Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Working Principle and Feasibility
2.2. Optimization of Experimental Conditions
2.3. Sensitivity, Specificity, and Stability
2.4. Calibration Curve and Sensitivity in Spiked Matrix
2.5. Application Evaluation in Real Samples
3. Experimental Methods
3.1. Reagents and Materials
3.2. Optimization of Conditions
3.3. Detection Method
3.4. Evaluation of Specificity
3.5. Sample Processing and Testing
- Weigh the 500 mg of blank milk powder dissolved in acetic acid solution, vortex mix, so that the concentration reaches 50 mM, centrifuges at 8000 rpm at 4 °C for 10 min to obtain three layers of samples, from top to bottom of the fat layer, the clear liquid layer, the layer of protein precipitation. The intermediate clear liquid layer is aspirated through the 0.22 μm cellulose acetate membrane and stores at 4 °C for spare parts.
- Weigh the 500 mg of blank milk powder dissolved in water, vortex mix, incubate in a water bath at 40 °C for 30 min, then stand at room temperature for 15 min, centrifuge at 8000 r/min at 4 °C for 15 min, and the supernatant is added with the acetic acid solution, then centrifuges at 4 °C for 10 min at 8000 r/min. The supernatant is added with 1 M NaOH to make it pH neutral, the final concentration is 50 mM, which is filtered through 0.22 μm cellulose acetate membrane and stores at 4 °C.
3.6. Capillary Electrophoresis Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.-S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2023, 9, 1018336. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.; Sorensen, S. The Proteins in Whey. 1939, 23, 55–99. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19420400573 (accessed on 4 June 2024).
- Levay, P.F.; Viljoen, M.J.H. Lactoferrin: A general review. Haematologica 1995, 80, 252–267. [Google Scholar] [PubMed]
- González-Chávez, S.A.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents 2009, 33, 301.e1–301.e8. [Google Scholar] [CrossRef]
- Li, W.; Liu, B.; Lin, Y.; Xue, P.; Lu, Y.; Song, S.; Li, Y.; Szeto, I.M.-Y.; Ren, F.; Guo, H. The application of lactoferrin in infant formula: The past, present and future. Crit. Rev. Food Sci. Nutr. 2022, 64, 5748–5767. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Jaśkiewicz, A.; Tarasiuk, A.; Fichna, J. Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit. Rev. Food Sci. Nutr. 2021, 62, 6016–6033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, C.; Zhang, J. Lactoferrin and Its Detection Methods: A Review. Nutrients 2021, 13, 2492. [Google Scholar] [CrossRef]
- Tsakali, E.; Aggarwal, R.; Houhoula, D.; Konteles, S.; Batrinou, A.; Verheyen, D.; Van Impe, J.F.M.; Chatzilazarou, A. Lactoferrin in breast milk-based powders. J. Dairy Res. 2024, 90, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Oberčkal, J.; Liaqat, H.; Matijašić, B.B.; Rozman, V.; Treven, P. Quantification of lactoferrin in human milk using monolithic cation exchange HPLC. J. Chromatogr. B 2023, 1214, 123548. [Google Scholar] [CrossRef]
- Chen, M.; Wen, F.; Zhang, Y.; Li, P.; Zheng, N.; Wang, J. Determination of native lactoferrin in milk by HPLC on HiTrapTM Heparin HP column. Food Anal. Methods 2019, 12, 2518–2526. [Google Scholar] [CrossRef]
- Pochet, S.; Arnould, C.; Debournoux, P.; Flament, J.; Rolet-Répécaud, O.; Beuvier, E. A simple micro-batch ion-exchange resin extraction method coupled with reverse-phase HPLC (MBRE-HPLC) to quantify lactoferrin in raw and heat-treated bovine milk. Food Chem. 2018, 259, 36–45. [Google Scholar] [CrossRef]
