Preparation of Quaternary Ammonium Separation Material based on Coupling Agent Chloromethyl Trimethoxysilane (KH-150) and Its Adsorption and Separation Properties in Studies of Th(IV)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Silicon-Based Quaternized Material
2.2. Study on the Adsorption and Separation Properties of Th(IV) by Silicon-Based Quaternary Ammonium Material (SG-CTSQ)
3. Material and Methods
3.1. Materials
3.2. Preparation of Silicon-Based Quaternized Separation Material
3.3. Characterization of Silicon-Based Quaternized Material
3.4. Calculation Methods of Grafting Amount and Adsorption Amount
3.5. Adsorption Study on Silicon-Based Quaternized Material with Th(IV)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galahom, A. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide. Nucl. Eng. Des. 2017, 314, 165–172. [Google Scholar] [CrossRef]
- Bedenko, S.; Ghal-Eh, N.; Lutsik, I. A fuel for generation IV nuclear energy system: Isotopic composition and radiation characteristics. Appl. Radiat. Isot. 2019, 147, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Leotlela, M.; Hadebe, N.; Petr, I. Prediction of dose rates around the interim spent fuel storage facility. Radiat. Phys. Chem. 2020, 11, 197–211. [Google Scholar] [CrossRef]
- Teodor, G.; Constantin, P.; Cristina, A. Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining. Membranes 2023, 13, 765. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Tonkaboni, S.; Khanchi, A. Thorium Recovery from Choghart Mining Waste by Beneficiation Processes. JOM 2023, 75, 1045–1058. [Google Scholar] [CrossRef]
- Liao, J.; Xiong, T.; Zhao, Z.; Ding, L.; Zhu, W. Synthesis of a novel environmental-friendly biocarbon composite and its highly efficient removal of uranium(VI) and thorium(IV) from aqueous solution. J. Clean. Prod. 2022, 374, 156–161. [Google Scholar] [CrossRef]
- Cai, Y.; Yan, Q.; Wang, M.; Chen, J.; Fu, H. Endowing 2,6-bis-triazolyl-pyridine of poor extraction with superior efficiency for actinide/lanthanide separation at high acidity by anchoring to a macrocyclic scaffold. J. Hazard. Mater. 2021, 416, 125745. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tang, J.; Ye, M. PMBP-loaded polyurethane foam as an extractant for thorium nitrate from aqueous solution. J. Radioanal. Nucl. Chem. 2007, 76, 275–282. [Google Scholar]
- Nejad, R.; Amini, M.; Ghaziaskar, H. Separation of Thorium from Zirconium Carbide Waste by Liquid–Liquid Extraction Using Tri- n -octylamine Solvent after Selective Acid Leaching. Ind. Eng. Chem. Res. 2020, 59, 20866–20876. [Google Scholar] [CrossRef]
- Kang, J.; Wu, R.; Li, L.; Hu, H.; Fan, Y. Selective Extraction and Complexation Studies for Thorium(IV) with Bis-triamide Extractants: Synthesis, Solvent Extraction, EXAFS, and DFT. Inorg. Chem. Commun. 2021, 60, 14212–14220. [Google Scholar] [CrossRef]
- Fan, M.; Li, S.; Deng, H.; Zhang, X. Separation and recovery of iridium(iv) from simulated secondary resource leachate by extraction-electrodeposition. Sep. Purif. Technol. 2022, 289, 120765–120779. [Google Scholar] [CrossRef]
