar] [CrossRef]
- Cao, H.; Zhan, H.; Lin, Y.; Lin, X.; Du, Z.; Jiang, H. Direct arylation of imidazo [1,2-α] pyridine at C-3 with aryl iodides, bro-mides, and triflates via copper (I)-catalyzed C–H bond functionali-zation. Org. Lett. 2012, 14, 1688–1692. [Google Scholar] [CrossRef]
- Fu, H.Y.; Chen, L.; Doucet, H. Phosphine-free palladium-catalyzed direct arylation of imidazo [1,2-α] pyridines with aryl bromides at low catalyst loading. J. Org. Chem. 2012, 77, 4473–4478. [Google Scholar] [CrossRef] [PubMed]
- Choy, P.Y.; Luk, K.C.; Wu, Y.; So, C.M.; Wang, L.-L.; Kwong, F.Y. Regioselective direct C-3 arylation of imidazo[1,2-α]pyridines with aryl tosylates and mesylates promoted by palladium-phosphine complexes. J. Org. Chem. 2015, 80, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Firmansyah, D.; Deperasińska, I.; Vakuliuk, O.; Banasiewicz, M.; Tasior, M.; Makarewicz, A.; Cyrański, M.K.; Kozankiewicz, B.; Gryko, D.T. Double head-to-tail direct arylation as a viable strategy towards the synthesis of the aza-analog of dihydrocyclopenta [hi] aceanthrylene-an intriguing antiaromatic heterocycle. Chem. Commun. 2016, 52, 1262–1265. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Naskar, A.; Mitra, S.; Hajra, A. Palladium-catalyzed α-selective alkenylation of imidazo[1,2-α]pyridines through aerobic cross-dehydrogenative coupling reaction. Eur. J. Org.Chem. 2015, 2015, 715–718. [Google Scholar] [CrossRef]
- Zhan, H.; Zhao, L.; Li, N.; Chen, L.; Liu, J.; Liao, J.; Cao, H. Ruthenium-catalyzed direct C-3 oxidative olefination of imidazo [1,2-α] pyridines. RSC Adv. 2014, 4, 32013–32016. [Google Scholar] [CrossRef]
- Cao, H.; Lei, S.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Qiu, S.; Chen, Y. Palladium (II)-catalyzed intermolecular oxidative C-3 alkenylations of imidazo [1,2-α] pyridines by substrate-contolled regioselective C-H functionalization. RSC Adv. 2014, 4, 50137–50140. [Google Scholar] [CrossRef]
- Monir, K.; Bagdi, A.K.; Ghosh, M.; Hajra, A. Regioselective oxidative trifluoromethylation of imidazoheterocycles via C(sp2)-H bond functionalization. J. Org. Chem. 2015, 80, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Zhang, H.-R.; Jin, R.-X.; Lan, Q.; Wang, X.-S. Nickel-catalyzed C-H trifluoromethylation of electron-rich heteroarenes. Adv. Synth. Catal. 2016, 358, 3528–3533. [Google Scholar] [CrossRef]
- Cao, H.; Lei, S.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Qiu, S.; Tan, J. Cu-catalyzed selective C3-formylation of imidazo [1,2-α] pyridine C-H bonds with DMSO using molecular oxygen. Chem. Commun. 2015, 51, 1823–1825. [Google Scholar] [CrossRef]
- Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. (Diacetoxy) iodobenzene-mediated oxidative C-H amination of imidazopyridines at ambient temperature. J. Org. Chem. 2017, 82, 4504–4510. [Google Scholar] [CrossRef]
- Lu, S.; Tian, L.-L.; Cui, T.-W.; Zhu, Y.-S.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Copper-mediated C-H amination of imidazopyridines with N-fluorobenzenesulfonimide. J. Org. Chem. 2018, 83, 13991–14000. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.S.S.; Balaguez, R.A.; Franco, M.S.; Machado, V.C.S.; Saba, S.; Rafique, J.; Galetto, F.Z.; Braga, A.L. Trihaloisocyanuric acids in ethanol: An eco-friendly system for the regioselective halogenation of imidazo-heteroarenes. Green Chem. 2020, 22, 3410–3415. [Google Scholar] [CrossRef]
- Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. Sodium salts (NaI/NaBr/NaCl) for the halogenation of imidazo-fused heterocycles. J. Org. Chem. 2019, 84, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wei, X.-N.; Zhang, M.; Liu, Y.; Zhu, L.-M.; Zhao, Y.-H. Catalyst and additive-free oxidative dual C-H sulfenylation of imidazoheterocycles with elemental sulfur using DMSO as a solvent and an oxidant. Chem. Commun. 2020, 56, 5751–5754. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Ding, Y.; Bian, Z.; Xie, P.; Xu, B.; Tang, Q.; Wu, W.; Zhou, A. One-pot three-component synthesis of alkylthio-/arylthio-substituted imidazo[1,2-α]pyridine derivatives via C(sp2)-H functionalization. Adv. Synth. Catal. 2017, 359, 2215–2221. [Google Scholar] [CrossRef]
- Hiebel, M.-A.; Berteina-Raboin, S. Iodine-catalyzed regioselective sulfenylation of imidazoheterocycles in PEG 400. Green Chem. 2015, 17, 937–944. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, X.-J.; Li, K.; Guo, Y.-J.; Wang, M.-D.; Zhao, X.-M.; Hao, X.-Q.; Song, M.-P. Reactivity of p-toluenesulfonylmethyl isocyanide: Iron-involved C-H tosylmethylation of imidazopyridines in nontoxic media. J. Org. Chem. 2016, 81, 8370–8377. [Google Scholar] [CrossRef]
- Kalari, S.; Shinde, A.U.; Rode, H.B. Methylene-tethered arylsulfonation and benzotriazolation of aryl/heteroaryl C-H bonds with DMSO as a one-carbon surrogate. J. Org. Chem. 2021, 86, 17684–17695. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-W.; Wen, K.-M.; Wu, Y.-R.; Shi, J.; Yao, X.-G.; Tang, X.-D. Transition metal catalyst-free C-3 sulfonylmethylation of imidazo[1,2-α]pyridines with glyoxylic acid and sodium sulfinates in water. J. Org. Chem. 2022, 87, 3780–3787. [Google Scholar] [CrossRef]
- Lou, S.-J.; Xu, D.-Q.; Shen, D.-F.; Wang, Y.-F.; Liu, Y.-K.; Xu, Z.-Y. Highly efficient vinylaromatics generation via Iron-catalyzed sp3 C-H bond functionalization CDC reaction: A novel approach to preparing substituted benzo[α]phenazines. Chem. Commun. 2012, 48, 11993–11995. [Google Scholar] [CrossRef]
- Modi, A.; Ali, W.; Patela, B.K. N,N-dimethylacetamide (DMA) as a methylene synthon for regioselective linkage of imidazo[1,2-α]pyridine. Adv. Synth. Catal. 2016, 358, 2100–2107. [Google Scholar] [CrossRef]
- Kaswan, P.; Nandwana, N.K.; DeBoef, B.; Kumar, A. Vanadyl acetylacetonate catalyzed methylenation of imidazo[1,2-α]pyridines by using dimethylacetamide as a methylene source: Direct access to bis(imidazo[1,2-α]pyridin-3-yl)methanes. Adv. Synth. Catal. 2016, 358, 2108–2115. [Google Scholar] [CrossRef]
- Sun, S.-N.; Li, J.-C.; Gou, Y.-B.; Gao, Z.-H.; Bi, X.-J. Controllable synthesis of disulfides and thiosulfonates from sodium sulfinates mediated by hydroiodic acid using ethanol and H2O as solvents. Org. Biomol. Chem. 2022, 20, 8885–8892. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-W.; Tian, J.-H.; Wen, K.-M.; Gao, Q.-W.; Shi, J.; Yao, X.-G.; Wu, T.; Tang, X.-D. A new method for C (sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org. Biomol. Chem. 2022, 20, 1652–1655. [Google Scholar] [CrossRef]
