Bismuth(III)-Catalyzed Regioselective Selenation of Indoles with Diaryl Diselenides: Synthesis of 3-Selanylindoles
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. General Procedure for the Synthesis of Calcogenated Indoles
4.3. Characterization Data of Novel Compounds
4.3.1. 3-(4-Trifluoromethylphenyl)selanyl-1-methyl-1H-indole (3ae)
4.3.2. 1-Methyl-3-(2-methylphenyl)selanyl-1H-indole (3af)
4.3.3. 3-(2-Benzothienyl)selanyl-1-methyl-1H-indole (3ai)
4.3.4. 1,5-Dimethyl-3-phenylselanyl-1H-indole (3ca)
4.3.5. 5-Chloro-1-methyl-3-phenylselanyl-1H-indole (3da)
4.3.6. 1-Methyl-3-phenylselanyl-1H-indole-5-carbonitrile (3fa)
4.3.7. 1,4-Dimethyl-3-phenylselanyl-1H-indole (3ga)
4.3.8. 1,6-Dimethyl-3-phenylselanyl-1H-indole (3ha)
4.3.9. 1,7-Dimethyl-3-phenylselanyl-1H-indole (3ia)
4.4. Single-Crystal X-ray Diffraction Experiment of 3aa
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C–H Activation. Chem. Rev. 2019, 119, 2192–2452. [Google Scholar] [CrossRef] [PubMed]
- Rampon, D.S.; Luz, E.Q.; Lima, D.B.; Balaguez, R.A.; Schneider, P.H.; Alves, D. Transition Metal Catalysed Direct Selanylation of Arenes and Heteroarenes. Dalton Trans. 2019, 48, 9851–9905. [Google Scholar] [CrossRef]
- Hellwig, P.S.; Peglow, T.J.; Penteado, F.; Bagnoli, L.; Perin, G.; Lenardão, E.J. Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules 2020, 25, 5907. [Google Scholar] [CrossRef] [PubMed]
- Jose, D.E.; Kanchana, U.S.; Mathew, T.V.; Anilkumar, G. Recent Developments and Perspectives in the C-Se Cross Coupling Reactions. Curr. Org. Chem. 2020, 24, 1230–1262. [Google Scholar] [CrossRef]
- Sonawane, A.D.; Sonawane, R.A.; Ninomiya, M.; Koketsu, M. Diorganyl Diselenides: A Powerful Tool for the Construction of Selenium Containing Scaffolds. Dalton Trans. 2021, 50, 12764–12790. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Li, Z.; Bi, L.; Fan, L.; Zhang, P. Recent Advances in Organic Synthesis Applying Elemental Selenium. Tetrahedron 2022, 112, 132752. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem. Rev. 2022, 122, 16110–16293. [Google Scholar] [CrossRef] [PubMed]
- Ranu, B.C.; Adak, L.; Mukherjee, N.; Ghosh, T. Benign-Metal-Catalyzed Carbon–Carbon and Carbon–Heteroatom Bond Formation. Synlett 2023, 34, 601–621. [Google Scholar] [CrossRef]
- Mugesh, G.; du Mont, W.-W.; Sies, H. Chemistry of Biologically Important Synthetic Organoselenium Compounds. Chem. Rev. 2001, 101, 2125–2179. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem. Rev. 2004, 104, 6255–6285. [Google Scholar] [CrossRef]
- Sarma, B.K.; Mugesh, G. Thiol Cofactors for Selenoenzymes and Their Synthetic Mimics. Org. Biomol. Chem. 2008, 6, 965–974. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Rocha, J.B.T. Toxicology and Pharmacology of Selenium: Emphasis on Synthetic Organoselenium Compounds. Arch. Toxicol. 2011, 85, 1313–1359. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, M.; Ali, W.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018, 23, 628. [Google Scholar] [CrossRef] [PubMed]
