Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health
Abstract
:1. Introduction
2. Functional Ingredients of Beer and Its Raw Materials
2.1. Contribution of Hops and Barley to Beer Polyphenols
2.2. Contribution of Functional Ingredients of Barley to Beer
2.3. Functional Beer
2.4. Special Beer
3. The Health Effects of Raw Materials
3.1. Barley Grains with 28 Health Effects
3.1.1. Barley Grains Have 22 Health Effects
3.1.2. Controlling COVID-19
3.1.3. Treating Fatty Liver
3.1.4. Treating Alzheimer’s Disease
3.1.5. Glucolipid Modulation
3.1.6. Cardiometabolic Effect
3.1.7. Prebiotic Formulation
3.1.8. Neuroprotection
3.2. Hops for Human Health
4. Structure–Function Claim Substantiation for Beer
4.1. Health Effects of Beer
4.1.1. Cardiovascular Disease Prevention
4.1.2. Anti-Cancer
4.1.3. Anti-Diabetes
4.1.4. Lipid Deposition Prevention
4.1.5. Antioxidation
4.1.6. Anti-Inflammation
4.1.7. Immunomodulation
4.1.8. Improves Gastro-Intestinal Health
4.1.9. Cardio-Protection
4.1.10. Longevity
4.1.11. Improves Skin Health
4.1.12. Prevents Alzheimer’s Disease
4.1.13. Improves Metabolic Syndrome
4.1.14. Prevents Osteoporosis
4.1.15. Improves Cognition
4.1.16. Anti-Depressant
4.1.17. Improves Fatigue or Mood
4.1.18. Blood Pressure Regulation
4.1.19. Prevents Neurodegenerative Disease
4.1.20. Hepatoprotection
4.1.21. Promotes Sleep
4.1.22. Heart Failure or Stroke Prevention
4.1.23. Prevents Gallstone Disease
4.1.24. Reduces Kidney Stones
4.1.25. Wound Healing Acceleration
4.1.26. Prebiotic Action
Preventive Chronic Disease | Functional Ingredients in Grains/Grass [1] | Functional Ingredients in Beers | Reference in Beers |
---|---|---|---|
Cardiovascular disease prevention | β-glucans, arabinoxylan, lignans, tocols, polyphenols, phytosterols, folate/K, Ca, saponarin, SOD, VB1, vitamins (A, C, E), GABA, tryptophan | polyphenols, melanin, folate, Mg, prenylated flavonoids, melanoidins | [11,61,62,63,65,66,74] |
Anti-cancer | β-glucan, phenolics, arabinoxylan, lignan, phytosterols, resistant starch/Alkaline, flavonoids, chlorophyll, tricin, SOD | Prenyl-flavonoids, Se, melanin, polyphenols, tyrosol, vitamins, bitter acids, peptides, stilbene, hydroxy-tyrosol | [8,10,67,94,122,123] |
Anti-diabetes | β-glucan, phenolic compounds, polysaccharide, phytosterols, tocols, resistant starch/Ca, Saponarin, dietary fiber, AMPK, SOD, polyamines, GABA | Isomaltulose, phenolic acids, Se, resistant maltodextrin, bitter acids, xanthohumol, VB8, peptides | [8,68,69,93,122,123,124] |
Lipid deposition prevention or anti-obesity | β-glucan, polysaccharide, starch, polyphenols, dietary fiber, α-tocopherol, tocols, phytosterols (saponarin, 2″-O-glycosyl iso-vitexin) | soluble nitrogen, Mg, iso-α-acids, xanthohumol, polyphenols | [11,72,125] |
Antioxidation | polyphenols, GABA, VE, phenolics, anthocyanin, polysaccharide, SOD, tocotrienol/lutonarin, γ-tocopherol, saponarin, orientin, chlorophyll, iso-orientin, glutathione, flavonoid | polyphenols, Se, VB2, iso-α-acids ferulic acid, melanoidins, flavonoids | [8,74,75,80,88] |
Anti-inflammation or allergic rhinitis alleviation | β-glucans, vanillic acid, lignans, arabinoxylan/Chlorophyll, saponarin, SOD, tryptophan, GABA | iso-α-acids, peptides, VB2, 8-prenylnaringenin, isoxanthohumol, polyphenols, melanoidins, xanthohumol | [59,60,76,77,78,88,123] |
Immunomodulation | β-glucans, arabinoxylan/polysaccharide, GABA | melatonin, bitter acids, flavonoids, bioactive peptides | [60,80,122] |
Improve gastrointestinal | β-glucans/dietary fiber, Se, GABA | polyphenols, butyric acid, flavonoids; melanoidins | [59,60,81,83] |
Cardio-protection | β-d-glucan/K, GABA | polyphenols, peptides, VB6, melanoidins, flavonoids | [8,74,126] |
Longevity or Anti-aging | Excavate functional components | polyphenols, minerals, vitamins, Iso-α-acids, flavonoids | [85,87] |
Improve skin health or atopic dermatitis | GABA, extract P/metallothionein, SOD | flavonoids, by-products, melanoidins | [4,89] |
Prevent Alzheimer’s disease | flavonoids, minerals, vitamins, phenolic acids in barley grains [48] | Si, hops extract, phenolic acids | [8,91,92] |
Improve metabolic syndrome | β-glucans in barley grains | polyphenols, bitter acids, xanthohumol | [94] |
Prevent osteoporosis or bone injury recovery | Excavate functional components. Ca | Si, polyphenols, VB9, phytoestrogens, melanoidins | [59,60,95,96,97] |
Improve cognition | GABA, K, and SOD in barley grass | Iso-α-acids, Se | [77,123,127] |
Antidepressant | GABA, saponarin, vitamins, and minerals in barley grass | β-bitter acid, iso-α-acids, phenolic acids | [8,99,100] |
Improve fatigue or mood | Excavate components/lutonarin, saponarin | bitter acids | [98,101,102] |
Blood pressure regulation | β-glucans/saponarin; lutonarin, K, Ca, GABA | 8-prenylnaringenin, melatonin, peptides, VB6 | [103,122,126] |
Prevent neurodegenerative disease | protein, fiber, minerals, phenolic compounds in barley grains | flavonoids, minerals, melanoidins, bitter acids, peptides | [54,59,60,100,106,107,122,128] |
Hepatoprotection | β-glucans, phenolics, pentosan/saponarin, SOD, GABA [47] | flavonoids, xanthohumol, Se | [108,109,123] |
Promote sleep | GABA, Ca, K, VC, and tryptophan in barley grass | melatonin, α-acids, β-acids, xanthohumol | [59,110] |
Heart failure or stroke prevention | β-d-glucan, phenolics, tocols, linoleic acid, extract P, low protein, folate in barley grains | polyphenols | [112,113] |
Prevent gallstone | Excavate functional components | alcohol, ascorbic acid, Ca | [114] |
Reduce kidney stones | β-glucans in barley grains | Ca, K, Se, fluid selenium, | [117,123] |
Wound healing acceleration | β-glucans in barley grains | caffeic acid, ferulic acid, chicoric acid | [119,120] |
Prebiotic action | melanoidins, tocols, phenolic compounds, β-glucans in barley grains [52,53] | polyphenols, fiber, melanoidins | [6] |
4.2. Beer Ethanol for Human Health
4.3. Beer’s Threats to Human Health
4.3.1. Hyperuricemia
4.3.2. Low-Purine Beer
4.3.3. Hyperuricemia and Gout Diet Beer
5. Physiological Mechanisms of Beer Affecting Human Health
5.1. Polyphenol Mechanism
5.1.1. Phenolic Acid Mechanism
5.1.2. Flavonoid Mechanism
5.2. Melatonin Mechanism
5.3. Bitter Acid Mechanism
5.4. Mineral Mechanism
5.5. Vitamin Mechanism
5.6. Active Peptide Mechanism
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, Y.W.; Pu, X.Y.; Du, J.; Yang, X.M.; Li, X.; Mandal, M.S.N.; Yang, T.; Yang, J. Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxid. Med. Cell Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Sun, H.; Chen, X. Serving red rice beer to the ancestors ca. 9000 years ago at Xiaohuangshan early Neolithic site in south China. Holocene 2023, 33, 1012–1020. [Google Scholar] [CrossRef]
- Chen, W.; Becker, T.; Qian, F.; Ring, J. Beer and beer compounds: Physiological effects on skin health. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Roldán-López, D.; Muñiz-Calvo, S.; Daroqui, N.; Knez, M.; Guillamón, J.M.; Pérez-Torrado, R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit. Rev. Food Sci. Nutr. 2024, 64, 3059–3074. [Google Scholar] [CrossRef]
- Habschied, K.; Živković, A.; Krstanović, V.; Mastanjević, K. Functional Beer—A Review on Possibilities. Beverages 2020, 6, 51. [Google Scholar] [CrossRef]
- Zugravu, C.A.; Medar, C.; Manolescu, L.S.C.; Constantin, C. Beer and microbiota: Pathways for a positive and healthy interaction. Nutrients 2023, 15, 844. [Google Scholar] [CrossRef] [PubMed]
- Fang, W. Research progress in beer nutrition and health. Global Alcinfo. 2020, 27, 9–14. [Google Scholar]