- Kluge, E.; Lieser, H. Separation of Thorium, Protactinium and Uranium by Ion Exchange and Extraction. Radiochim. Acta 2013, 27, 161–172. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, W.; Yuan, Z.; Lu, J.; Ding, J. Taguchi method for optimizing the cation exchange resin catalyzed esterification of oleic acid with ethanol and adsorption kinetics study. Process Saf. Environ. Prot. 2024, 182, 989–998. [Google Scholar] [CrossRef]
- Zhi, Y.; Duan, G.; Lei, Z.; Chen, H.; Zhang, H. The Study of Amidoxime-Functionalized Cellulose Separate Th(IV) from Aqueous Solution. Gels 2022, 8, 378. [Google Scholar] [CrossRef]
- Guo, D.; Xiao, J.; Ning, Y.; Yu, H.; Jin, T. Highly efficient capture of thorium ion by graphene oxide modified UiO-66-NH2 from aqueous solution. J. Radioanal. Nucl. Chem. 2024, 333, 1063–1072. [Google Scholar] [CrossRef]
- Gomes, R.; Donatien, M.; Sophie, D.; Nicolas, P.; Stephane, F. Highlighting the selective properties of carbamoyl methyl phosphonated hydrosoluble polymers for Gd(III)/Th(IV)/U(VI) separation. Sep. Purif. Technol. 2021, 254, 329–337. [Google Scholar]
- Zhang, W.; Ning, S.; Zhang, S. Synthesis of functional silica composite resin for the selective separation of zirconium from scandium. Microporous Mesoporous Mater. 2019, 288, 109602–109617. [Google Scholar] [CrossRef]
- Chen, L.; Ning, S.; Huang, Y. Effects of speciation on uranium removal efficiencies with polyamine-functionalized silica composite adsorbent in groundwater. J. Clean. Prod. 2020, 256, 120379–120388. [Google Scholar] [CrossRef]
- Kamel Mahmoud, M. Applicability of mesoporous carbon-glassy polyvinyl alcohol/silica gel hybrid composite to remove methylene blue from aqueous solution. Res. Chem. Intermed. 2023, 49, 3659–3679. [Google Scholar] [CrossRef]
- Gerontopulos, P.; Rigali, L. The Extraction of Thorium from Nitric Acid Solutions by a Quaternary Ammonium Nitrate (Aliquat-336). Radiochim. Acta 2013, 3, 122–123. [Google Scholar] [CrossRef]
- Pyartman, K.; Kopyrin, A. Kinetics of Thorium(IV) Nitrate Extraction at Various Temperatures from Aqueous Salt Solutions with a Composite Material Based on a Polymeric Support and Trialkylmethylammonium Nitrate. Radiochemistry 2010, 52, 487–490. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Chang, Z. Study on the graft modification mechanism of macroporous silica gel surface based on silane coupling agent vinyl triethoxysilane. RSC Adv. 2021, 11, 25158–25169. [Google Scholar] [CrossRef] [PubMed]
- Foti, G.; Kovats, S. Chromatographic study of the silanol population at the surface of derivatized silica. Langmuir 2002, 5, 232–239. [Google Scholar] [CrossRef]
- Hu, N.; Rao, Y.; Sun, S. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing. Appl. Spectrosc. 2016, 70, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Pathmanathan, S. Comparison of adsorption properties of commercial silica and rice husk ash (RHA) silica: A study by NIR spectroscopy. Open Chem. 2021, 19, 426–431. [Google Scholar]