- Chuai, H.; Zhang, S.-Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small Molecule Selenium-Containing Compounds: Recent Development and Therapeutic Applications. Eur. J. Med. Chem. 2021, 223, 113621. [Google Scholar] [CrossRef]
- Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; et al. Synthesis and Evaluation of Benzimidazole Carbamates Bearing Indole Moieties for Antiproliferative and Antitubulin Activities. Eur. J. Med. Chem. 2014, 87, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. 3-(3,4,5-Trimethoxyphenylselenyl)-1H-indoles and Their Selenoxides as Combretastatin A-4 Analogs: Microwave-Assisted Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2015, 90, 184–194. [Google Scholar] [CrossRef]
- Wen, Z.; Li, X.; Zuo, D.; Lang, B.; Wu, Y.; Jiang, M.; Ma, H.; Bao, K.; Wu, Y.; Zhang, W. Ultrasound-Promoted Two-Step Synthesis of 3-Arylselenylindoles and 3-Arylthioindoles as Novel Combretastatin A-4 Analogues. Sci. Rep. 2016, 6, 23986. [Google Scholar] [CrossRef] [PubMed]
- Casaril, A.M.; Ignasiak, M.T.; Chuang, C.Y.; Vieira, B.; Padilha, N.B.; Carroll, L.; Lenardão, E.J.; Savegnago, L.; Davies, M.J. Selenium-Containing Indolyl Compounds: Kinetics of Reaction with Inflammation-Associated Oxidants and Protective Effect against Oxidation of Extracellular Matrix Proteins. Free Radic. Biol. Med. 2017, 113, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.M.; Thurow, S.; da Costa, M.; Casaril, A.M.; Domingues, M.; Schumacher, R.F.; Perin, G.; Alves, D.; Savegnago, L.; Lenardão, E.J. Ultrasound-Assisted Synthesis and Antioxidant Activity of 3-Selanyl-1H-indole and 3-Selanylimidazo [1,2-a]pyridine Derivatives. Asian J. Org. Chem. 2017, 6, 1635–1646. [Google Scholar] [CrossRef]
- Pedroso, G.J.; Costa, D.M.S.; Felipe Kokuszi, L.T.; da Silva, E.B.V.; Cavalcante, M.F.O.; Junca, E.; Moraes, C.A.O.; Pich, C.T.; de Lima, V.R.; Saba, S.; et al. Selenylated Indoles: Synthesis, Effects on Lipid Membrane Properties and DNA Cleavage. New J. Chem. 2023, 47, 2719–2726. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Wolf, L.; Martins, G.M.; von Mühlen, L. Efficient Synthesis of 3-Selanyl- and 3-Sulfanylindoles Employing Trichloroisocyanuric Acid and Dichalcogenides. Tetrahedron 2012, 68, 10464–10469. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Yan, J. Selective Synthesis of 3-Selanylindoles from Indoles and Diselenides Using IK/mCPBA System. Appl. Organomet. Chem. 2017, 31, e3864. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, Y.-Q.; Zhou, C.-F.; Jiang, Y.-Q.; Xu, Y.; Zeng, X.; Liu, G.-Q. Iodine Pentoxide-Mediated Oxidative Selenation and Seleno/Thiocyanation of Electron-Rich Arenes. Org. Biomol. Chem. 2022, 20, 5463–5469. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.L.; Azeredo, J.B.; Fiorentin, B.L.; Braga, A.L. Synthesis of 3-Selenylindoles under Ecofriendly Conditions. Eur. J. Org. Chem. 2015, 2015, 5070–5074. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Song, Z.; Liang, G. An Efficient t-BuOK Promoted C3-Chalcogenylation of Indoles with Dichalcogenides. Org. Biomol. Chem. 2018, 16, 4958–4962. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yi, R.; Zeng, C.; Cui, Y.; Xu, X.; Wang, X.-Q.; Li, N. CsOH-Promoted Regiospecific Sulfenylation, Selenylation, and Telluration of Indoles in H2O. Synlett 2023, 34, 124–132. [Google Scholar]
- Zhang, Q.-B.; Ban, Y.-L.; Yuan, P.-F.; Peng, S.-J.; Fang, J.-G.; Wu, L.-Z.; Liu, Q. Visible-Light-Mediated Aerobic Selenation of (Hetero)Arenes with Diselenides. Green Chem. 2017, 19, 5559–5563. [Google Scholar] [CrossRef]
- Kumaraswamy, G.; Ramesh, V.; Gangadhar, M.; Vijaykumar, S. Catalyst and Sensitizer-Free Visible-Light-Induced C(sp2)−H Chalcogenation of Arenes/Heteroarenes with Dichalcogenides. Asian J. Org. Chem. 2018, 7, 1689–1697. [Google Scholar] [CrossRef]
- Saba, S.; Rafique, J.; Franco, M.S.; Schneider, A.R.; Espíndola, L.; Silva, D.O.; Braga, A.L. Rose Bengal Catalysed Photo-Induced Selenylation of Indoles, Imidazoles and Arenes: A Metal Free Approach. Org. Biomol. Chem. 2018, 16, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Rathore, V.; Kumar, S. Visible-Light-Induced Metal and Reagent-Free Oxidative Coupling of sp2 C–H Bonds with Organo-Dichalcogenides: Synthesis of 3-Organochalcogenyl Indoles. Green Chem. 2019, 21, 2670–2676. [Google Scholar] [CrossRef]
- Lemir, I.D.; Castro-Godoy, W.D.; Heredia, A.A.; Schmidt, L.C.; Argüello, J.E. Metal- and Photocatalyst-Free Synthesis of 3-Selenylindoles and Asymmetric Diarylselenides Promoted by Visible Light. RSC Adv. 2019, 9, 22685–22694. [Google Scholar] [CrossRef] [PubMed]
- Heredia, A.A.; Soria-Castro, S.M.; Castro-Godoy, W.D.; Lemir, I.D.; López-Vidal, M.; Bisogno, F.R.; Argüello, J.E.; Oksdath-Mansilla, G. Multistep Synthesis of Organic Selenides under Visible Light Irradiation: A Continuous-Flow Approach. Org. Process Res. Dev. 2020, 24, 540–545. [Google Scholar] [CrossRef]
- Huang, Q.; Peng, X.; Li, H.; He, H.; Liu, L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022, 27, 772. [Google Scholar] [CrossRef] [PubMed]
- Quadros, G.T.; de Medeiros, S.P.; de Oliveira, C.A.; Rambo, M.W.; Abenante, L.; Lenardão, E.J.; Penteado, F. Benzeneseleninic Acids (BSA) and Photocatalysis: An Alternative Duo for the Synthesis of 3-Selanylindoles. Asian J. Org. Chem. 2023, 12, e202300517. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Jiang, H.; Sun, L. Convenient Synthesis of Selenyl-Indoles via Iodide Ion-Catalyzed Electrochemical C–H Selenation. Chem. Commun. 2018, 54, 8781–8784. [Google Scholar] [CrossRef] [PubMed]
