New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Determination
2.2. Characterization of Compound 1
2.3. Characterization of Compound 2
2.4. Characterization of Compound 3
2.5. Characterization of Compound 4
2.6. Characterization of Compound 5
2.7. NO Inhibitory Activities
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Acid Hydrosis and Sugar Identification
3.5. Electronic Circular Dichroism Calculation of Compounds 1–5
3.6. Anti-Inflammatory Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanaka, N.; Yano, Y.; Tatano, Y.; Kashiwada, Y. Hypatulins A and B, Meroterpenes from Hypericum patulum. Org. Lett. 2016, 18, 5360–5363. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, J.; Lu, H.-F. Advances in Hypericum R esearches. Acta Bot. Boreal-Occident. Sin. 2005, 25, 844–849. [Google Scholar]
- Zhang, P.-P.; Liang, J.-J.; Peng, Y.-L.; Feng, T.-T.; Zhou, Y.; Wei, X. Novel Benzophenone with Antiradical Activities from the Aerial Parts of Hypericum lancasteri. Tetrahedron Lett. 2023, 129, 154721. [Google Scholar] [CrossRef]
- Kladar, N.; Božin, B.; Bijelić, K.; Bogavac, M.; Karaman, M.; Srđenović Čonić, B.; Rat, M.; Anačkov, G. Biological Activity of Genus Hypericum Sect. Hypericum Species-H. tetrapterum, H. maculatum Subsp. Immaculatum, H. triquetrifolium. Molecules 2023, 28, 6218. [Google Scholar] [PubMed]
- Hunt, E.J.; Lester, C.E.; Lester, E.A.; Tackett, R.L. Effect of St. John’s Wort on Free Radical Production. Life Sci. 2001, 69, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-Y.; Wang, A.-M.; Wang, Y.-L.; He, X.; Li, Y.-J.; Liu, L.-N. Determination of Guercetin Content in Flat Hemorrhoid Capsules and Passing Yellow Herbs by HPLC. China J. Chin. Mater. Med. 2003, 28, 825–828. [Google Scholar]
- Jiang, L.; Ma, X.; Wang, Y.; Xue, J.; He, Z.; Nie, Y.; Liu, T.; Wang, Y.-L.; Li, Y. Four New Compounds from Fruits of Hypericum patulum Thunb. Nat. Prod. Res. 2024, 38, 1531–1536. [Google Scholar] [CrossRef]
- Ao, Z.; Liu, Y.-Y.; Lin, Y.-L.; Chen, X.; Chen, K.; Kong, L.-Y.; Luo, J.-G. Hyperpatulones A and B, Two New Peroxide Polyprenylated Acylphloroglucinols from the Leaves of Hypericum patulum. Tetrahedron Lett. 2020, 61, 151385. [Google Scholar] [CrossRef]
- Jia, X.; Wu, Y.; Lei, C.; Yu, Y.; Li, J.; Li, J.; Hou, A. Hyperinoids A and B, Two Polycyclic Meroterpenoids from Hypericum patulum. Chin. Chem. Lett. 2020, 31, 1263–1266. [Google Scholar] [CrossRef]
- Tanaka, N.; Kakuguchi, Y.; Ishiyama, H.; Kubota, T.; Kobayashi, J. Yezo’otogirins A-C, New Tricyclic Terpenoids from Hypericum yezoense. Tetrahedron Lett. 2009, 50, 4747–4750. [Google Scholar] [CrossRef]