- Nardini, M. An overview of bioactive phenolic molecules and antioxidant properties of beer: Emerging trends. Molecules 2023, 28, 3221. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.M.; Dang, B.; Zhang, W.G.; Zheng, W.C.; Yang, X.J. Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules 2022, 27, 3411. [Google Scholar] [CrossRef]
- Buckett, L.; Schinko, S.; Urmann, C.; Riepl, H.; Rychlik, M. Stable isotope dilution analysis of the major prenylated flavonoids found in beer, hop tea, and hops. Front. Nutr. 2020, 7, 619921. [Google Scholar] [CrossRef]
- Díaz Prieto, L.E.; Gómez-Martínez, S.; Nova, E.; Marcos, A. Do we know what moderate alcohol consumption is? The particular case of beer. Nutr. Hosp. 2022, 39, 12–16. [Google Scholar] [PubMed]
- Boronat, A.; Soldevila-Domenech, N.; Rodríguez-Morató, J.; Martínez-Huélamo, M.; Lamuela-Raventós, R.M.; de la Torre, R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef] [PubMed]
- Marcos, A.; Serra-Majem, L.; Pérez-Jiménez, F.; Pascual, V.; Tinahones, F.J.; Estruch, R. Moderate consumption of beer and its effects on cardiovascular and metabolic health: An updated review of recent scientific evidence. Nutrients 2021, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Bryś, M. Beer components and their beneficial effect on the hemostasis and cardiovascular diseases- truth or falsehood. Food Chem. Toxicol. 2020, 146, 111782. [Google Scholar] [CrossRef]
- Bamforth, C.W. The physics and chemistry of beer foam: A review. Eur. Food Res. Technol. 2023, 249, 3–11. [Google Scholar] [CrossRef]
- Sancén, M.; Léniz, A.; Macarulla, M.T.; González, M.; Milton-Laskibar, I.; Portillo, M.P. Features of non-alcoholic beer on cardiovascular biomarkers. can it be a substitute for conventional beer? Nutrients 2022, 15, 173. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Yang, J.Z.; Yang, X.M.; Li, X.; Pu, X.Y.; Fu, Z.Y.; Yang, L.E. A breakthrough GLP-1Ras and barley control chronic diseases. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Sun, Z.; Yu, X.; Zhang, Y.; Xu, J.; Li, X. Construction of a comprehensive beer proteome map using sequential filter-aided sample preparation coupled with liquid chromatography tandem mass spectrometry. J. Sep. Sci. 2019, 42, 2835–2841. [Google Scholar] [CrossRef]
- Di Matteo, P.; Bortolami, M.; Di Virgilio, L.; Petrucci, R. Targeted phenolic profile of radler beers by HPLC-ESI-MS/MS: The added value of hesperidin to beer antioxidants. J. Food Sci. Technol. 2022, 59, 4553–4562. [Google Scholar] [CrossRef]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef]
- Liu, C.F.; Li, Q. Study on the effects of beer on human health. Glob. Alcinfo. 2022, 29, 10–13. [Google Scholar]
- Jiménez-Pavón, D.; Cervantes-Borunda, M.S.; Díaz, L.E.; Marcos, A.; Castillo, M.J. Effects of a moderate intake of beer on markers of hydration after exercise in the heat: A crossover study. J. Int. Soc. Sports Nutr. 2015, 12, 26. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Du, J.; Yang, X.M.; Pu, X.Y.; Wang, L.X.; Yang, J.Z.; Du, L.J.; Yang, T.; Yang, S.M.; Sun, Z.H. Identification of quantitative trait loci for mineral elements in grains and grass powder of barley. Genet. Molecul. Res. 2016, 15, 15049103. [Google Scholar] [CrossRef] [PubMed]
- Thabet, S.G.; Alomari, D.Z.; Brinch-Pedersen, H.; Alqudah, A.M. Genetic analysis toward more nutritious barley grains for a food secure world. Bot. Stud. 2022, 63, 6. [Google Scholar] [CrossRef]
- Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates profile, polyphenols content and antioxidative properties of beer worts produced with different dark malts varieties or roasted barley grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, J.; Cai, S.; Chen, X.; Quan, X.; Zhang, G. Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genom. 2018, 19, 81. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Dang, B.; Fan, M.T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules 2018, 23, 879. [Google Scholar] [CrossRef]
- Lapcík, O.; Hill, M.; Hampl, R.; Wähälä, K.; Adlercreutz, H. Identification of isoflavonoids in beer. Steroids 1998, 63, 14–20. [Google Scholar] [CrossRef]
- Li, M.; Du, J.; Zheng, Y. Non-starch polysaccharides in wheat beers and barley malt beers: A comparative study. Foods 2020, 9, 131. [Google Scholar] [CrossRef]
- Gribkova, I.N.; Eliseev, M.N.; Lazareva, I.V.; Zakharova, V.A.; Sviridov, D.A.; Egorova, O.S.; Kozlov, V.I. The phenolic compounds’ role in beer from various adjuncts. Molecules 2023, 28, 2295. [Google Scholar] [CrossRef]
- Nutakor, C.; Essiedu, J.A.; Adadi, P.; Kanwugu, O.N. Ginger beer: An overview of health benefits and recent developments. Fermentation 2020, 6, 102. [Google Scholar] [CrossRef]
- Iara Gomes de Oliveira, L.; Karoline Almeida da Costa, W.; de Candido de Oliveira, F.; França Bezerril, F.; Priscila Alves Maciel Eireli, L.; Dos Santos Lima, M.; Fontes Noronha, M.; Cabral, L.; Wagner, R.; Colombo Pimentel, T.; et al. Ginger beer derived from back-slopping: Volatile compounds, microbial communities on activation and fermentation, metabolites and sensory characteristics. Food Chem. 2024, 435, 137640. [Google Scholar] [CrossRef] [PubMed]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of olive (Olea europaea L.) leaves as beer ingredient, and their influence on beer chemical composition and antioxidant activity. J. Food Sci. 2020, 85, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-added lager beer enriched with eggplant (Solanum melongena L.) peel extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef] [PubMed]
- Balík, J.; Híc, P.; Tříska, J.; Vrchotová, N.; Smetana, P.; Smutek, L.; Rohlik, B.A.; Houška, M. Beer and beer-based beverage contain lignans. J. Food Sci. Technol. 2021, 58, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Nunes Filho, R.C.; Galvan, D.; Effting, L.; Terhaag, M.M.; Yamashita, F.; Benassi, M.T.; Spinosa, W.A. Effects of adding spices with antioxidants compounds in red ale style craft beer: A simplex-centroid mixture design approach. Food Chem. 2021, 365, 130478. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Deb, D.; Adak, A.; Khan, M.R. Exploring the microbiota and metabolites of traditional rice beer varieties of Assam and their functionalities. 3 Biotech 2019, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Castro-Sepulveda, M.; Johannsen, N.; Astudillo, S.; Jorquera, C.; Álvarez, C.; Zbinden-Foncea, H.; Ramírez-Campillo, R. Effects of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis in athletes. Nutrients 2016, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Hosomi, K.; Park, J.; Goto, Y.; Nishimura, M.; Maruyama, S.; Murakami, H.; Konishi, K.; Miyachi, M.; Kawashima, H.; et al. Relationships between barley consumption and gut microbiome characteristics in a healthy Japanese population: A cross-sectional study. BMC Nutr. 2022, 8, 23. [Google Scholar] [CrossRef]
- Ishiyama, S.; Kimura, M.; Nakagawa, T.; Fujimoto, Y.; Uchimura, K.; Kishigami, S.; Mochizuki, K. Development of the dabetic kdney dsease muse mdel clturing ebryos in α-mnimum esential mdium In Vitro, and feeding barley diet attenuated the pathology. Front. Endocrinol. 2021, 12, 746838. [Google Scholar] [CrossRef]