- Yan, J.; Wang, M.; Yang, M.; Zhou, J.; Xue, X.; Wang, T. Study of SI-traceable purity assessment of bovine lactoferrin using mass balance approach and amino acid-based isotope dilution liquid chromatography-mass spectrometry. Food Chem. 2022, 385, 132674. [Google Scholar] [CrossRef] [PubMed]
- Matijašić, B.B.; Oberčkal, J.; Mohar Lorbeg, P.; Paveljšek, D.; Skale, N.; Kolenc, B.; Gruden, Š.; Poklar Ulrih, N.; Kete, M.; Zupančič Justin, M. Characterisation of Lactoferrin Isolated from Acid Whey Using Pilot-Scale Monolithic Ion-Exchange Chromatography. Processes 2020, 8, 804. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Fan, F.; Shi, P.; Xu, X.; Du, M.; Wang, C. Analysis Method of Lactoferrin Based on Uncoated Capillary Electrophoresis. eFood 2021, 2, 147–153. [Google Scholar] [CrossRef]
- Motshakeri, M.; Sharma, M.; Phillips, A.R.J.; Kilmartin, P.A. Electrochemical Methods for the Analysis of Milk. J. Agric. Food Chem. 2022, 70, 2427–2449. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Guzmán, J.; Méndez-Palacios, I.; López-Luna, A.; Del Moral-Ramírez, E.; Bárzana, E.; García-Garibay, M. Development of a molecularly imprinted polymer for the recovery of lactoferrin. Food Bioprod. Process. 2014, 92, 226–232. [Google Scholar] [CrossRef]
- Niero, G.; Thomas, S.A.; Mouratidou, K.; Visentin, G.; De Marchi, M.; Penasa, M.; Cassandro, M. Lactoferrin concentration in bovine milk: Validation of radial immunodiffusion technique, sources of variation, and association to udder health status. Ital. J. Anim. Sci. 2023, 22, 230–238. [Google Scholar] [CrossRef]
- Hetherington, S.V.; Spitznagel, J.K.; Quie, P.G. An enzyme-linked immunoassay (ELISA) for measurement of lactoferrin. J. Immunol. Methods 1983, 65, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kudo, H.; Maejima, K.; Hiruta, Y.; Citterio, D. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS Technol. 2020, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, J.; Liu, H.; Gao, Y.; Zhao, Q.; Ling, S.; Wang, S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem. 2021, 338, 127820. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Greiff, V.; Karatt-Vellatt, A.; Muyldermans, S.; Jenkins, T.P. Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends Biotechnol. 2021, 39, 1263–1273. [Google Scholar] [CrossRef]
- Zhu, C.; Li, L.; Yang, G.; Irfan, M.; Wang, Z.; Fang, S.; Qu, F. High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta 2019, 205, 120088. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhu, J.; Shen, G.; Deng, Y.; Geng, X.; Wang, L. Improving aptamer performance: Key factors and strategies. Microchim. Acta 2023, 190, 255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Feng, Z.; Qin, H.; Chen, L.; Yan, M.; Li, L.; Qu, F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024, 266, 124998. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Lin, A.; Mallikaratchy, P.; McConnell, E.M.; McKeague, M.; Patel, R.; Shigdar, S.J.N.R.M.P. In vitro selection of aptamers and their applications. Nat. Biotechnol. 2023, 3, 54. [Google Scholar] [CrossRef]
- Ji, C.; Wei, J.; Zhang, L.; Hou, X.; Tan, J.; Yuan, Q.; Tan, W. Aptamer–Protein Interactions: From Regulation to Biomolecular Detection. Chem. Rev. 2023, 123, 12471–12506. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Du, Y.; Tao, H.; Duan, H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int. J. Biol. Macromol. 2023, 238, 124173. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, L.; Mazloum-Ardakani, M. Advances in aptasensor technology. Adv. Clin. Chem. 2020, 99, 237–279. [Google Scholar]