- Duan, J.; Chen, W.; Zhao, Y.; He, L.; Li, E.; Bai, Z.; Wang, Y.; Zhang, C. Flavonoids from Hypericum patulum Enhance Glucose Consumption and Attenuate Lipid Accumulation in HepG2 Cells. J. Food Biochem. 2021, 45, e13898. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.-Y.; Jiang, W.; Li, L.; Lu, D.; Ma, X.; Lu, D.-Y.; Liu, T.; Huang, Y.; Wang, Y.-L.; Li, Y.-J. Six New Constituents from the Fruit of Hypericum patulum and Their Anti-Inflammatory Activity. Chem. Biodivers. 2023, 20, e202200900. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Ao, Z.; Xu, Q.-Q.; Zhu, D.-R.; Chen, C.; Wang, X.-B.; Luo, J.-G.; Kong, L.-Y. Hyperpatulols A-I, Spirocyclic Acylphloroglucinol Derivatives with Anti-Migration Activities from the Flowers of Hypericum patulum. Bioorg. Chem. 2019, 87, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-N.; Niu, Q.-W.; Zhang, Y.-B.; Luo, D.; Li, Q.-G.; Li, Y.-Y.; Kuang, G.-K.; He, L.-J.; Wang, G.-C.; Li, Y.-L. Hyperpatulones A–F, Polycyclic Polyprenylated Acylphloroglucinols from Hypericum patulum and Their Cytotoxic Activities. RSC Adv. 2019, 9, 7961–7966. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Niwa, K.; Yano, Y.; Kashiwada, Y. Prenylated Benzophenone Derivatives from Hypericum patulum. J. Nat. Med. 2020, 74, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Yeram, P.B.; Kulkarni, Y.A. Glycosides and Vascular Complications of Diabetes. Bioorg. Chem. 2022, 19, e202200067. [Google Scholar] [CrossRef] [PubMed]
- Autiero, I.; Roviello, G.N. Interaction of Laurusides 1 and 2 with the 3C-like Protease (Mpro) from Wild-Type and Omicron Variant of SARS-CoV-2: A Molecular Dynamics Study. Int. J. Mol. Sci. 2023, 24, 5511. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.-I.; Lee, Y.-C.; Lee, J.-H. Phenol Glycosides with In Vitro anti-Helicobacter pylori Activity from Hypericum erectum Thunb. Phytother. Res. 2011, 25, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Hu, B.; Qian, M.; Zhang, J.; Wu, L. Benzophenone Rhamnosides and Chromones from Hypericum Seniawinii Maxim. Molecules 2022, 27, 7056. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-T.; An, Z.; Tang, D.; Peng, G.-R.; Cao, C.-Y.; Xu, Y.-Z.; Li, C.-H.; Liu, P.-L.; Jiang, Z.-M.; Gao, J.-M. Hyperelatosides A–E, Biphenyl Ether Glycosides from Hypericum Elatoides, with Neurotrophic Activity. RSC Adv. 2018, 8, 26646–26655. [Google Scholar] [CrossRef] [PubMed]
- Demirkiran, O. Three New Benzophenone Glycosides with MAO-A Inhibitory Activity from Hypericum thasium Griseb. Phytochem. Lett. 2012, 5, 700–704. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Xu, Y.-F.; Zhu, X.-Y.; Xu, X.-F.; Chang, S.; Deng, R.-X. Three New Monoterpene Glycosides from Oil peony Seed Cake. Ind. Crops Prod. 2018, 111, 371–378. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.-H.; Yuan, S.-W.; Lu, Y.; Wang, Q. A New Monoterpene Glycoside from Pedicularis verticillata and Anticomplementary Activity of Its Compounds. Nat. Prod. Res. 2021, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sybyl Software, version X 2.0; Tripos Associates Inc.: St. Louis, MO, USA, 2013.
- Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Stephens, P.J.; Harada, N. ECD Cotton Effect Approximated by the Gaussian Curve and Other Methods. Chirality 2010, 22, 229–233. [Google Scholar] [CrossRef] [PubMed]
No | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1a | 2.56 t (5.0) | 2.41 m | 5.33 dd (17.4, 1.6) | 5.32 dd (17.4, 1.7) | 4.21 d (11.6) |
1b | 5.17 dd (10.9, 1.6) | 5.17 dd (10.9, 1.7) | 4.07 d (11.6) | ||
2 | 5.92 dd (17.4, 10.9) | 5.91 dd (17.4, 10.9) | |||
3a | 3.19 overlapped | 3.13 dd (19.9, 10.0) | 5.49 td (7.2, 1.4) | ||
3b | 2.52 dd (20.0, 1.7) | 2.39 m | |||
4a | 4.64 m | 4.55 dd (10.0, 2.2) | 1.57 m | 1.66 overlapped | 2.32 dd (7.2, 6.8) |
4b | 1.55 ddd (13.6, 11.8, 5.2) | ||||
5 | 2.70 m | 2.09 (m) | 4.01 d (6.8) | ||
6 | 1.45 overlapped | 5.39 ddd (8.5, 5.9, 1.4) | |||
7a | 2.63 m | 2.60 dd (10.7, 6.9) | 1.19 s | 5.57 t (6.4) | |
7b | 1.51 d (10.9) | 1.94 d (10.7) | |||
8 | 1.44 s | 1.13 s | 1.19 s | 3.90 m | 4.14 d (6.4) |
9a | 3.67 d (11.4) | 1.33 s | 1.45 s | 1.64 s | 1.66 s |
9b | 3.13 d (11.4) | ||||
10a | 3.90 d (10.0) | 3.89 d (10.0) | 1.71 s | ||
10b | 3.48 d (10.0) | 3.46 d (10.0) | |||
1′ | 4.43 d (7.7) | 4.42 d (7.8) | 4.29 d (7.6) | 4.26 d (7.7) | 4.26 d (7.9) |
2′ | 3.19 m | 3.26 m | 3.24 m | 3.21 dd (9.2, 7.8) | 3.20 dd (9.2, 7.9) |
3′ | 3.35 m | 3.29 m | 3.30 m | 3.27 m | 3.35 t (8.9) |
4′ | 3.28 m | 3.35 m | 3.30 m | 3.27 m | 3.29 t (9.2) |
5′ | 3.28 m | 3.37 m | 3.37 m | 3.35 m | 3.24 ddd (9.2, 5.8, 2.3) |
6′a | 3.88 dd (12.0, 1.8) | 3.82 dd (11.9, 2.4) | 3.88 d (12.2) | 3.88 dd (11.8, 1.6) | 3.87 dd (11.9, 2.3) |
6′b | 3.66 m | 3.69 dd (11.9, 5.0) | 3.68 dd (12.2, 6.8) | 3.66 dd (11.8, 4.4) | 3.67 dd (11.9, 5.7) |
No | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 57.5 | 53.7 | 114.4 | 114.5 | 75.7 |
2 | 213.9 | 213.9 | 142.6 | 142.4 | 134.6 |
3 | 43.0 | 44.5 | 76.2 | 76.1 | 126.1 |
4 | 75.1 | 69.9 | 39.0 | 38.1 | 34.4 |
5 | 43.5 | 84.0 | 71.6 | 22.6 | 77.7 |
6 | 46.0 | 47.0 | 45.2 | 126.8 | 140.5 |
7 | 25.0 | 30.8 | 29.2 | 136.0 | 126.5 |
8 | 21.4 | 22.8 | 29.1 | 69.0 | 59.2 |
9 | 66.9 | 23.4 | 19.1 | 13.7 | 11.8 |
10 | 77.3 | 77.4 | 14.4 | ||
1′ | 102.4 | 99.6 | 105.0 | 105.0 | 102.5 |
2′ | 74.9 | 74.9 | 75.1 | 75.2 | 75.1 |
3′ | 78.0 | 77.7 | 77.9 | 78.0 | 78.2 |
4′ | 71.6 | 71.1 | 71.5 | 71.6 | 71.8 |
5′ | 78.2 | 78.1 | 77.8 | 77.9 | 77.9 |
6′ | 62.7 | 62.2 | 62.7 | 62.7 | 62.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Ma, X.; Wang, Y.; Yang, J.-P.; Huang, Y.; Liu, C.-H.; Li, Y.-J. New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb. Molecules 2024, 29, 3075. https://doi.org/10.3390/molecules29133075
Jiang L, Ma X, Wang Y, Yang J-P, Huang Y, Liu C-H, Li Y-J. New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb. Molecules. 2024; 29(13):3075. https://doi.org/10.3390/molecules29133075
Chicago/Turabian StyleJiang, Li, Xue Ma, Yang Wang, Jian-Ping Yang, Yong Huang, Chun-Hua Liu, and Yong-Jun Li. 2024. "New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb." Molecules 29, no. 13: 3075. https://doi.org/10.3390/molecules29133075
APA StyleJiang, L., Ma, X., Wang, Y., Yang, J. -P., Huang, Y., Liu, C. -H., & Li, Y. -J. (2024). New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb. Molecules, 29(13), 3075. https://doi.org/10.3390/molecules29133075