- Hasheminasab, F.S.; Azimi, M.; Khodadoost, M.; Chouban, B.; Shakeri, N.; Ghasemi, S.; Farokhi, A.; Mokaberinajad, R. Efficacy of the barley-based remedy, a Persian medicine formula, in coronavirus disease 2019 (COVID-19) hospitalized patients: An open-labeled randomized controlled trial. Adv. Integr. Med. 2022, 9, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.; Bhardwaj, V.K.; Chauhan, M.; Chauhan, V.; Kumar, A.; Purohit, R.; Kumar, A.; Kumar, S. A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2. Sci. Rep. 2022, 12, 12802. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, D.; Gao, X.; Ju, M.; Fang, H.; Yan, Z.; Qu, H.; Zhang, Y.; Xie, L.; Weng, H.; et al. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19. Nutr. Metab. 2022, 19, 84. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.; Molavi Vardanjani, H.; Namjouyan, F.; Cramer, H.; Pasalar, M. Efficacy of Persian barley water on clinical outcomes of hospitalized moderate-severity COVID-19 patients: A single- blind, add-on therapy, randomized controlled clinical trial. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1033–1041. [Google Scholar] [PubMed]
- Hajibeygi, R.; Mirghazanfari, S.M.; Pahlavani, N.; Jalil, A.T.; Alshahrani, S.H.; Rizaev, J.A.; Hadi, S.; Hadi, V.; Yekta, N.H. Effect of a diet based on Iranian traditional medicine on inflammatory markers and clinical outcomes in COVID-19 patients: A double-blind, randomized, controlled trial. Eur. J. Integr. Med. 2022, 55, 102179. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Z.; Jiang, W.; Zhu, Y.Y.; Wang, C.Z.; Zhong, W.H.; Wu, G.; Chen, J.; Zhu, M.N.; Wu, Q.L.; Du, X.L.; et al. Highland barley Monascus purpureus Went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters. J. Ethnopharmacol. 2022, 286, 114922. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, Y.; Nie, C.; Xie, X.; Yuan, X.; Ma, Q.; Zhang, M.; Chen, Z.; Hu, X.; Li, J. Highland barley β-glucan alleviated western diet-induced non-alcoholic fatty liver disease via increasing energy expenditure and regulating bile acid metabolism in mice. Food Funct. 2022, 13, 11664–11675. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, H.; Bai, J.; Zhou, X.; Zhao, Y.; Zhu, Y.; McClements, D.J.; Xiao, X.; Sun, Q. Health-promoting properties of barley: A review of nutrient and nutraceutical composition, functionality, bioprocessing, and health benefits. Crit. Rev. Food Sci. Nutr. 2023, 63, 1155–1169. [Google Scholar] [CrossRef]
- Szuba-Trznadel, A.; Hikawczuk, T.; Korzeniowska, M.; Fuchs, B. Effect of different amounts of hybrid barley in diets on the growth performance and selected biochemical parameters of blood serum characterizing health status in fattening pigs. Animals 2020, 10, 1987. [Google Scholar] [CrossRef]
- Hajira, B.; Khan, I. Effect of sorghum and barley-containing bread on plasma total polyphenols, antioxidant status and inflammation in healthy subjects. J. Food Sci. Technol. 2022, 59, 4935–4944. [Google Scholar] [CrossRef]
- Sharma, J.K.; Sihmar, M.; Santal, A.R.; Prager, L.; Carbonero, F.; Singh, N.P. Barley melanoidins: Key dietary compounds with potential health benefits. Front. Nutr. 2021, 8, 708194. [Google Scholar] [CrossRef]
- Sharma, R.; Mokhtari, S.; Jafari, S.M.; Sharma, S. Barley-based probiotic food mixture: Health effects and future prospects. Crit. Rev. Food Sci. Nutr. 2022, 62, 7961–7975. [Google Scholar] [CrossRef]
- Ahmed-Farid, O.A.; Abdelrazek, A.M.; Elwakel, H.; Mohamed, M.M. Hordeum vulgare ethanolic extract mitigates high salt-induced cerebellum damage via attenuation of oxidative stress, neuroinflammation, and neurochemical alterations in hypertensive rats. Metab. Brain. Dis. 2023, 38, 2427–2442. [Google Scholar] [CrossRef]
- Tronina, T.; Popłoński, J.; Bartmańska, A. Flavonoids as phytoestrogenic components of hops and beer. Molecules 2020, 25, 4201. [Google Scholar] [CrossRef]
- Karabín, M.; Haimannová, T.; Fialová, K.; Jelínek, L.; Dostálek, P. Preparation of hop estrogen-active material for production of food supplements. Molecules 2021, 26, 6065. [Google Scholar] [CrossRef] [PubMed]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Girisa, S.; Saikia, Q.; Bordoloi, D.; Banik, K.; Monisha, J.; Daimary, U.D.; Verma, E.; Ahn, K.S.; Kunnumakkara, A.B. Xanthohumol from hop: Hope for cancer prevention and treatment. IUBMB Life 2021, 73, 1016–1044. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda, J.; Villaño, D.; Arcusa, R.; Zafrilla, P. Melatonin in wine and beer: Beneficial effects. Molecules 2021, 26, 343. [Google Scholar] [CrossRef]
- Maldonado, M.; Romero-Aibar, J.; Calvo, J. The melatonin contained in beer can provide health benefits, due to its antioxidant, anti-inflammatory and immunomodulatory properties. J. Sci. Food Agric. 2023, 103, 3738–3747. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: Evidences from human studies. Alcohol 2013, 48, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; Guido, L.F. A review on the fate of phenolic compounds during malting and brewing: Technological strategies and beer styles. Food Chem. 2022, 372, 131093. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, G.; Cignarelli, A.; Sansone, A.; Baldi, M.; Santi, D. To beer or not to beer: A meta-analysis of the effects of beer consumption on cardiovascular health. PLoS ONE 2020, 15, e0233619. [Google Scholar] [CrossRef] [PubMed]
- Mayer, O.J.; Simon, J.; Rosolová, H. A population study of the influence of beer consumption on folate and homocysteine concentrations. Eur. J. Clin. Nutr. 2001, 55, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and Melanoidins as Natural Antioxidants in Beer. Structure, Reactivity and Antioxidant Activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, I.; Spagnuolo, C.; Bilotto, S.; Izzo, A.A.; Borrelli, F.; Rigano, D.; Russo, M.; Tarricone, F.; Russo, G.L. Antioxidant and chemopreventive effect of Aliophen® formulation based on malts and hops. Antioxidants 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Gallego, R.; Pérez-Calahorra, S.; Lamiquiz-Moneo, I.; Marco-Benedí, V.; Bea, A.M.; Fumanal, A.J.; Prieto-Martín, A.; Laclaustra, M.; Cenarro, A.; Civeira, F. Effect of an alcohol-free beer enriched with isomaltulose and a resistant dextrin on insulin resistance in diabetic patients with overweight or obesity. Clin. Nutr. 2020, 39, 475–483. [Google Scholar] [CrossRef]
- Nogueira, L.C.; do Rio, R.F.; Lollo, P.C.B.; Ferreira, I.M.P.L.V.O. Moderate alcoholic beer consumption: The effects on the lipid profile and insulin sensitivity of adult men. J. Food Sci. 2017, 82, 1720–1725. [Google Scholar] [CrossRef]
- Franc, A.; Muselík, J.; Vetchý, D. Beer with reduced carbohydrates and alcohol content suitable for diabetics. Ceska Slov. Farm. 2018, 67, 212–215. [Google Scholar]
- Padro, T.; Muñoz-García, N.; Vilahur, G.; Chagas, P.; Deyà, A.; Antonijoan, R.M.; Badimon, L. Moderate beer intake and cardiovascular health in overweight individuals. Nutrients 2018, 10, 1237. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Fu, Q.; Huang, K.; Zou, Z.; Chen, L.; Chen, H.; Ge, S.; Wang, J.; Guan, X. Digestion characteristics of quinoa, barley and mungbean proteins and the effects of their simulated gastrointestinal digests on CCK secretion in enteroendocrine STC-1 cells. Food. Funct. 2022, 13, 6233–6243. [Google Scholar] [CrossRef]
- Trius-Soler, M.; Martínez-Carrasco, P.; Tresserra-Rimbau, A.; Moreno, J.J.; Estruch, R.; Lamuela-Raventós, R.M. Effect of moderate beer consumption (with and without ethanol) on cardiovascular health in postmenopausal women. J. Sci. Food Agric. 2023, 103, 7506–7516. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xia, T.; Wang, Z.; Zhang, X.; Huang, S.; Yu, J. Polyphenols and melanoidins in beer and the antioxidant effect: A review. Food Res. Dev. 2022, 43, 203–209. [Google Scholar]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Negrão, R.; Costa, R.; Duarte, D.; Taveira Gomes, T.; Mendanha, M.; Moura, L.; Vasques, L.; Azevedo, I.; Soares, R. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J. Cell Biochem. 2010, 111, 1270–1279. [Google Scholar] [CrossRef]
