An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Identification of AuNPs and AuNPs-PD-L1
2.2. Optimization Results of Experimental Conditions
2.3. Results of Analytical Performance
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of AuNPs-PD-L1
3.3. Optimization of Experimental Conditions
3.4. Preparation of Immunochromatographic Strips
3.5. Establishment of the AuNP Enlargement Immunochromatographic Methods
3.6. Test Strip Reader
3.7. Analytical Performance of Immunochromatographic Test Strips
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wang, Y.; Ren, F.; Sun, D.; Yan, Y.; Kong, X.; Bu, J.; Liu, M.; Xu, S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 2020, 11, 32. [Google Scholar] [CrossRef]
- Azadi, S.; Aboulkheyr Es, H.; Razavi Bazaz, S.; Thiery, J.P.; Asadnia, M.; Ebrahimi Warkiani, M. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. Biochimica et biophysica acta. Mol. Cell Res. 2019, 1866, 118526. [Google Scholar] [CrossRef]
- Liu, X.G.; Hou, M.; Liu, Y. TIGIT, A Novel Therapeutic Target for Tumor Immunotherapy. Immunol. Investig. 2017, 46, 172–182. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nature reviews. Cancer 2012, 12, 252–264. [Google Scholar]
- Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016, 8, 328rv324. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Jiang, M.; Zhao, Y.; Zhang, X. Effect of Pembrolizumab on T Lymphocyte Subsets in Patients with Advanced Non-small Cell Lung Cancer and Its Therapeutic Effect. Zhongguo Fei Ai Za Zhi = Chin. J. Lung Cancer 2021, 24, 182–187. [Google Scholar]
- Uldrick, T.S.; Gonçalves, P.H.; Abdul-Hay, M.; Claeys, A.J.; Emu, B.; Ernstoff, M.S.; Fling, S.P.; Fong, L.; Kaiser, J.C.; Lacroix, A.M.; et al. Assessment of the Safety of Pembrolizumab in Patients with HIV and Advanced Cancer-A Phase 1 Study. JAMA Oncol. 2019, 5, 1332–1339. [Google Scholar] [CrossRef]
- Lam, V.K.; Forde, P.M. Another Brick in the Wall: Sintilimab Plus Chemotherapy in Advanced Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 1556–1558. [Google Scholar] [CrossRef]
- Lee, A.; Keam, S.J. Tislelizumab: First Approval. Drugs 2020, 80, 617–624. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Ligtvoet, R.; Robrecht, S.; Stumpf, J.; Fink, A.M.; Tausch, E.; Schneider, C.; Boettcher, S.; Mikusko, M.; Ritgen, M.; et al. Tislelizumab plus zanubrutinib for Richter transformation: The phase 2 RT1 trial. Nat. Med. 2024, 30, 240–248. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Qin, S.; Kudo, M.; Meyer, T.; Bai, Y.; Guo, Y.; Meng, Z.; Satoh, T.; Marino, D.; Assenat, E.; Li, S.; et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1651–1659. [Google Scholar] [CrossRef]
- Puszkiel, A.; Noé, G.; Boudou-Rouquette, P.; Cossec, C.L.; Arrondeau, J.; Giraud, J.S.; Thomas-Schoemann, A.; Alexandre, J.; Vidal, M.; Goldwasser, F.; et al. Development and validation of an ELISA method for the quantification of nivolumab in plasma from non-small-cell lung cancer patients. J. Pharm. Biomed. Anal. 2017, 139, 30–36. [Google Scholar] [CrossRef]
- Iwamoto, N.; Shimada, T.; Terakado, H.; Hamada, A. Validated LC-MS/MS analysis of immune checkpoint inhibitor Nivolumab in human plasma using a Fab peptide-selective quantitation method: Nano-surface and molecular-orientation limited (nSMOL) proteolysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1023–1024, 9–16. [Google Scholar] [CrossRef]
- Pluim, D.; Ros, W.; van Bussel, M.T.J.; Brandsma, D.; Beijnen, J.H.; Schellens, J.H.M. Enzyme linked immunosorbent assay for the quantification of nivolumab and pembrolizumab in human serum and cerebrospinal fluid. J. Pharm. Biomed. Anal. 2019, 164, 128–134. [Google Scholar] [CrossRef]