Entry | Catalyst/mol% | Oxidant/Equiv | Solvent | Yield/% b |
1 | - | - | DMA:H2O/2:1 | 0 |
2 | - | K2S2O8/2.5 | DMA:H2O/2:1 | 5 |
3 | FeCl3/20 | - | DMA:H2O/2:1 | 0 |
4 | CuI/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 18 |
5 | Cu(acac)2/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 18 |
6 | FeCl3/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 73 |
7 | FeCl2/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 67 |
8 | Fe3O4/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 50 |
9 | V(acac)2/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 63 |
10 | AgNO3/20 | K2S2O8/2.5 | DMA:H2O/2:1 | 6 |
11 | FeCl3/5 | K2S2O8/2.5 | DMA:H2O/2:1 | 41 |
12 | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 73 |
13 | FeCl3/30 | K2S2O8/2.5 | DMA:H2O/2:1 | 70 |
14 | FeCl3/10 | H2O2/2.5 | DMA:H2O/2:1 | 0 |
15 | FeCl3/10 | TBHP/2.5 | DMA:H2O/2:1 | 0 |
16 | FeCl3/10 | O2/air | DMA:H2O/2:1 | 0 |
17 | FeCl3/10 | I2O5/2.5 | DMA:H2O/2:1 | 0 |
18 | FeCl3/10 | K2S2O8/1.0 | DMA:H2O/2:1 | 57 |
19 | FeCl3/10 | K2S2O8/1.5 | DMA:H2O/2:1 | 64 |
20 | FeCl3/10 | K2S2O8/3.5 | DMA:H2O/2:1 | 73 |
21 | FeCl3/10 | K2S2O8/2.5 | DMA/10 eq | 0 |
22 | FeCl3/10 | K2S2O8/2.5 | DMA/20 eq | 0 |
23 | FeCl3/10 | K2S2O8/2.5 | DMA/50 eq | 43 |
24 | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/1:1 | 43 |
25 | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/5:1 | 70 |
26 c | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 80 |
27 d | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 90 |
28 e | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 90 |
29 d,f | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 60 |
30 d,g | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 70 |
31 d,h | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 93 |
32 d,i | FeCl3/10 | K2S2O8/2.5 | DMA:H2O/2:1 | 93 |
33 d,h | FeCl3/10 | K2S2O8/2.5 | DMF:H2O/2:1 | 33 |
34 d,h | FeCl3/10 | K2S2O8/2.5 | DMSO:H2O/2:1 | 0 |
35 d,h | FeCl3/10 | K2S2O8/2.5 | TMEDA:H2O/2:1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Ye, H.; Liu, H.; Li, J.; Bi, X. Iron-Catalyzed Sulfonylmethylation of Imidazo[1,2-α]pyridines with N,N-Dimethylacetamide and Sodium Sulfinates. Molecules 2024, 29, 3196. https://doi.org/10.3390/molecules29133196
Sun S, Ye H, Liu H, Li J, Bi X. Iron-Catalyzed Sulfonylmethylation of Imidazo[1,2-α]pyridines with N,N-Dimethylacetamide and Sodium Sulfinates. Molecules. 2024; 29(13):3196. https://doi.org/10.3390/molecules29133196
Chicago/Turabian StyleSun, Shengnan, Hexia Ye, Haibo Liu, Junchen Li, and Xiaojing Bi. 2024. "Iron-Catalyzed Sulfonylmethylation of Imidazo[1,2-α]pyridines with N,N-Dimethylacetamide and Sodium Sulfinates" Molecules 29, no. 13: 3196. https://doi.org/10.3390/molecules29133196
APA StyleSun, S., Ye, H., Liu, H., Li, J., & Bi, X. (2024). Iron-Catalyzed Sulfonylmethylation of Imidazo[1,2-α]pyridines with N,N-Dimethylacetamide and Sodium Sulfinates. Molecules, 29(13), 3196. https://doi.org/10.3390/molecules29133196