- Ayabe, T.; Ohya, R.; Kondo, K.; Ano, Y. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline. Sci. Rep. 2018, 8, 4760. [Google Scholar] [CrossRef]
- Luzak, B.; Kassassir, H.; Rój, E.; Stanczyk, L.; Watala, C.; Golanski, J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem. 2017, 123, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jin, S.; Zhang, C.; Hu, S.; Li, H. Beer-gut microbiome alliance: A discussion of beer-mediated immunomodulation via the gut microbiome. Front. Nutr. 2023, 10, 1186927. [Google Scholar] [CrossRef]
- Vazquez-Cervantes, G.I.; Ortega, D.R.; Blanco Ayala, T.; Pérez de la Cruz, V.; Esquivel, D.F.G.; Salazar, A.; Pineda, B. Redox and anti-inflammatory properties from hop components in beer-related to neuroprotection. Nutrients 2021, 13, 2000. [Google Scholar] [CrossRef]
- Rodriquez-Saavedra, M.; Tamargo, A.; Molinero, N.; Relaño de la Guía, E.; Jiménez-Arroyo, C.; Bartolomé, B.; González de Llano, D.; Victoria Moreno-Arribas, M. Simulated gastrointestinal digestion of beer using the simgi® model: Investigation of colonic phenolic metabolism and impact on human gut microbiota. Food Res. Int. 2023, 173, 113228. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.E.; Jalleh, R.J.; Trahair, L.G.; Marathe, C.S.; Horowitz, M.; Jones, K.L. Comparative effects of low-carbohydrate, full-strength and low-alcohol beer on gastric emptying, alcohol absorption, glycaemia and insulinaemia in health. Br. J. Clin. Pharmacol. 2022, 88, 3421–3427. [Google Scholar] [CrossRef] [PubMed]
- González-Zancada, N.; Redondo-Useros, N.; Díaz, L.E.; Gómez-Martínez, S.; Marcos, A.; Nova, E. Association of moderate beer consumption with the gut microbiota and SCFA of healthy adults. Molecules 2020, 25, 4772. [Google Scholar] [CrossRef] [PubMed]
- Klatsky, A.L.; Armstrong, M.A.; Friedman, G.D. Red wine, white wine, liquor, beer, and risk for coronary artery disease hospitalization. Am. J. Cardiol. 1997, 80, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Feola, A.; Ambrosio, P.; Pinto, F.; Galasso, G.; Zarrelli, A.; Di Fabio, G.; Porcelli, M.; Scacco, S.; Inchingolo, F.; et al. Antioxidant effect of beer polyphenols and their bioavailability in dental-derived stem cells (D-dSCs) and human intestinal epithelial lines (Caco-2) cells. Stem Cells Int. 2020, 2020, 8835813. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.D.; Brar, R.K.; Drake, L.L.; Drumm, H.E.; Price, D.P.; Hammond, J.I.; Urquidi, J.; Hansen, I.A. The effect of the radio-protective agents ethanol, trimethylglycine, and beer on survival of X-ray-sterilized male Aedes aegypti. Parasit Vectors 2013, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Ano, Y.; Dohata, A.; Taniguchi, Y.; Hoshi, A.; Uchida, K.; Takashima, A.; Nakayama, H. Iso-α-acids, bitter components of beer, prevent inflammation and cognitive decline induced in a mouse model of Alzheimer’s disease. J. Biol. Chem. 2017, 29, 3720–3728. [Google Scholar] [CrossRef] [PubMed]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The health benefits of a forgotten natural vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef] [PubMed]
- Almendinger, M.; Rohn, S.; Pleissner, D. Malt and beer-related by-products as potential antioxidant skin-lightening agents for cosmetics. Sustain. Chem. Pharm. 2020, 17, 100282. [Google Scholar]
- Bucci, P.L.; Santos, M.V.; Montanari, J.; Zaritzky, N. Nanoferulic: From a by-product of the beer industry toward the regeneration of the skin. J. Cosmet. Dermatol. 2020, 19, 2958–2964. [Google Scholar] [CrossRef]
- Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and Alzheimer’s disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [PubMed]
- Sasaoka, N.; Sakamoto, M.; Kanemori, S.; Kan, M.; Tsukano, C.; Takemoto, Y.; Kakizuka, A. Long-term oral administration of hop flower extracts mitigates Alzheimer phenotypes in mice. PLoS ONE 2014, 9, e87185. [Google Scholar] [CrossRef] [PubMed]
- Dostálek, P.; Karabín, M.; Jelínek, L. Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 2017, 22, 1761. [Google Scholar] [CrossRef] [PubMed]
- Iniguez, A.B.; Zhu, M.J. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit. Rev. Food Sci. Nutr. 2021, 61, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Trius-Soler, M.; Vilas-Franquesa, A.; Tresserra-Rimbau, A.; Sasot, G.; Storniolo, C.E.; Estruch, R.; Lamuela-Raventós, R.M. Effects of the non-alcoholic fraction of beer on abdominal fat, osteoporosis, and body hydration in women. Molecules 2020, 25, 3910. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Jugdaohsingh, R.; Powell, J.J.; Qiao, N.; Hannan, M.T.; Sripanyakorn, S.; Cupples, L.A.; Kiel, D.P. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am. J. Clin. Nutr. 2009, 89, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Pérez Medina, T.; de Argila Fernández-Durán, N.; Pereira Sánchez, A.; Serrano González, L. Benefits of moderate beer consumption at different stages of life of women. Nutr. Hosp. 2015, 32, 32–34. [Google Scholar]
- Ayabe, T.; Fukuda, T.; Ano, Y. Improving effects of hop-derived bitter acids in beer on cognitive functions: A new strategy for vagus nerve stimulation. Biomolecules 2020, 10, 131. [Google Scholar] [CrossRef]
- Schulz, C.; Chiheb, C.; Pischetsrieder, M. Quantification of co-, n-, and ad-lupulone in hop-based dietary supplements and phytopharmaceuticals and modulation of their contents by the extraction method. J. Pharm. Biomed. Anal. 2019, 168, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Yoshida, S.; Kondo, K.; Yamakawa, Y.; Ano, Y. Effects of iso-α-acids, the hop-derived bitter components in beer, on the MRI-based Brain Healthcare Quotient in healthy middle-aged to older adults. Neuropsychopharmacol. Rep. 2019, 39, 273–278. [Google Scholar] [CrossRef]
- Fukuda, T.; Akiyama, S.; Takahashi, K.; Iwadate, Y.; Ano, Y. Effect of non-alcoholic beer containing matured hop bitter acids on mood states in healthy adults: A single-arm pilot study. Nurs. Health Sci. 2022, 24, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Llamas, A.; De la Cruz-Sánchez, E. Moderate beer consumption is associated with good physical and mental health status and increased social support. Nutrients 2023, 15, 1519. [Google Scholar] [CrossRef]
- Trius-Soler, M.; Marhuenda-Muñoz, M.; Laveriano-Santos, E.P.; Martínez-Huélamo, M.; Sasot, G.; Storniolo, C.E.; Estruch, R.; Lamuela-Raventós, R.M.; Tresserra-Rimbau, A. Moderate consumption of beer (with and without ethanol) and menopausal symptoms: Results from a parallel clinical trial in postmenopausal women. Nutrients 2021, 13, 2278. [Google Scholar] [CrossRef]
- Hartmann, J.P.; Lund, M.T. A randomized, single-blinded study of the effect of intake of repair beer during a hangover. Ugeskr. Laeger. 2017, 179, V69578. [Google Scholar]
- Alonso-Andrés, P.; Martín, M.; Albasanz, J.L. Modulation of adenosine receptors and antioxidative effect of beer extracts in in Vitro Models. Nutrients 2019, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [PubMed]
- Kok, E.H.; Karppinen, T.T.; Luoto, T.; Alafuzoff, I.; Karhunen, P.J. Beer drinking associates with lower burden of amyloid beta aggregation in the brain: Helsinki sudden death series. Alcohol Clin. Exp. Res. 2016, 40, 1473–1478. [Google Scholar] [CrossRef]