- Meirinho, A.G.; Pereira, V.F.; Martins, G.M.; Saba, S.; Rafique, J.; Braga, A.L.; Mendes, S.R. Electrochemical Oxidative C(sp2)–H Bond Selenylation of Activated Arenes. Eur. J. Org. Chem. 2019, 2019, 6465–6469. [Google Scholar] [CrossRef]
- Fang, X.-L.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Iron-Catalyzed Sulfenylation of Indoles with Disulfides Promoted by a Catalytic Amount of Iodine. Synthesis 2009, 24, 4183–4189. [Google Scholar]
- Vieira, B.M.; Thurow, S.; Brito, J.S.; Perin, G.; Alves, D.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Sonochemistry: An Efficient Alternative to the Synthesis of 3-Selanylindoles Using CuI as Catalyst. Ultrason. Sonochem. 2015, 27, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously Catalyzed Direct C-H Thiolation of Heteroarenes. Angew. Chem. Int. Ed. 2015, 54, 5772–5776. [Google Scholar] [CrossRef] [PubMed]
- Luz, E.Q.; Seckler, D.; Araújo, J.S.; Angst, L.; Lima, D.B.; Rios, E.A.M.; Ribeiro, R.R.; Rampon, D.S. Fe(III)-Catalyzed Direct C3 Chalcogenylation of Indole: The Effect of Iodide Ions. Tetrahedron 2019, 75, 1258–1266. [Google Scholar] [CrossRef]
- Rios, E.A.M.; Gomes, C.M.B.; Silvério, G.L.; Luz, E.Q.; Ali, S.; D’Oca, C.d.R.M.; Albach, B.; Campos, R.B.; Rampon, D.S. Silver-Catalyzed Direct Selanylation of Indoles: Synthesis and Mechanistic Insights. RSC Adv. 2023, 13, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Benchawan, T.; Maneewong, J.; Saeeng, R. Selective Synthesis of 3-Chalcogenylindoles via Silver-Catalyzed Direct Chalcogenation of Indoles with Dichalcogenides. ChemistrySelect 2023, 8, e202301988. [Google Scholar] [CrossRef]
- Azeredo, J.B.; Godoi, M.; Martins, G.M.; Silveira, C.C.; Braga, A.L. A Solvent- and Metal-Free Synthesis of 3-Chacogenyl-Indoles Employing DMSO/I2 as an Eco-Friendly Catalytic Oxidation System. J. Org. Chem. 2014, 79, 4125–4130. [Google Scholar] [CrossRef] [PubMed]
- Rafique, J.; Saba, S.; Franco, M.S.; Bettanin, L.; Schneider, A.R.; Silva, L.T.; Braga, A.L. Direct, Metal-free C(sp2)−H Chalcogenation of Indoles and Imidazopyridines with Dichalcogenides Catalysed by KIO3. Chem. Eur. J. 2018, 24, 4173–4180. [Google Scholar] [CrossRef] [PubMed]
- Menezes, J.R.; Gularte, M.M.; dos Santos, F.C.; Roehrs, J.A.; Azeredo, J.B. Synthesis of 3-Chalcogenyl-Indoles Mediated by the Safer Reagent Urea-Hydrogen Peroxide (UHP). Tetrahedron Lett. 2023, 120, 154446. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Das, P.; Jana, R. Atom-Economical Selenation of Electron-Rich Arenes and Phosphonates with Molecular Oxygen at Room Temperature. Org. Biomol. Chem. 2018, 16, 9243–9250. [Google Scholar] [CrossRef] [PubMed]
- Leonard, N.M.; Wieland, L.C.; Mohan, R.S. Applications of Bismuth(III) Compounds in Organic Synthesis. Tetrahedron 2002, 58, 8373–8397. [Google Scholar] [CrossRef]
- Gaspard-Iloughmane, H.; Le Roux, C. Bismuth(III) Triflate in Organic Synthesis. Eur. J. Org. Chem. 2004, 2004, 2517–2532. [Google Scholar] [CrossRef]