- Kurczewska, J.; Ryczkowski, J.; Pasieczna-Patkowska, S. Photoacoustic infrared spectroscopic studies of silica gels with organically functionalized surface. Spectrosc. Lett. 2016, 49, 529–534. [Google Scholar] [CrossRef]
- Ishide, H.; Yan, J. Study on Infrared Transmittance of Si-Polymer Hybrid Structure Press Molded Using a Coupling Agent. Int. J. Autom. Technol. 2019, 13, 817–824. [Google Scholar] [CrossRef]
- Ertugrul, A.; Esra, Y.; Tufan, S. Combined Effect of Zinc Borate and Coupling Agent against Brown and White Rot Fungi in Wood-Plastic Composites. Bioresources 2017, 12, 7056–7068. [Google Scholar]
- Xu, B.; Chen, C.; Ma, E.; Wei, Z. Preparation of SiO2/polymer co-coated colored aluminum pigments with excellent corrosion resistance and UV protection and their application in fabrics. Compos. Interfaces 2021, 28, 129–144. [Google Scholar] [CrossRef]
- Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Qiu, Y.; Yang, Y.; Yang, N.; Tong, L.; Yin, S.; Wang, L. Thermochemical energy storage using silica gel: Thermal storage performance and nonisothermal kinetic analysis. Sol. Energy Mater. Sol. Cells 2023, 251, 33–46. [Google Scholar] [CrossRef]
- Adél, L.; Giuseppe, P.; Loránd, R. Physicochemical Characterization and Drug Release Properties of Methyl-Substituted Silica Xerogels Made Using Sol–Gel Process. Int. J. Mol. Sci. 2021, 22, 9197. [Google Scholar] [CrossRef] [PubMed]
- Kohns, R.; Meyer, R.; Wenzel, M. In situ synthesis and characterization of sulfonic acid functionalized hierarchical silica monoliths. J. Sol-Gel Sci. Technol. 2020, 96, 67–82. [Google Scholar] [CrossRef]
- Archana, A.; Azizur, M.; Mantripragada, R. Synthesis, In Silico Studies, and In Vitro Anti-Inflammatory Activity of Novel Imidazole Derivatives Targeting p38 MAP Kinase. ACS Omega 2023, 8, 17788–17799. [Google Scholar]
- Borni, M.; Hajji, M.; Hamzaoui, A. Synthesis and Characterization of Silicophosphates Using Phosphoric Acid and Silica Gel Prepared from Tunisian Sand. Silicon 2022, 14, 8939–8948. [Google Scholar] [CrossRef]
- Nie, G.; Wu, W.; Yue, X. Synthesis and properties of hydroxide conductive polymers carrying dense aromatic side-chain quaternary ammonium groups. Chin. J. Polym. Sci. 2017, 35, 823–836. [Google Scholar] [CrossRef]
- Mirela, S.; Mateja, B.; Aleksandar, S. The Novel Anionic Surfactant Selective Sensors Based on Newly Synthesized Quaternary Ammonium Salts as Ionophores. Sens. Actuators B Chem. 2021, 15, 130103–130119. [Google Scholar]
- Dustin, Q.; Kai, B.; Alfred, M. Comparing chemical and plasma modification of stainless steel surfaces—Relevance for adsorption of adhesion promotor vinyltrimethoxysilane (VTMS). Appl. Surf. Sci. 2022, 575, 216–237. [Google Scholar]
- Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B. Effects of combined surface treatments of aluminium nanoparticle on its corrosion resistance before and after inclusion into an epoxy coating. Prog. Org. Coat. 2016, 101, 486–501. [Google Scholar] [CrossRef]
- Gu, J.; Dang, J.; Geng, W. Surface Modification of HMPBO Fibers by Silane Coupling Agent of KH-560 Treatment Assisted by Ultrasonic Vibration. Fibers Polym. 2012, 13, 979–984. [Google Scholar] [CrossRef]