- Caon, G.; Morrone, M.; Feistauer, L.; Sganzerla, D.; Moreira, J.C.F. Moderate beer consumption promotes silymarin-like redox status without affecting the liver integrity in vivo. Food Biosci. 2021, 43, 10130. [Google Scholar] [CrossRef]
- Kang, Q.; Sun, J.; Wang, B.; Sun, B. Wine, beer and Chinese Baijiu in relation to cardiovascular health: The impact of moderate drinking. Food Sci. Hum. Well. 2023, 12, 1–13. [Google Scholar] [CrossRef]
- Franco, L.; Bravo, R.; Galán, C.; Rodríguez, A.B.; Barriga, C.; Cubero, J. Effect of non-alcoholic beer on subjective sleep quality in a university stressed population. Acta Physiol. Hung. 2014, 101, 353–361. [Google Scholar] [CrossRef]
- Min, B.; Ahn, Y.; Cho, H.J.; Kwak, W.K.; Jo, K.; Suh, H.J. Chemical compositions and sleep-promoting activities of hop (Humulus lupulus L.) varieties. J. Food Sci. 2023, 88, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Gallinat, A.; Vilahur, G.; Padro, T.; Badimon, L. Effects of antioxidants in fermented beverages in tissue transcriptomics: Sffect of beer intake on myocardial tissue after oxidative injury. Antioxidants 2023, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Kouli, G.M.; Magriplis, E.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Beer, wine consumption, and 10-year CVD incidence: The ATTICA study. Eur. J. Clin. Nutr. 2019, 73, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.H.; Jang, M.J.; Lee, S.H. Alcohol consumption can reduce the risk of gallstone disease: A systematic review with a dose-response meta-analysis of case-control and cohort studies. Gut. Liver 2019, 13, 114–131. [Google Scholar] [CrossRef]
- Nehra, M.; Gahlawat, S.K.; Grover, N. Craft Beers: Fortification, Processing, and Production; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Pandey, S.; Kunwar, N. Role of barley flour product and its impact on human health. Pharma. Innov. J. 2023, 12, 1500–1502. [Google Scholar]
- Sharif, S.; Jie Tang, M.D.; Lynch, M.R. Diet interventions for calcium kidney stone disease. Rhode Island Med. J. 2023, 106, 26–30. [Google Scholar]
- Dziedziński, M.; Stachowiak, B.; Kobus-Cisowska, J.; Kozłowski, R.; Stuper-Szablewska, K.; Szambelan, K.; Górna, B. Supplementation of beer with Pinus sylvestris L. shoots extracts and its effect on fermentation, phenolic content, antioxidant activity and sensory profiles. Electron. J. Biotechnol. 2023, 63, 10–17. [Google Scholar] [CrossRef]
- Yao, J.; Ma, Z.; Wang, Y.; Wang, Y.; Sun, L.; Liu, X. Effects of dandelion addition on antioxidant property, sensory characteristics and inhibitory activity against xanthine oxidase of beer. Curr. Res. Food Sci. 2022, 5, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Xu, C.; Gan, J.; Sun, M.; Zhang, X.; Zhao, G.; Lv, C. Chicoric acid inserted in protein Z cavity exhibits higher stability and better wound healing effect under oxidative stress. Int. J. Biol. Macromolecul. 2024, 258, 128823. [Google Scholar] [CrossRef]
- Das, S.; Vishakha, K.; Banerjee, S.; Bera, T.; Mondal, S.; Ganguli, A. A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer showing both in vitro antibacterial and antibiofilm properties upon two multi resistant uro-pathogen strains. Curr. Res. Microb. Sci. 2022, 3, 100150. [Google Scholar] [CrossRef]
- Martini, S.; Tagliazucchi, D. Bioactive peptides in human health and disease. Int. J. Mol. Sci. 2023, 24, 5837. [Google Scholar] [CrossRef]
- Gao, X. Editorial: Selenium and human health. Front. Nutr. 2023, 10, 1269204. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Cruz, H.; Oróstica, L.; Plaza-Parrochia, F.; Torres-Pinto, I.; Romero, C.; Vega, M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E237–E248. [Google Scholar] [CrossRef]
- Ayabe, T.; Ohya, R.; Ano, Y. Iso-α-acids and matured hop bitter acids in beer improve obesity-induced cognitive impairment. Biosci. Biotechnol. Biochem. 2019, 83, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Strutynskyi, R.B.; Strutynska, N.A.; Piven, O.O.; Mys, L.A.; Goshovska, Y.V.; Fedichkina, R.A.; Okhai, I.Y.; Strutynskyi, V.R.; Dosenko, V.E.; Dobrzyn, P.; et al. Upregulation of ATP-sensitive potassium channels as the potential mechanism of cardioprotection and vasorelaxation under the action of pyridoxal-5-phosphate in old rats. J. Cardiovasc. Pharmacol. Ther. 2023, 28, 10742484231213175. [Google Scholar] [CrossRef] [PubMed]
- Ayabe, T.; Ohya, R.; Ano, Y. Hop-derived iso-α-acids in beer improve visual discrimination and reversal learning in mice as assessed by a touch panel operant system. Front. Behav. Neurosci. 2019, 13, 67. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The role of bioactive phenolic compounds on the impact of beer on health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef]
- Kan, Y.; Zhang, Z.; Yang, K.; Ti, M.; Ke, Y.; Wu, L.; Yang, J.; He, Y. Influence of d-amino acids in beer on formation of uric acid. Food Technol. Biotechnol. 2019, 57, 418–425. [Google Scholar] [CrossRef]
- He, H.; Pan, L.; Ren, X.; Wang, D.; Du, J.; Cui, Z.; Zhao, J.; Wang, H.; Wang, X.; Liu, F.; et al. Joint effect of beer, spirits intake, and excess adiposity on hyperuricemia among Chinese male adults: Evidence from the China national health survey. Front. Nutr. 2022, 9, 806751. [Google Scholar] [CrossRef]
- Anaizi, N. The impact of uric acid on human health: Beyond gout and kidney stones. J. Med. Biomed. Sci. 2023, 15, 110–116. [Google Scholar] [CrossRef]
- Almeida, C.; Neves, M.C.; Freire, M.G. Towards the wse of adsorption methods for the removal of purines from beer. Molecules 2021, 26, 6460. [Google Scholar] [CrossRef]
- Major, T.J.; Topless, R.K.; Dalbeth, N.; Merriman, T.R. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts. BMJ 2018, 363, k3951. [Google Scholar] [CrossRef] [PubMed]
- Mahor, D.; Prasad, G.S. Biochemical characterization of kluyveromyces lactis adenine deaminase and guanine deaminase and their potential application in lowering purine content in beer. Front. Bioeng. Biotechnol. 2018, 6, 180. [Google Scholar] [CrossRef] [PubMed]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef] [PubMed]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.C.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef]
- Negrão, M.R.; Keating, E.; Faria, A.; Azevedo, I.; Martins, M.J. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells. J. Agric. Food Chem. 2006, 54, 4982–4988. [Google Scholar] [CrossRef]
- Costa, R.; Rodrigues, I.; Guardão, L.; Rocha-Rodrigues, S.; Silva, C.; Magalhães, J.; Ferreira-de-Almeida, M.; Negrão, R.; Soares, R. Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J. Nutr. Biochem. 2017, 45, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Quiroz, F.; Nirmalkar, K.; Villalobos-Flores, L.E.; Murugesan, S.; Cruz-Narváez, Y.; Rico-Arzate, E.; Hoyo-Vadillo, C.; Chavez-Carbajal, A.; Pizano-Zárate, M.L.; García-Mena, J. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol 2020, 85, 77–94. [Google Scholar] [CrossRef]
- Marques, C.; Dinis, L.; Barreiros Mota, I.; Morais, J.; Ismael, S.; Pereira-Leal, J.B.; Cardoso, J.; Ribeiro, P.; Beato, H.; Resende, M.; et al. Impact of beer and nonalcoholic beer consumption on the gut microbiota: A randomized, double-blind, controlled trial. J. Agric. Food Chem. 2022, 70, 13062–13070. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Lamuela-Raventós, R.M.; Estruch, R.; Sasot, G.; Doménech, M.; Tresserra-Rimbau, A. Beer polyphenols and menopause: Effects and mechanisms-a review of current knowledge. Oxid. Med. Cell Longev. 2017, 2017, 4749131. [Google Scholar] [CrossRef]