- Fan, Y.; Li, J.; Amin, K.; Yu, H.; Yang, H.; Guo, Z.; Liu, J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res. Int. 2023, 170, 113022. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Liu, L.; Zhang, N.; Liao, Y.; Zhao, C.; Cao, M.; Zhong, Y.; Chai, D.; Chen, X.; et al. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121872. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Shin, S.; Kim, S.; Park, N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023, 28, 7327. [Google Scholar] [CrossRef]
- Zahraee, H.; Khoshbin, Z.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. A tag-free fluorescent aptasensor for tobramycin detection using a hybridization of three aptamer strands and SYBR Green I dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122305. [Google Scholar] [CrossRef] [PubMed]
- Van Riesen, A.J.; Kalnitsky, B.; Shoara, A.A.; Slavkovic, S.; Churcher, Z.R.; Johnson, P.E.; Manderville, R.A. Tuning the DNA binding properties of phenolic hemicyanine dyes for host-guest fluorescent aptasensor applications. Dye. Pigment. 2023, 209, 110936. [Google Scholar] [CrossRef]
- Uhuo, O.V.; Waryo, T.T.; Douman, S.F.; Januarie, K.C.; Nwambaekwe, K.C.; Ndipingwi, M.M.; Ekwere, P.; Iwuoha, E.I. Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal. Chim. Acta 2022, 1234, 340326. [Google Scholar] [CrossRef] [PubMed]
- Fabbrizzi, L.; Licchelli, M.; Perotti, A.; Poggi, A.; Rabaioli, G.; Sacchi, D.; Taglietti, A. Fluorescent molecular sensing of amino acids bearing an aromatic residue. J. Chem. Soc. Perkin Trans. 2 2001, 11, 2108–2113. [Google Scholar] [CrossRef]
- Xiong, Y.; Shi, C.; Li, L.; Tang, Y.; Zhang, X.; Liao, S.; Zhang, B.; Sun, C.; Ren, C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. New J. Chem. 2021, 45, 15180–15194. [Google Scholar] [CrossRef]
- Chen, H.; Ahsan, S.S.; Santiago-Berrios, M.E.B.; Abruña, H.D.; Webb, W.W. Mechanisms of quenching of Alexa fluorophores by natural amino acids. J. Am. Chem. Soc. 2010, 132, 7244–7245. [Google Scholar] [CrossRef]
- Hianik, T.; Ostatná, V.; Sonlajtnerova, M.; Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70, 127–133. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Abendroth, J.M.; Yang, K.-A.; Andrews, A.M. Divalent Cation Dependence Enhances Dopamine Aptamer Biosensing. ACS Appl. Mater. Interfaces 2021, 13, 9425–9435. [Google Scholar] [CrossRef]
- Girardot, M.; Gareil, P.; Varenne, A. Interaction study of a lysozyme-binding aptamer with mono- and divalent cations by ACE. Electrophoresis 2010, 31, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lou, F.; Wu, W.; Dong, X.; Ren, J.; Shen, Q. Determination of Bovine Lactoferrin in Food by HPLC with a Heparin Affinity Column for Sample Preparation. J. AOAC Int. 2017, 100, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Bunt, C.; Cornish, J.; Quek, S.Y.; Wen, J. Improved RP-HPLC method for determination of bovine lactoferrin and its proteolytic degradation in simulated gastrointestinal fluids. Biomed. Chromatogr. 2012, 27, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lai, S.; Cai, Z.; Chen, Q.; Huang, B.; Ren, Y. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard. Anal. Chim. Acta 2014, 829, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, H.; Jia, W.; Liu, X.; Li, Z.; Wen, F.; Zheng, N.; Jiang, J.; Xu, D. Bivalent Aptasensor Based on Silver-Enhanced Fluorescence Polarization for Rapid Detection of Lactoferrin in Milk. Anal. Chem. 2017, 89, 5900–5908. [Google Scholar] [CrossRef] [PubMed]
