Molecular Weight Distribution of Humic Acids Isolated from Calcic Cryosol in Central Yakutia, Russia
Abstract
:1. Introduction
- -
- Study the elemental composition of HAs of soils of central Yakutia;
- -
- Analyze the MW distribution of HAs;
- -
- Evaluate the degree of stabilization of SOM based on the elemental composition and MW distribution of HAs.
2. Results and Discussion
2.1. Features of Soil Formation in Central Yakutia
2.2. Element Composition of HAs Isolated from Soils of Central Yakutia
2.3. MW Distribution in HAs Isolated from Soils of Central Yakutia
3. Materials and Methods
3.1. Study Area
3.2. Sampling Strategy
3.3. Laboratory Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karpukhin, A.I.; Bushuev, N.N. Distribution of heavy metals by the molecular-weight fractions of humic acids in the soils of long-term field experiments. Eurasian Soil Sci. 2007, 40, 265–273. [Google Scholar] [CrossRef]
- Desyatkin, R.; Filippov, N.; Desyatkin, A.; Konyushkov, D.; Goryachkin, S. Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes. Front. Earth Sci. 2021, 9, 683730. [Google Scholar] [CrossRef]
- Motuzova, G.V.; Derham, H.M.; Stepanov, A.A. Comparative characterization of humic acids from arable soils of the taiga, steppe, and semidesert zones. Eurasian Soil Sci. 2012, 45, 1033–1041. [Google Scholar] [CrossRef]
- Filatova, A.I.; Mamontov, V.G.; Panova, P.Y. Molecular weight composition of humic acids in urban soils (the northern administrative district of Moscow city taken as an example). Dokuchaev Soil Bull. 2019, 97, 113–128. [Google Scholar] [CrossRef]
- Vasilevich, R.S.; Vezhov, K.S.; Lodygin, E.D. Molecular-mass distribution of humic acids of permafrost peat mounds from the European North–East of Russia. Bull. Tomsk Polytech. Univer. Geo Assets Eng. 2019, 330, 146–154. [Google Scholar] [CrossRef]
- Kukuļs, I.; Kļaviņš, M.; Nikodemus, O.; Kasparinskis, R.; Brūmelis, G. Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia). Geoderma Reg. 2019, 16, e00213. [Google Scholar] [CrossRef]
- Kalinina, O.; Cherkinsky, A.; Chertov, O.; Goryachkin, S.; Kurganova, I.; Lopes de Gerenyu, V.; Lyuri, D.; Kuzyakov, Y.; Giani, L. Post-agricultural restoration: Implications for dynamics of soil organic matter pools. Catena 2019, 181, 104096. [Google Scholar] [CrossRef]
- Laskar, S.Y.; Sileshi, G.W.; Pathak, K.; Debnath, N.; Nath, A.J.; Laskar, K.Y.; Singnar, P.; Das, A.K. Variations in soil organic carbon content with chronosequence, soil depth and aggregate size under shifting cultivation. Sci. Total Environ. 2021, 762, 143114. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, L.; Vonk, J.E.; Charkin, A.N.; Kosmach, D.; Dudarev, O.V.; Semiletov, I.P.; Gustafsson, Ö. Characterisation of Three Regimes of Collapsing Arctic Ice Complex Deposits on the SE Laptev Sea Coast using Biomarkers and Dual Carbon Isotopes. Permafr. Periglac. Process. 2014, 25, 172–183. [Google Scholar] [CrossRef]
- Haugk, C.; Jongejans, L.L.; Mangelsdorf, K.; Fuchs, M.; Ogneva, O.; Palmtag, J.; Mollenhauer, G.; Mann, P.J.; Overduin, P.P.; Grosse, G.; et al. Organic matter characteristics using lipid biomarker analysis of a rapidly eroding permafrost cliff. Biogeosciences 2021, 19, 2079–2094. [Google Scholar] [CrossRef]
- Song, X.-y.; Liu, S.-t.; Liu, Q.-h.; Zhang, W.-j.; Hu, C.-g. Carbon Sequestration in Soil Humic Substances Under Long-Term Fertilization in a Wheat-Maize System from North China. J. Integr. Agric. 2014, 13, 562–569. [Google Scholar] [CrossRef]
- Li, M.; Hu, H.; He, X.; Jia, J.; Drosos, M.; Wang, G.; Liu, F.; Hu, Z.; Xi, B. Organic Carbon Sequestration in Soil Humic Substances As Affected by Application of Different Nitrogen Fertilizers in a Vegetable-Rotation Cropping System. J. Agric. Food Chem. 2019, 67, 3106–3113. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mohamed, E.; Li, Q.; Lu, T.; Yu, H.; Jiang, W. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Front. Plant Sci. 2021, 12, 644229. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, B.; Chu, W.; Mao, J.; Zhang, J. Chemical nature of humic substances in two typical Chinese soils (upland vs paddy soil): A comparative advanced solid state NMR study. Sci. Total Environ. 2017, 576, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land–Use Changes Influencing C Sequestration and Quality in Topsoil and Subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef]