- Liguori, L.; De Francesco, G.; Orilio, P.; Perretti, G.; Albanese, D. Influence of malt composition on the quality of a top fermented beer. J. Food Sci. Technol. 2021, 58, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci. Nutr. 2023, 11, 5856–5872. [Google Scholar] [CrossRef] [PubMed]
- Cici, M.O.; Bektas, N. The effect of protocatechuic acid on neuropathic pain and possible mechanism. Indian J. Pharmacol. 2023, 55, 315–321. [Google Scholar] [PubMed]
- Ding, D.; Zhang, Q.; Zeng, F.J.; Cai, M.X.; Gan, Y.; Dong, X.J. Mechanism of gentisic acid on rheumatoid arthritis based on miR-19b-3p/RAF1 axis. Chin. J. Integr. Med. 2023, 29, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Su, X.; Kang, Y.; Si, J.; Wang, L.; Li, X.; Ma, K. Effect and mechanism of chlorogenic acid on cognitive dysfunction in mice by lipopolysaccharide-induced neuroinflammation. Front. Immunol. 2023, 14, 1178188. [Google Scholar] [CrossRef]
- Qian, W.; Yang, M.; Wang, T.; Sun, Z.; Liu, M.; Zhang, J.; Zeng, Q.; Cai, C.; Li, Y. Antibacterial mechanism of vanillic acid on physiological, morphological, and biofilm properties of carbapenem-resistant enterobacter hormaechei. J. Food Prot. 2020, 83, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Z.; Nai, X.; Li, M.; Kong, J.; Chen, Y.; Liu, M.; Zhang, Q.; Liu, J.; Yan, H. Effects of temperature, metal ions and biosurfactants on interaction mechanism between caffeic acid phenethyl ester and hemoglobin. Molecules 2023, 28, 3440. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Li, W.; Jia, R.; Meng, D.; Zhang, H.; Xia, L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol. Rep. 2023, 75, 891–906. [Google Scholar] [CrossRef]
- Güzelad, Ö.; Özkan, A.; Parlak, H.; Sinen, O.; Afşar, E.; Öğüt, E.; Yıldırım, F.B.; Bülbül, M.; Ağar, A.; Aslan, M. Protective mechanism of syringic acid in an experimental model of Parkinson’s disease. Metab. Brain Dis. 2021, 36, 1003–1014. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Zhang, G.; Zhan, H.; Liu, B.; Li, C.; Wang, L.; Wang, H.; Wang, J. Antimicrobial mechanism of 4- hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochem. Biophys. Res. Commun. 2021, 572, 145–150. [Google Scholar]
- Dwivedi, P.S.R.; Shastry, C.S. System biology mediated assessment of molecular mechanism for sinapic acid against breast cancer: Via network pharmacology and molecular dynamic simulation. Sci. Rep. 2023, 13, 21982. [Google Scholar] [CrossRef] [PubMed]
- Buckett, L.; Schönberger, S.; Spindler, V.; Sus, N.; Schoergenhofer, C.; Frank, J.; Frank, O.; Rychlik, M. Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids. Metabolites 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, A.; Liu, C.; Qu, Z.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Role and mechanism of catechin in skeletal muscle cell differentiation. J. Nutr. Biochem. 2019, 74, 108225. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Z.; Wu, W.; He, S.; Xie, B.; Wu, M.; Sun, Z. Molecular mechanism of epicatechin gallate binding with carboxymethyl β-glucan and its effect on antibacterial activity. Carbohydr. Polym. 2022, 298, 120105. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Luo, Y.; Liu, S.; Li, S.; Li, L.; Ma, Y.; Liu, J. Protective effect of rutin on spinal motor neuron in rats exposed to acrylamide and the underlying mechanism. Neurotoxicology 2023, 95, 127–135. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, H.; Chen, J.; Ma, S.; Wang, M.; Zhou, X. The mechanism of in vitro non-enzymatic glycosylation inhibition by Tartary buckwheat’s rutin and quercetin. Food Chem. 2023, 406, 134956. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tao, T.; Yao, H.; Zheng, H.; Wang, F.; Gao, Y. Mechanism of action of quercetin in rheumatoid arthritis models: Meta-analysis and systematic review of animal studies. Inflammopharmacology 2023, 31, 1629–1645. [Google Scholar] [CrossRef]
- Ding, W.; Huang, C.; Chen, J.; Zhang, W.; Wang, M.; Ji, X.; Nie, S.; Sun, Z. Exploring the molecular mechanism by which kaempferol attenuates sepsis-related acute respiratory distress syndrome based on network pharmacology and experimental verification. Curr. Comput. Aided Drug Des. 2024, 20, 1–13. [Google Scholar] [CrossRef]
- Mannino, F.; Imbesi, C.; Irrera, N.; Pallio, G.; Squadrito, F.; Bitto, A. Insights into the antiosteoporotic mechanism of the soy-derived isoflavone genistein: Modulation of the wnt/beta-catenin signaling. Biofactors 2023, 50, 347–359. [Google Scholar] [CrossRef]
- Zhu, J.; Han, M.; Yang, Y.; Feng, R.; Hu, Y.; Wang, Y. Exploring the mechanism of brucea javanica against ovarian cancer based on network pharmacology and the influence of luteolin on the PI3K/AKT pathway. Comb. Chem. High Throughput Screen 2024, 27, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, H.; Zhang, X.; Xia, L.; Zhang, J. Research progress on antisepsis effect of apigenin and its mechanism of action. Heliyon 2023, 9, e22290. [Google Scholar] [CrossRef]
- Hao, P.; Zhang, C.; Bian, H.; Li, Y. The mechanism of action of myricetin against lung adenocarcinoma based on bioinformatics, in silico and in vitro experiments. N-S Arch. Pharmacol. 2023, 397, 4089–4104. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, X.; Huang, Z.; Chen, K.; Jiang, X.; Lai, R.; Li, Z. Study on the mechanism of naringin in promoting bone differentiation: In vitro and in vivo study. Heliyon 2024, 10, e24906. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Kang, X.; Yan, F.; Feng, L.; Huo, X.; Zhang, H.; Wang, Y.; Lv, X.; Ma, X.; Yuan, J.; et al. ROS-dependent catalytic mechanism of melatonin metabolism and its application in the measurement of reactive oxygen. Front. Chem. 2024, 11, 1229199. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Luo, D.; Xu, A.; Zhao, B.; Lin, H.; Yao, H.; Li, S. Insight into the mechanism of melatonin in attenuating PCB126-induced liver injury: Resistance to ROS-dependent NETs formation to alleviate inflammation and lipid metabolism dysfunction. Ecotoxicol. Environ. Saf. 2024, 270, 115923. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, Y.; Hung, I.; Liu, C.; Yin, J.; Ge, L.; Ren, W. Melatonin in food allergy: Mechanism and potential therapy. J. Pineal. Res. 2023, 75, e12899. [Google Scholar] [CrossRef] [PubMed]
- Majumder, R.; Datta, M.; Banerjee, A.; Bandyopadhyay, D.; Chattopadhyay, A. Melatonin protects against ketorolac induced gastric mucosal toxic injuries through molecular mechanism associated with the modulation of Arylakylamine N-Acetyltransferase (AANAT) activity. Chem. Biol. Interact. 2023, 382, 110611. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Tiliwaerde, M.; Gao, N.N.; Zhang, T.T.; Ji, H.X.; Gu, W.; Jin, Z.L. Mechanism of GW117 antidepressant action: Melatonin receptor-mediated regulation of sleep rhythm. Eur. J. Pharmacol. 2024, 964, 176299. [Google Scholar] [CrossRef]
- Yamazaki, T.; Takahashi, C.; Taniguchi, Y.; Narukawa, M.; Misaka, T.; Ano, Y. Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochem. Biophys. Res. Commun. 2020, 533, 704–709. [Google Scholar] [CrossRef]
- Fukuda, T.; Ohya, R.; Kobayashi, K.; Ano, Y. Matured hop bitter acids in beer improve lipopolysaccharide-induced depression-like behavior. Front. Neurosci. 2019, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Flythe, M.D.; Kagan, I.A.; Wang, Y.; Narvaez, N. Hops (Humulus lupulus L.) bitter acids: Modulation of rumen fermentation and potential as an alternative growth promoter. Front. Vet. Sci. 2017, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- González-Salitre, L.; Basilio-Cortés, U.A.; Rodríguez-Serrano, G.M.; Contreras-López, E.; Cardelle-Cobas, A.; González-Olivares, L.G. Physicochemical and microbiological parameters during the manufacturing of a beer-type fermented beverage using selenized Saccharomyces boulardii. Heliyon 2023, 9, e21190. [Google Scholar] [CrossRef] [PubMed]