- Gross, T.; Treu, D.; Ünveren, E. Characterization of Cr(III) Compounds of O, OH, F and Cl by XPS. Surf. Sci. Spectra 2008, 15, 77–123. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Singh, M.; Sundarajan, M. Understanding the extraction and complexation of thorium using structurally modified CMPO functionalized pillar [5]arenes in ionic liquid: Experimental and theoretical investigations. Inorg. Chem. Commun. 2017, 75, 33–36. [Google Scholar] [CrossRef]
- Ho, Y.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of solution substances. K. Sven. Vetenskapsakademiens Handl. Band 1998, 24, 147–156. [Google Scholar]
- Low, D. Kinetics of Chemisorption of Gases on Solids. Chem. Rev. 2002, 60, 267–312. [Google Scholar] [CrossRef]
- Qiu, R.; Cheng, F.; Wang, X. Adsorption kinetics and isotherms of ammonia-nitrogen on steel slag. Desalination Water Treat. 2015, 55, 142–150. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, M.; Lin, X. Synthesis of magnetic wheat straw for arsenic adsorption. J. Hazard. Mater. 2011, 193, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, H.; Wu, Y. Effect of external strain on the charge transfer: Adsorption of gas molecules on monolayer GaSe. Mater. Chem. Phys. 2017, 198, 49–56. [Google Scholar] [CrossRef]
- Yao, Y.; He, B.; Xu, F. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 2011, 170, 82–89. [Google Scholar] [CrossRef]
- Néri-Quiroz, J.; Canto, F.; Guillerme, L. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry. Talanta 2016, 159, 330–335. [Google Scholar] [CrossRef]
- Ivanov, P.; Collins, S.; Es, V. Evaluation of the separation and purification of 227Th from its decay progeny by anion exchange and extraction chromatography. Appl. Radiat. Isot. 2017, 124, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.; Khan, A. Removal and recovery of Cu(II), Cd(II) and Pb(II) ions from single and multimetal systems by batch and column operation on neem oil cake (NOC). Sep. Purif. Technol. 2007, 57, 394–402. [Google Scholar] [CrossRef]
- Xu, Y.; Kim, Y.; Ito, T. Adsorption Behavior of Platinum Group Metals onto a Silica-based (Crea + Dodec)/SiO2-P Extraction Resin from Simulated High Level Liquid Waste. Sep. Sci. Technol. 2014, 50, 260–266. [Google Scholar] [CrossRef]
Species | Grafting Amount (mmol·g−1) | Pore Size (nm) | Specific Surface Area (m2·g−1) |
---|---|---|---|
SG-CTSQ1 | 0.258 | 9.37 | 536.4 |
SG-CTSQ2 | 0.413 | 9.11 | 497.2 |
SG-CTSQ3 | 0.475 | 8.62 | 445.9 |
SG-CTSQ4 | 0.537 | 8.28 | 403.1 |
Adsorption Kinetic Model | Parameters | SG-CTSQ1 | SG-CTSQ2 | SG-CTSQ3 | SG-CTSQ4 |
---|---|---|---|---|---|
Pseudo first-order | qe (mg·g−1) | 10.15 | 15.37 | 22.35 | 25.86 |
K1 (s−1) | 0.053 | 0.028 | 0.031 | 0.034 | |
R2 | 0.995 | 0.973 | 0.957 | 0.924 | |
Pseudo second-order | qe (mg·g−1) | 8.16 | 15.29 | 21.04 | 23.91 |
K2 (g·s·mg−1) | 0.014 | 0.006 | 0.004 | 0.006 | |
R2 | 0.964 | 0.971 | 0.981 | 0.993 | |
Elovich | αE (mg·(g·s)−1) | 3.996 | 2.416 | 1.347 | 1.073 |
βE (g·mg−1) | 0.685 | 1.152 | 2.837 | 2.158 | |
R2 | 0.797 | 0.837 | 0.882 | 0.906 |