- Yin, M.; Hu, X.; Sun, Y.; Xing, Y.; Xing, G.; Wang, Y.; Li, Q.; Wang, Y.; Deng, R.; Zhang, G. Broad-spectrum detection of zeranol and its analogues by a colloidal gold-based lateral flow immunochromatographic assay in milk. Food Chem. 2020, 321, 126697. [Google Scholar] [CrossRef]
- Wang, J.; Meng, H.-M.; Chen, J.; Liu, J.; Zhang, L.; Qu, L.; Li, Z.; Lin, Y. Quantum Dot-Based Lateral Flow Test Strips for Highly Sensitive Detection of the Tetanus Antibody. ACS Omega 2019, 4, 6789–6795. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Xue, F.; Zuo, W.; Yang, J.; Liu, X.; Jiang, H.; Dai, J.; Ju, Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal. Chem. 2022, 94, 4277–4285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Wang, M.; Wang, J.; Xu, Z.; Zhang, H. Photothermal card reader assay using the commercial colloidal gold test strip for the rapid quantitative detection of food hazards. Mikrochim. Acta 2022, 189, 112. [Google Scholar] [CrossRef] [PubMed]
- Mermiga, E.; Pagkali, V.; Kokkinos, C.; Economou, A. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples. Molecules 2023, 28, 8135. [Google Scholar] [CrossRef]
- Sun, F.; Yan, C.; Jia, Q.; Wu, W.; Cao, Y. A Novel Aptamer Lateral Flow Strip for the Rapid Detection of Gram-positive and Gram-negative Bacteria. J. Anal. Test. 2023, 7, 79–88. [Google Scholar] [CrossRef]
- Yao, D.; Liang, A.; Yin, W.; Jiang, Z. Resonance light scattering determination of trace bisphenol A with signal amplification by aptamer-nanogold catalysis. Lumin. J. Biol. Chem. Lumin. 2014, 29, 516–521. [Google Scholar] [CrossRef]
- Li, J.; Zou, M.; Chen, Y.; Xue, Q.; Zhang, F.; Li, B.; Wang, Y.; Qi, X.; Yang, Y. Gold immunochromatographic strips for enhanced detection of avian influenza and Newcastle disease viruses. Anal. Chim. Acta 2013, 782, 54–58. [Google Scholar] [CrossRef]
- Tong, B. Study on High-Sensitive Immunochromatographic Assay Detection of Salmonella Enteritidis; Northwest A&F University: Xianyang, China, 2018. [Google Scholar]
Addition Concentration (mg/mL) | Measurement Value (mg/mL) | Average Value (mg/mL) | Recovery Rate (%) | Relative Standard Deviation (%) | |
---|---|---|---|---|---|
PBS buffer | 10.0 | 10.63 10.77 11.67 10.57 9.99 10.81 | 10.74 | 107.40 | 5.06 |
1.0 | 0.99 1.11 0.91 0.99 1.01 1.13 | 1.02 | 102.33 | 8.07 | |
0.1 | 0.09 0.09 0.10 0.09 0.09 0.11 | 0.10 | 95.00 | 8.81 | |
human serum | 10.0 | 9.57 9.73 10.20 10.32 9.82 10.21 | 9.93 | 99.28 | 3.10 |
1.0 | 1.09 1.06 0.97 0.99 0.89 0.86 | 0.98 | 97.67 | 9.29 | |
0.10 | 0.09 0.09 0.1 0.11 0.1 0.09 | 0.01 | 96.67 | 8.45 |
Samples | Acutal Concentration (mg/mL) | ICTS Method | ELISA Method | ||
---|---|---|---|---|---|
Measurement Value (mg/mL) | Relative Standard Deviation (%) | Measurement Value (mg/mL) | Relative Standard Deviation (%) | ||
Sample 1 | 5.0 | 4.82 | 2.04 | 4.93 | 1.87 |
Sample 2 | 10.0 | 9.82 | 1.43 | 9.68 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lin, C.; Li, F.; Wei, X.; Chen, Y.; Fu, Y.; Yu, X.; Zhang, B.; Ye, Z. An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1. Molecules 2024, 29, 3046. https://doi.org/10.3390/molecules29133046
Zhang J, Lin C, Li F, Wei X, Chen Y, Fu Y, Yu X, Zhang B, Ye Z. An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1. Molecules. 2024; 29(13):3046. https://doi.org/10.3390/molecules29133046
Chicago/Turabian StyleZhang, Jingyi, Congmei Lin, Feng Li, Xinhao Wei, Yusen Chen, Yanyong Fu, Xiaoping Yu, Biao Zhang, and Zihong Ye. 2024. "An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1" Molecules 29, no. 13: 3046. https://doi.org/10.3390/molecules29133046
APA StyleZhang, J., Lin, C., Li, F., Wei, X., Chen, Y., Fu, Y., Yu, X., Zhang, B., & Ye, Z. (2024). An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1. Molecules, 29(13), 3046. https://doi.org/10.3390/molecules29133046