- González-Muñoz, M.J.; Garcimartán, A.; Meseguer, I.; Mateos-Vega, C.J.; Orellana, J.M.; Peña-Fernández, A.; Benedí, J.; Sánchez-Muniz, F.J. Silicic acid and beer consumption reverses the metal imbalance and the prooxidant status induced by aluminum nitrate in mouse brain. J. Alzheimers Dis. 2017, 56, 917–927. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.D.; Dhungana, S.K.; Do, H.M.; Shin, D.H. Persimmon fruit enhanced quality characteristics and antioxidant potential of beer. Food Sci. Biotechnol. 2018, 27, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, A.; Fulara, K.; Hrabia, O.; Satora, P.; Poreda, A. Chemical composition of sour beer resulting from supplementation the fermentation medium with magnesium and zinc Ions. Biomolecules 2020, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Casani, L.; Mendieta, G.; Lamuela-Raventos, R.M.; Estruch, R.; Badimon, L. Beer elicits vasculoprotective effects through Akt/eNOS activation. Eur. J. Clin. Investig. 2014, 44, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, S.; Santamaria, O.; Chen, Y.; McGrath, S.P.; Poblaciones, M.J. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain. J. Agric. Food Chem. 2014, 62, 5948–5953. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Deng, Y.; Wang, F.; Liu, X.; Wang, J.; Xiao, J.; Zhang, C.; Zhang, Q. A new mechanism for ginsenoside Rb1 to promote glucose uptake, regulating riboflavin metabolism and redox homeostasis. Metabolites 2022, 12, 1011. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Zhong, H.; Xu, Y. The mechanism of nicotinamide on reducing acute lung injury by inhibiting MAPK and NF-κB signal pathway. Mol. Med. 2021, 27, 115. [Google Scholar] [CrossRef]
- Xiang, Y.; Liang, B.; Zhang, X.; Qiu, X.; Deng, Q.; Yu, L.; Yu, H.; Lu, Z.; Zheng, F. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation. Clin. Epigenetics 2022, 14, 32. [Google Scholar] [CrossRef]
- Niu, H.Y.; Shao, Z.H.; Wang, H.Q. Inhibitory effect of ascorbic acid on myelodysplastic syndrome cells and its mechanism. J. Exper. Hemat. 2021, 29, 1851–1857. [Google Scholar]
- Broz, P.; Rajdl, D.; Racek, J.; Trefil, L.; Stehlík, P. Effect of beer consumption on methylation and redox metabolism. Physiol. Res. 2022, 71, 573–582. [Google Scholar] [CrossRef]
- Rossi, F.; Spigno, G.; Luzzani, G.; Bozzoni, M.E.; Donadini, G.; Rolla, J.; Bertuzzi, T. Effects of the intake of craft or industrial beer on serum homocysteine. Int. J. Food Sci. Nutr. 2021, 72, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Duarte Villas Mishima, M.; Stampini Duarte Martino, H.; Silva Meneguelli, T.; Tako, E. Effect of food derived bioactive peptides on gut health and inflammatory mediators in vivo: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Grochalová, M.; Konečná, H.; Stejskal, K.; Potěšil, D.; Fridrichová, D.; Srbová, E.; Ornerová, K.; Zdráhal, Z. Deep coverage of the beer proteome. J. Proteom. 2017, 162, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Kammers, K.; Larman, H.B.; Scharpf, R.B.; Ruczinski, I. Detecting and quantifying antibody reactivity in PhIP-Seq data with BEER. Bioinformatics 2022, 38, 4647–4649. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Hisatsune, Y.; Fujita, A.; Yamada, O. Presence of disulfide-bonded thiols in malt and hops as the precursors of thiols in beer. J. Agric. Food Chem. 2022, 70, 13413–13418. [Google Scholar] [CrossRef]
- Li, W.H.; Xi, Y.; Wang, J.R.; Zhang, Y.X.; Li, H.; Liu, X.Q. Food-derived protein hydrolysates and peptides: Anxiolytic and antidepressant activities, characteristics, and mechanisms. Food Sci. Hum. Well. 2024, 13, 1168–1185. [Google Scholar] [CrossRef]
- Tian, W.H.; Hu, S.M.; Zhuang, Y.L.; Sun, L.P.; Yin, H. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. J. Sci. Food Agric. 2022, 102, 1085–1094. [Google Scholar]
- Zeng, Y.; Pu, X.; Yang, J.; Du, J.; Yang, X.; Li, X.; Li, L.; Zhou, Y.; Yang, T. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxid. Med. Cell Longev. 2018, 2018, 3232080. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 3492–3505. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.E.; Liden, T.; Berger, B.K.; Schug, K.A. Target profiling of beer styles by their iso-α-acid and phenolic content using liquid chromatography-quadrupole time-of-flight-mass spectrometry. J. Sep. Sci. 2021, 44, 2764–2772. [Google Scholar] [CrossRef]
- Mokkawes, T.; Lim, Z.Q.; de Visser, S.P. Mechanism of melatonin metabolism by CYP1A1: What determines the bifurcation pathways of hydroxylation versus deformylation? J. Phys. Chem. B 2022, 126, 9591–9606. [Google Scholar] [CrossRef] [PubMed]
Compound (Molecular Formula) Phytochemical Name | Hops (mg/100 g) | Barley (mg/100 g) | Reference |
---|---|---|---|
Caffeic acid (C9H8O4) 3,4-Dihydroxycinnamic acid | 0.01–15.8 | 0.17 ± 0.01 * | [1,8] |
Chlorogenic acid (C16H18O9) 3-O-Caffeoylquinic acid | 0.47–163.7 | 0–9.84 | [8,21] |
p-Coumaric acid (C9H8O3) 4-Hydroxycinnamic acid | 0.01–28.8 | 0.17–58.3 | [8] |
Ferulic acid (C10H10O4) 4-Hydroxy-3-methoxycinnamic acid | 1–10 | 0.59–4.25 | [8] |
p-Salicylic acid (C7H6O3) 4-Hydroxybenzoic acid | 187.0 ± 1.0 | 0.58–2.67 | [8] |
Syringic acid (C9H10O5) 4-Hydroxy-3,5-dimethoxybenzoic acid | 3–1290 | 0.1–91.6 | [8,20] |
Gallic acid (C7H6O5) 3,4,5-Trihydroxybenzoic acid | 8–341 | 0.1–136.6 | [8] |
Protocatechuic acid (C7H6O4) 3,4-Dihydroxybenzoic acid | 42–225 | 0.14 ± 0.05 * | [7,8] |
Catechin (C15H14O6) (2S,3R)-2-(3,4-dihydroxyphenyl)chroman-3,5,7-triol | 1.2–56.1 | 0.1–10.5 | [1,7,8] |
Kaempferol (C15H10O6) 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one | 0.44–49.4 | 1.27–19.2 | [1,8] |
Naringenin (C15H12O5) 5,7,4′-Trihydroxyflavanone | 3.9–11.0 | 4.7–50.2 | [8] |
Naringin(C27H32O14) hydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one | 1.7–3.9 | 0.77–6.97 | [8] |
Quercetin (C15H10O7) 3′,4′,5,7-Tetrahydroxyflavan-3-ol | 1.03–111.8 | 2.0–8.7 | [8,20] |
Rutin(C27H30O16) Quercetin 3-O-rutinoside | 61–88 | 1.4–11.8 | [8] |
Hops Compound (mg/100 g) | Barley Compound (mg/100 g) | ||||
---|---|---|---|---|---|
(Molecular Formula) | [Reference] | Contents | (Molecular Formula) | [Reference] | Contents |
Gentisic acid (C7H6O4) | [8] | 1.5–6.7 | Sinapic acid (C11H12O5) | [8] | 0.14–2.44 |
Epigallocatechin (C22H18O11) | [8] | 10.3–28.6 | 2,4-Dihydroxybenzoic(C7H6O4) | [8] | 0.68–6.16 |
Epicatechin (C15H14O6) | [8] | 0.08–8.4 | Vanillic acid (C8H8O4) | [7,8] | 0.10–3.91 |
Procyanidin B1 (C30H26O12) | [8] | 1840–5060 | Total vanillic acid | [8] | 0.2–67.5 |
Procyanidin B2 (C30H26O12) | [8] | 840–1460 | |||
Procyanidin C1 (C45H38O18) | [8] | 380–1690 | Total flavonoids | [8] | 6.2–30.1 |
Desmethylxanthohumol (C20H20O5) | [8] | 120.0 | Total flavonoids * | [8] | 16.5–24.1 |
Isorhamnetin (C16H12O7) | [8] | 0.5–3.3 | Myricetin(C15H10O8) | [1,8] | 0–73.3 |
Isoxanthohumol (C21H22O5) | [8] | 8.0–35.2 | Myricetin(C15H10O8) * | [8] | 3.1–4.3 |
8-Prenylnaringenin (C20H20O5) | [8] | 1.5–23.8 | Hesperidin(C28H34O15) | [8] | 0.5–24.9 |
Xanthohumol (C21H22O5) | [8] | 85.6–480.0 | Alkylresorcinols | [8] | 3.2–10.3 |
Total trans-Stilbenes (C14H12) * | [8] | 0.05–1.17 | Alkylresorcinols * | [8] | 2.86–3.54 |
trans-Resveratrol (C20H20O9) * | [8] | 0.003–0.228 | Total lignans(C22H22O8) * | [8] | 1.25 |