- Bothwell, J.M.; Krabbe, S.W.; Mohan, R.S. Applications of Bismuth(III) Compounds in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 4649–4707. [Google Scholar] [CrossRef] [PubMed]
- Ondet, P.; Lemière, G.; Duñach, E. Cyclisations Catalysed by Bismuth(III) Triflate. Eur. J. Org. Chem. 2017, 2017, 761–780. [Google Scholar] [CrossRef]
- Raţ, C.I.; Soran, A.; Varga, R.A.; Silvestru, C. C–H Bond Activation Mediated by Inorganic and Organometallic Compounds of Main Group Metals. Adv. Organomet. Chem. 2018, 70, 233–311. [Google Scholar]
- Takasawa, R.; Jona, A.; Inoue, M.; Azuma, M.; Akahane, H.; Ueno, Y.; Nakagawa, Y.; Chimori, R.; Mano, Y.; Murata, Y.; et al. Triphenylbismuth Dichloride Inhibits Human Glyoxalase I and Induces Cytotoxicity in Cultured Cancer Cell Lines. J. Toxicol. Sci. 2022, 47, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Ohki, H.; Wada, M.; Akiba, K.Y. Bismuth Trichloride as a New Efficient Catalyst in the Aldol Reaction. Tetrahedron Lett. 1988, 29, 4719–4722. [Google Scholar] [CrossRef]
- Wada, M.; Takeichi, E.; Matsumoto, T. Bismuth Trichloride as a New Efficient Catalyst in the Aldol Reaction and the Michael Reaction. Bull. Chem. Soc. Jpn. 1991, 64, 990–994. [Google Scholar] [CrossRef]
- Ollevier, T.; Lavie-Compin, G. An Efficient Method for the Ring Opening of Epoxides with Aromatic Amines Catalyzed by Bismuth Trichloride. Tetrahedron Lett. 2002, 43, 7891–7893. [Google Scholar] [CrossRef]
- De, S.K.; Gibbs, R.A. Bismuth(III) Chloride-Catalyzed Direct Deoxygenative Allylation of Substituted Benzylic Alcohols with Allyltrimethylsilane. Tetrahedron Lett. 2005, 46, 8345–8350. [Google Scholar] [CrossRef]
- Sabitha, G.; Reddy, E.V.; Maruthi, C.; Yadav, J.S. Bismuth(III) Chloride-Catalyzed Intramolecular Hetero-Diels–Alder Reactions: A Novel Synthesis of Hexahydrodibenzo[b,h][1,6]Naphthyridines. Tetrahedron Lett. 2002, 43, 1573–1575. [Google Scholar] [CrossRef]
- Sabitha, G.; Reddy, E.V.; Yadav, J.S.; Rama Krishna, K.V.S.; Ravi Sankar, A. Stereoselective Synthesis of Octahydro-3bH-[1,3]dioxolo [4″,5″:4′,5′]furo [2′,3′:5,6]pyrano [4,3-b]quinolines via Intramolecular Hetero-Diels–Alder Reactions Catalyzed by Bismuth(III) Chloride. Tetrahedron Lett. 2002, 43, 4029–4032. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C.; Chen, L.; Varma, R.S.; Li, C.-J. Three-Component Coupling of Aldehyde, Alkyne, and Amine Catalyzed by Silver in Ionic Liquid. Tetrahedron Lett. 2004, 45, 2443–2446. [Google Scholar] [CrossRef]
- Li, H.; Zeng, H.-Y.; Shao, H.-W. Bismuth(III) Chloride-Catalyzed One-Pot Mannich Reaction: Three-Component Synthesis of β-Amino Carbonyl Compounds. Tetrahedron Lett. 2009, 50, 6858–6860. [Google Scholar] [CrossRef]