Adsorption Isotherm Model | Parameters | SG-CTSQ1 | SG-CTSQ2 | SG-CTSQ3 | SG-CTSQ4 |
---|---|---|---|---|---|
Langmuir | qmax (mg·g−1) | 31.62 | 37.97 | 49.13 | 57.28 |
B (L·mg−1) | 0.029 | 0.064 | 0.053 | 0.085 | |
R2 | 0.957 | 0.982 | 0.987 | 0.992 | |
Freundlich | Kf | 7.154 | 8.701 | 11.278 | 9.056 |
nf | 0.691 | 0.833 | 1.069 | 1.235 | |
R2 | 0.989 | 0.983 | 0.971 | 0.976 |
Species | T (K) | ∆G (KJ·mol−1) | ∆H (KJ·mol−1) | ∆S (J·mol−1·K−1) | R2 |
---|---|---|---|---|---|
SG-CTSQ1 | 293.15 | −2.85 | 17.47 | 69.31 | 0.9888 |
303.15 | −3.54 | ||||
313.15 | −4.23 | ||||
323.15 | −4.93 | ||||
333.15 | −5.62 | ||||
SG-CTSQ2 | 293.15 | −2.13 | 20.93 | 78.68 | 0.9945 |
303.15 | −2.92 | ||||
313.15 | −3.71 | ||||
323.15 | −4.49 | ||||
333.15 | −5.28 | ||||
SG-CTSQ3 | 293.15 | −2.02 | 22.45 | 83.47 | 0.9931 |
303.15 | −2.86 | ||||
313.15 | −3.69 | ||||
323.15 | −4.53 | ||||
333.15 | −5.36 | ||||
SG-CTSQ4 | 293.15 | −0.25 | 26.91 | 92.65 | 0.9946 |
303.15 | −1.18 | ||||
313.15 | −2.11 | ||||
323.15 | −3.03 | ||||
333.15 | −3.96 |
Dosage (mg) | Ce (mg·L−1) | Qe (mg·g−1) | Kd = Qe/Ce | lgKd | [SiNR4+] (mmol) | lg[SiNR4+] |
---|---|---|---|---|---|---|
20 | 17.51 | 12.44 | 0.71 | −0.149 | 0.0107 | −1.971 |
40 | 10.43 | 23.91 | 2.29 | 0.359 | 0.0215 | −1.668 |
60 | 3.93 | 26.78 | 6.81 | 0.833 | 0.0322 | −1.492 |
80 | 2.71 | 21.62 | 7.98 | 0.902 | 0.0429 | −1.368 |
100 | 1.64 | 18.36 | 11.19 | 1.049 | 0.0537 | −1.269 |
Species | Recovery Rate | Decontamination Factor | Uranium Removal Rate |
---|---|---|---|
SG-CTSQ1 | 75.20% | 291.8 | 99.74% |
SG-CTSQ2 | 87.75% | 339.5 | 99.73% |
SG-CTSQ3 | 94.30% | 368.8 | 99.74% |
SG-CTSQ4 | 98.30% | 385.1 | 99.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, X.; Liu, M.; Zhao, X.; Wang, H.; Meng, X.; Zhang, X. Preparation of Quaternary Ammonium Separation Material based on Coupling Agent Chloromethyl Trimethoxysilane (KH-150) and Its Adsorption and Separation Properties in Studies of Th(IV). Molecules 2024, 29, 3031. https://doi.org/10.3390/molecules29133031
Wang Z, Wu X, Liu M, Zhao X, Wang H, Meng X, Zhang X. Preparation of Quaternary Ammonium Separation Material based on Coupling Agent Chloromethyl Trimethoxysilane (KH-150) and Its Adsorption and Separation Properties in Studies of Th(IV). Molecules. 2024; 29(13):3031. https://doi.org/10.3390/molecules29133031
Chicago/Turabian StyleWang, Zheng, Xique Wu, Meichen Liu, Xiaoqiang Zhao, Haichao Wang, Xiangfu Meng, and Xiaofei Zhang. 2024. "Preparation of Quaternary Ammonium Separation Material based on Coupling Agent Chloromethyl Trimethoxysilane (KH-150) and Its Adsorption and Separation Properties in Studies of Th(IV)" Molecules 29, no. 13: 3031. https://doi.org/10.3390/molecules29133031
APA StyleWang, Z., Wu, X., Liu, M., Zhao, X., Wang, H., Meng, X., & Zhang, X. (2024). Preparation of Quaternary Ammonium Separation Material based on Coupling Agent Chloromethyl Trimethoxysilane (KH-150) and Its Adsorption and Separation Properties in Studies of Th(IV). Molecules, 29(13), 3031. https://doi.org/10.3390/molecules29133031