- Dupont, D.; Arnould, C.; Rolet-Repecaud, O.; Duboz, G.; Faurie, F.; Martin, B.; Beuvier, E. Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. Int. Dairy J. 2006, 16, 1081–1087. [Google Scholar] [CrossRef]
- Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Sanzò, G.; Mazzei, F. Lactoferrin determination using flow or batch immunosensor surface plasmon resonance: Comparison with amperometric and screen-printed immunosensor methods. Sens. Actuators B Chem. 2013, 179, 215–225. [Google Scholar] [CrossRef]
- Khan, M.S.; Dighe, K.; Wang, Z.; Daza, E.; Schwartz-Duval, A.S.; Rowley, C.P.; Calvillo, I.A.; Misra, S.K.; Labriola, L.T.; Pan, D. Label-free detection of lactoferrin and beta-2-microglobuin in contrived tear film using a low-cost electrical biosensor chip. In Proceedings of the 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; pp. 72–75. [Google Scholar]
- Liu, J.; Li, T.; Qin, H.; Li, L.; Yan, M.; Zhu, C.; Qu, F.; Abd El-Aty, A.M. Self-assembly and label-free fluorescent aptasensor based on deoxyribonucleic acid intercalated dyes for detecting lactoferrin in milk powder. Front. Nutr. 2022, 9, 992188. [Google Scholar] [CrossRef]
- Li, J.; Ding, X.; Chen, Y.; Song, B.; Zhao, S.; Wang, Z. Determination of bovine lactoferrin in infant formula by capillary electrophoresis with ultraviolet detection. J. Chromatogr. A 2012, 1244, 178–183. [Google Scholar] [CrossRef]
Method | Linear Range | LOD | References |
---|---|---|---|
Capillary electrophoresis | 0.312–9.984 μg/mL | 0.078 µg/mL | [22] |
Liquid chromatography | 10–103 µg/mL | 500 µg/mL (liquid samples) | [43] |
RP-HPLC | 0–5 µg/mL | 1 µg/mL | [44] |
ESI-MS | 10–103 nmol L | 0.3 × 10−2 mg/g | [45] |
Microfluidic paper | 0–103 µg/mL | 100 µg/mL | [46] |
ELISA | 0–150 µg/mL | 0.018 µg/mL | [47] |
Surface plasmon resonance | 0.5–3.5 µmol/L | 0.28 µmol/L | [48] |
Electrochemical sensor | 0.1–10 mg/mL | 0.1 mg/mL | [49] |
Fluorescent aptasensor | 20–500 nmol/L | 3 nmol/L | [50] |
Self-responsive aptasensor | 2–10 μg/mL | 0.68 μg/mL | This work |
Added (μg/mL) | Found (μg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|
4 | 4.17 ± 0.553 | 104.3 ± 13.82 | 7.66 |
8 | 7.16 ± 0.111 | 89.5 ± 1.39 | 0.9 |
10 | 9.00 ± 0.301 | 90.0 ± 3.01 | 1.93 |
Sample | Found (μg/mL) | HPCE (μg/mL) | Consistency (%) |
---|---|---|---|
1 | 0 | 0 | 100% |
2 | 16.73 | 17.62 | 94.95 |
3 | 23.78 | 23.16 | 102.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Gao, X.; Qin, H.; Yan, M.; Zhu, C.; Li, L.; Qu, F. Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules 2024, 29, 3013. https://doi.org/10.3390/molecules29133013
Liu H, Gao X, Qin H, Yan M, Zhu C, Li L, Qu F. Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules. 2024; 29(13):3013. https://doi.org/10.3390/molecules29133013
Chicago/Turabian StyleLiu, Hao, Xibao Gao, Hongwei Qin, Mengmeng Yan, Chao Zhu, Linsen Li, and Feng Qu. 2024. "Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products" Molecules 29, no. 13: 3013. https://doi.org/10.3390/molecules29133013
APA StyleLiu, H., Gao, X., Qin, H., Yan, M., Zhu, C., Li, L., & Qu, F. (2024). Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules, 29(13), 3013. https://doi.org/10.3390/molecules29133013