- Wu, F.; Huang, W.; Yiliqi; Yang, J.; Gu, Y. Relay Catalysis of Bismuth Trichloride and Byproduct Hydrogen Bromide Enables the Synthesis of Carbazole and Benzo[α]carbazoles from Indoles and α-Bromoacetaldehyde Acetals. Adv. Synth. Catal. 2018, 360, 3318–3330. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, X.-X.; Wang, Q.-D.; Yun, J.-J.; Rao, W.; Yang, J.-M.; Shen, Z.-L. Bismuth Trichloride-Catalyzed Oxy-Michael Addition of Water and Alcohol to α,β-Unsaturated Ketones. Chin. Chem. Lett. 2020, 31, 1297–1300. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Feng, B.; Liang, J.; You, G.; Liu, X.; Xian, L. Bi(III)-Catalyzed Aminooxygenation of Propargyl Amidines to Synthesize 2-Fluoroalkyl Imidazole-5-carbaldehydes and Their Decarbonylations. Chem. Commun. 2020, 56, 6400–6403. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-T.; Zhao, C.; Wang, D.-R.; Wu, G.-C.; Chen, G.-S.; Chen, S.-J.; Ren, H.; Deng, D.-S.; Xu, Y.-B.; Hu, X.-W.; et al. BiCl3-Mediated Tandem Cyclization of Tryptamine-Derived Ynamide: Concise Synthesis of Pentacyclic Spiroindolines and Tricyclic Indole Derivatives. Adv. Synth. Catal. 2022, 364, 890–896. [Google Scholar] [CrossRef]
- Malik, P.; Joseph, D.; Chakraborty, D. BiCl3-catalyzed Carbon–Carbon Cross-Coupling of Organoboronic Acids with Aryl Iodides. Appl. Organometal. Chem. 2013, 27, 519–522. [Google Scholar] [CrossRef]
- Riyaz, M.A.B.; Swu, T. Bismuth-catalyzed N-Arylation of 2-Aminobenzimidazole and Phosphorylation of Substituted Coumarins via C-H Functionalization. ChemistrySelect 2022, 7, e202203281. [Google Scholar] [CrossRef]
- Zhang, J.Z. Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles. J. Phys. Chem. B 2000, 104, 7239–7253. [Google Scholar] [CrossRef]
- Ünlü, F.; Deo, M.; Mathur, S.; Kirchartz, T.; Kulkarni, A. Bismuth-Based Halide Perovskite and Perovskite-Inspired Light Absorbing Materials for Photovoltaics. J. Phys. D Appl. Phys. 2022, 55, 113002. [Google Scholar] [CrossRef]
- Komatsu, N.; Uda, M.; Suzuki, H. Bismuth(III) Halides and Sulfate as Highly Efficient Catalyst for the Sulfenylation of Carbonyl and Related Compounds1. Synlett 1995, 9, 984–986. [Google Scholar] [CrossRef]
- Cunha, S.; Rodrigues, M.T., Jr. The First Bismuth(III)-Catalyzed Guanylation of Thioureas. Tetrahedron Lett. 2006, 47, 6955–6956. [Google Scholar] [CrossRef]
- Bailey, A.D.; Baru, A.R.; Tasche, K.K.; Mohan, R.S. Environmentally Friendly Organic Synthesis Using Bismuth Compounds: Bismuth(III) Iodide Catalyzed Deprotection of Acetals in Water. Tetrahedron Lett. 2008, 49, 691–694. [Google Scholar] [CrossRef]
- Adonin, S.A.; Peresypkina, E.V.; Sokolov, M.N.; Korolkov, I.V.; Fedin, V.P. Polyoxomolybdate-Supported Bismuth Trihalides [Mo8O26(BiX3)2]4– (X = Cl, Br, I): Syntheses and Study of Polymorphism. Inorg. Chem. 2014, 53, 6886–6892. [Google Scholar] [CrossRef] [PubMed]
- Wedal, J.C.; Ziller, J.W.; Evans, W.J. Expanding Bismuth Trihalide Coordination Chemistry with Trimethyltriazacyclohexane and Trimethyltriazacyclononane. Inorg. Chem. 2022, 61, 11766–11774. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Dong, Z.; Zhang, P.; Xing, W.; Li, L. Direct Selenation of Imidazoheterocycles and Indoles with Selenium Powder in a Copper-Catalyzed Three-Component One-Pot System. Tetrahedron Lett. 2018, 59, 2554–2558. [Google Scholar] [CrossRef]