trans-Piceid (C20H22O8) * | [8] | 0.04–1.10 |
Beer Composition | Barley Grains Composition | ||||
---|---|---|---|---|---|
(Molecular Formula) | [Reference] | Mean ± SD | (Molecular Formula) | [Reference] | Mean ± SD |
Potassium (K) mg/L | [22] | 543.3 ± 326.5 | Potassium (K) mg/kg | [1,23] | 4802 ± 1839 |
Sodium (Na) mg/L | [7,22] | 66.4 ± 44.79 | Sodium (Na) mg/kg | [1,23] | 190.5 ± 104.7 |
Iron (Fe) mg/L | [7,22] | 0.23 ± 0.19 | Iron (Fe) mg/kg | [1,24] | 43.4 ± 17.6 |
Magnesium (Mg) mg/L | [7,22] | 107.0 ± 75.8 | Magnesium (Mg) mg/kg | [1,23] | 1250 ± 393 |
Calcium (Ca) mg/L | [22] | 96.67 ± 15.28 | Calcium (Ca) mg/kg | [1,23] | 568.3 ± 235.1 |
Manganese (Mn) mg/L | [7,22] | 0.31 ± 0.41 | Manganese (Mn) mg/kg | [1,23] | 29.3 ± 24.8 |
Zinc (Zn) mg/L | [7,22] | 0.17 ± 0.12 | Zinc (Zn) mg/kg | [1,24] | 38.1 ± 9.3 |
Phosphorus (P) mg/L | [22] | 361.7 ± 176.5 | Phosphorus (P) mg/kg | [1,23] | 2593 ± 1046 |
Selenium (Se) mg/L | [22] | 8.33 ± 6.35 | Selenium (Se) mg/kg | [24] | 36.03 ± 3.62 |
Total prenylated flavonoids mg/L | [12] | 0.0–9.5 | Flavonoids mg/Kg | [20] | 125.1 ± 101.4 |
Protein % | [22] | 0.2–0.6 | Protein % | [1] | 14.92 ± 0.13 |
Polyphenols mg GAE/L | [25] | 192.6 ± 8.7 | Polyphenols mg GAE/L | [1,26] | 2316 ± 343 |
FRAP mmol TE/L | [25] | 1.23 ± 0.01 | FRAP mmol TE/L | [1] | 60.36 ± 15.48 |
ABTS•+ (C18H18N4O6S4) mmol TE/L | [25] | 1.44 ± 0.09 | ABTS (C18H18N4O6S4) g/L | [1] | 5.87 ± 0.92 |
Alcohol (C2H6O) % | [22] | 3.50–6.15 | β-glucan (C18H32O16) % | [1,27] | 4.61 ± 0.45 |
Water (H2O) % | [22] | 88.5–97.7 | Resistant starch % | [1] | 3.63 ± 2.32 |
Total energy KJ/L | [22] | 1410–2780 | Arabinoxylan (C40H64O32) % | [1] | 1.31 ± 0.73 |
Sugar (C6H12O6) % | [22] | 2.1–5.3 | Phenolic acids mg/100 g | [27] | 414.70 ± 32.86 |
Iodide (I−) μg/L | [22] | 1–8 | Total flavones mg/100 g | [1,22,27] | 80.64 ± 17.15 |
Tyrosol (C8H10O2) mg/L | [12] | 0.2–44.4 | Total alkaloid mg/100 g | [1] | 25.96 ± 1.41 |
Hydroxy-tyrosol (C8H10O3) mg/L | [12] | 0.0–0.1 | Total anthocyanin mg/100 g | [1] | 35.50 ± 23.82 |
Alkylresorcinols μg/L | [12] | 0.02–11.0 | Proanthocyanidin g/100 g | [20] | 6.97 ± 3.84 |
Isoflavonoid (C15H10O2) nmol/L | [28] | 0.19–14.99 | Total tocols mg/100 g | [1] | 5.85 ± 3.51 |
Daidzein (C15H10O4) nmol/L | [28] | 0.08–2.5 | Anti-oxidant activity % | [26] | 41.55 ± 7.82 |
Genistein (C15H10O5) nmol/L | [28] | 0.169–6.74 | GABA (C4H9NO2) mg/100 g | [1] | 8.00 ± 3.92 |
Biochanin A (C16H12O5) nmol/L | [28] | 0.820–4.84 | Phytosterols (C29H50O) mg/100 g | [20] | 91.13 ± 21.14 |
Composition (Molecular Formula) | [Reference] | Range | Composition (Molecular Formula) | [Reference] | Range |
---|---|---|---|---|---|
Phenolic acid (HOC6H4SO3H) | mg/L Beer | Flavonoids | mg/L Beer | ||
Gallic acid (C7H6O5) * | [7,8] | 0.06–10.4 | Kaempferol (C15H10O6) | [8] | 0.06–16.4 |
Protocatechuic acid * (C7H6O4) | [8] | 0.02–0.30 | Daidzein (C15H10O4) | [8] | 0.23–0.36 |
Protocatechuic acid (C7H6O4) | [7] | 0.80–1.70 | Genistein (C15H10O5) | [8] | 0.06–0.08 |
p-Hydroxybenzoic acid * (C7H6O3) | [8] | 0.38–9.04 | Formononetin (C16H12O4) | [8] | 0.17–1.30 |
Gentisic acid * (C7H6O4) | [8] | 0.07–0.30 | Luteolin (C15H10O6) | [8] | 0.10–0.19 |
Chlorogenic acid * (C16H18O9) | [8] | 0–2.38 | Apigenin (C15H10O5) | [8] | 0.80–0.81 |
2,6-dihydroxybenzoic acid * (C7H6O4) | [8] | 2.53 ± 0.11 | Myricetin (C15H10O8) | [8] | 0.15–0.16 |
Vanillic * (C8H8O4) | [8] | 0–3.6 | Naringin (C27H32O14) | [8] | 0.70–2.63 |
Total vanillic (C8H8O4) | [8] | 1.17–5.45 | Naringenin (C15H12O5) | [8] | 0.06–2.34 |
Homo-vanillic acid * (C9H10O4) | [8] | 0.41 ± 0.04 | Phenolic alcohols | mg/L beer | |
Caffeic acid (C9H8O4) | [8] | 0–2.53 | Tyrosol (C8H10O2) | [8,12] | 0.2–44.4 |
Total caffeic acid (C9H8O4) | [7,8] | 0.98–6.38 | Hydroxy-tyrosol (C8H10O3) | [8] | 0.0–0.13 |
m-Hydroxybenzoic acid (C7H6O3) | [8] | 0–1.03 | Organic acid | mg/L beer | |
Syringic acid * (C9H10O5) | [8] | 0–1.13 | Lactic acid (C3H6O3) | [7] | 28–700 |
Total syringic acid (C9H10O5) | [7,8] | 0–1.23 | Acetic acid (CH3COOH) | [7] | 8–240 |
p-Coumaric acid * (C9H8O3) | [8] | 0.01–5.58 | Acetyl-formic acid (C3H6O) | [7] | 5–330 |
Total p-Coumaric acid (C9H8O3) | [7,8] | 0.30–3.10 | Succinate + malic acid | [7] | 61–640 |
Ferulic acid * (C10H10O4) | [7,8] | 0.10–11.03 | Oxalic acid (C2H2O4) | [7] | 2–37 |
Total ferulic acid (C10H10O4) | [8] | 9.97–22.60 | Citric acid (C6H8O7) | [7] | 77–590 |
4-hydroxyphenylacetic acid * | [8] | 0.05–1.47 | Sodium acetate (C2H3NaO2) | [21] | 0.1171 |
Total 4-hydroxyphenylacetic acid | [8] | 0.40–1.46 | Na pyruvate (C3H3NaO3) | [21] | 0.0494 |
Sinapic acid * (C11H12O5) | [8] | 0.20–1.39 | K D-gluconate (C6H11KO7) | [21] | 0.0348 |
Total sinapic acid (C11H12O5) | [8] | 2.19–6.16 | DL-Malic acid (C4H6O5) | [21] | 0.1867 |
m-Coumaric acid * (C9H8O3) | [8] | 0.105 ± 0.006 | Na citrate (Na3C6H5O7) | [21] | 0.0595 |
Salicylic acid (C7H6O3) | [8] | 0.19–6.66 | Na DL-lactate (NaC3H5O3) | [21] | 0.0348 |
o-Coumaric acid (C9H8O3) | [8] | 0.47 ± 0.04 | Prenylflavonoids | mg/L Beer | |
Flavonoids | mg/L Beer | 8-Prenylnaringenin (C20H20O5) | [8] | 0–0.021 | |
Catechin (C15H14O6) | [7,8] | 0.03–18.30 | 6-Geranylnaringenin | [8] | 0.001–0.074 |
Epicatechin (C15H14O6) | [8] | 0.02–11.50 | Isoxanthohumol (C21H22O5) | [8] | 0.04–3.44 |
Rutin (C27H30O16) | [8] | 0.06–4.85 | Xanthohumol (C21H22O5) | [8] | 0.002–0.69 |
Quercetin (C15H10O7) | [8] | 0.06–2.23 | 6-Prenylnaringenin (C20H20O5) | [8] | 0.011–0.56 |
Vitamin | mg/L beer | Alkylresorcinols | mg/L Beer | ||
Vitamin B1 (C12H17N4OS+) | [21] | 0.0266 | Total alkylresorcinols | [8,12] | 1.01 ± 2.03 |
Vitamin B2 (C17H20N4O6) | [7,21] | 0.26–4.03 | Stilbenes (C14H12) | mg/L beer | |
Vitamin B3 (C6H5NO2) | [22] | 4.30–8.15 | trans-Resveratrol (C14H12O3) | [8] | 0–0.067 |
Vitamin B5 (C9H17NO5) | [7,21] | 0.033–1.065 | cis-Resveratrol (C20H20O9) | [8] | 0–0.023 |
Vitamin B7 (C10H16N2O3S) | [7,21] | 0.008–0.022 | cis-Piceid (C20H22O8) | [8] | 0–0.024 |
Vitamin B6 (C8H11NO3) | [7,21,22] | 0.05–0.505 | trans-Piceid (C20H22O8) | [8] | 0–0.009 |
Vitamin B8 (C6H12O6) | [7,21] | 0–0.048 | Nicotinamide (C6H6N2O) | [7,8] | 0.01–0.30 |
Vitamin B9 (C19H19N7O6) | [7,21] | 0–0.006 | Amine | mg/L Beer | |
Vitamin B12 (C63H88CoN14O14P) | [22] | 0.00023 | Putrescine (C4H12N2) | [21] | 0.0823 |
Vitamin (A, D, E, K) | [7,21] | 0.398–4.984 | Tyramine (C8H11NO) | [21] | 1.0698 |
Dietary fiber | mg/L beer | Histamine (C5H9N3) | [21] | 0.1994 | |
Non-starchy carbohydrates | [6,29] | 1442–2923 | Melanoidins | [6] | 0.6–103 |
β-glucan (C18H32O16) | [29] | 26–99 | Melanoidins/malt wort | [30] | 125–225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Ahmed, H.G.M.-D.; Li, X.; Yang, L.; Pu, X.; Yang, X.; Yang, T.; Yang, J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules 2024, 29, 3110. https://doi.org/10.3390/molecules29133110
Zeng Y, Ahmed HGM-D, Li X, Yang L, Pu X, Yang X, Yang T, Yang J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules. 2024; 29(13):3110. https://doi.org/10.3390/molecules29133110
Chicago/Turabian StyleZeng, Yawen, Hafiz Ghulam Muhu-Din Ahmed, Xia Li, Li’e Yang, Xiaoying Pu, Xiaomeng Yang, Tao Yang, and Jiazhen Yang. 2024. "Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health" Molecules 29, no. 13: 3110. https://doi.org/10.3390/molecules29133110
APA StyleZeng, Y., Ahmed, H. G. M. -D., Li, X., Yang, L., Pu, X., Yang, X., Yang, T., & Yang, J. (2024). Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules, 29(13), 3110. https://doi.org/10.3390/molecules29133110