- Lin, M.; Kang, L.; Gu, J.; Dai, L.; Tang, S.; Zhang, T.; Wang, Y.; Li, L.; Zheng, X.; Zhu, W.; et al. Heterogeneous Synergistic Catalysis by Ru-RuOx Nanoparticles for Se–Se Bond Activation. Nano Res. 2017, 10, 922–932. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Wang, H.; Tan, H. Iodine-Catalyzed Telluration of Indole Derivatives with Diarylditellurides for Synthesis of 3-Aryltellurylindoles. Chin. J. Org. Chem. 2019, 39, 2048–2052. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
Entry | Catalyst | Solvent | Temp. [°C] | Time [h] | Yield (%) [b] |
---|---|---|---|---|---|
1 | BiCl3 | DMF | 100 | 24 | 85 |
2 | BiBr3 | DMF | 100 | 6 | 84 |
3 | BiI3 | DMF | 100 | 1 | 97 (91) [c] |
4 | BiF3 | DMF | 100 | 24 | 14 |
5 | Bi(OTf)3 | DMF | 100 | 24 | 77 |
6 | Bi(ONO2)3 | DMF | 100 | 24 | 49 |
7 | Ph3Bi | DMF | 100 | 24 | 2 |
8 | SbBr3 | DMF | 100 | 24 | 77 |
9 | SbI3 | DMF | 100 | 24 | 74 |
10 | AlCl3 | DMF | 100 | 24 | 11 |
11 | InCl3 | DMF | 100 | 24 | 25 |
12 | FeCl3 | DMF | 100 | 24 | 41 |
13 | I2 | DMF | 100 | 24 | 20 |
14 | BiI3 | DMSO | 100 | 2 | 89 |
15 | BiI3 | CH3CN | 80 | 24 | 45 |
16 | BiI3 | THF | 60 | 24 | 60 |
17 | BiI3 | MeOH | 60 | 24 | 51 |
18 | BiI3 | 1,2-DCE | 80 | 2 | 12 |
19 | BiI3 | Dioxane | 100 | 24 | 19 |
20 | BiI3 | Toluene | 100 | 24 | 12 |
21 | BiI3 | DMF | 60 | 8 | 89 |
22 [d] | BiI3 | DMF | 100 | 1 | 94 |
23 [e] | BiI3 | DMF | 100 | 24 | 9 |
24 [f] | BiI3 | DMF | 100 | 8 | 94 |
25 [g] | BiI3 | DMF | 100 | 24 | 92 |
26 [h] | BiI3 | DMF | 100 | 1 | 94 |
27 [i] | BiI3 | DMF | 100 | 1 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumura, M.; Umeda, A.; Sumi, Y.; Aiba, N.; Murata, Y.; Yasuike, S. Bismuth(III)-Catalyzed Regioselective Selenation of Indoles with Diaryl Diselenides: Synthesis of 3-Selanylindoles. Molecules 2024, 29, 3227. https://doi.org/10.3390/molecules29133227
Matsumura M, Umeda A, Sumi Y, Aiba N, Murata Y, Yasuike S. Bismuth(III)-Catalyzed Regioselective Selenation of Indoles with Diaryl Diselenides: Synthesis of 3-Selanylindoles. Molecules. 2024; 29(13):3227. https://doi.org/10.3390/molecules29133227
Chicago/Turabian StyleMatsumura, Mio, Airi Umeda, Yuika Sumi, Naoki Aiba, Yuki Murata, and Shuji Yasuike. 2024. "Bismuth(III)-Catalyzed Regioselective Selenation of Indoles with Diaryl Diselenides: Synthesis of 3-Selanylindoles" Molecules 29, no. 13: 3227. https://doi.org/10.3390/molecules29133227
APA StyleMatsumura, M., Umeda, A., Sumi, Y., Aiba, N., Murata, Y., & Yasuike, S. (2024). Bismuth(III)-Catalyzed Regioselective Selenation of Indoles with Diaryl Diselenides: Synthesis of 3-Selanylindoles. Molecules, 29(13), 3227. https://doi.org/10.3390/molecules29133227