- Lyuri, D.I.; Goryachkin, S.V.; Karavaeva, N.A.; Denisenko, E.A.; Nefedova, T.G. Dynamics of Agricultural Lands of Russia in XX Century and Postagrogenic Restoration of Vegetation and Soils; GEOS: Moscow, Russia, 2010; p. 420. [Google Scholar]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef]
- Hatna, E.; Bakker, M.M. Abandonment and Expansion of Arable Land in Europe. Ecosystems 2011, 14, 720–731. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Kalinina, O.; Chertov, O.; Nadporozhskaya, M.; Giani, L. Properties of soil organic matter of Plaggic Anthrosols from Northwest Germany, Northwest and North Russia. Arch. Agron. Soil Sci. 2009, 55, 477–492. [Google Scholar] [CrossRef]
- Cerli, C.; Celi, L.; Johansson, M.-B.; Kogel-Knabner, I.; Rosenqvist, L.; Zanini, E. Soil organic matter changes in a spruce chronosequence on swedish former agricultural soil: I. Carbon and lignin dynamics. Soil Sci. 2006, 171, 837–849. [Google Scholar] [CrossRef]
- Arevalo, C.B.M.; Bhatti, J.S.; Chang, S.X.; Sidders, D. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. For. Ecol. Manag. 2009, 257, 1776–1785. [Google Scholar] [CrossRef]
- Vesterdal, L.; Elberling, B.; Christiansen, J.R.; Callesen, I.; Schmidt, I.K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. For. Ecol. Manag. 2012, 264, 185–196. [Google Scholar] [CrossRef]
- Desyatkin, R.V.; Desyatkin, A.R. The Effect of Increasing Active Layer Depth on Changes in the Water Budget in the Cryolithozone. Eurasian Soil Sci. 2019, 52, 1447–1455. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The molecular composition of humic acids in permafrost peats in the European Arctic as paleorecord of the environmental conditions of the Holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- Piccolo, A. Chapter 5—Humus and Soil Conservation. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science B.V.: Amsterdam, The Netherland, 1996; pp. 225–264. [Google Scholar]
- Elovskaya, L.G. Classification and Diagnostics of Frozen Soils in Yakutia; Institute of Biology: Yakutsk, Russia, 1967. [Google Scholar]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Debska, B.; Tobiasova, E. Properties of humic acids depending on the land use in different parts of Slovakia. Environ. Sci. Pollut. Res. 2021, 28, 58068–58080. [Google Scholar] [CrossRef]
- Dergacheva, M.I.; Nekrasova, O.A.; Okoneshnikova, M.V.; Vasileva, D.I.; Gavrilov, D.A.; Ochur, K.O.; Ondar, E.E. Ratio of elements in humic acids as a source of information on the environment of soil formation. Contemp. Probl. Ecol. 2012, 5, 497–504. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cegarra, J.; García, D.; Roig, A. Chemical and structural evolution of humic acids during organic waste composting. Biodegradation 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Cui, T.; Zhang, J.; Luo, W. The Quantity and Quality of Humic Substances following Different Land Uses in Karst Peak-Cluster Depression in Guangxi, China. Agriculture 2023, 13, 2246. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Pol. Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R. Molecular-mass distribution of humic substances from Arctic soils according to size exclusion chromatography. Pol. Polar Res. 2020, 41, 271–287. [Google Scholar] [CrossRef]
- Vishnyakova, O.V.; Chimitdorzhieva, G.D. Humic acids in meadow-chernozemic permafrost-affected soils of the Transbaikal Region. Eurasian Soil Sci. 2008, 41, 704–707. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. Molecular composition of humic substances isolated from permafrost peat soils of the eastern European Arctic. Polish Polar Res. 2018, 39, 481–503. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M. Chapter 11—Agriculture, Forestry and Other Land Use (AFOLU); Cambridge University Press: Cambridge, UK, 2014; p. 112. [Google Scholar]
- Piccolo, A.; Spaccini, R.; Savy, D.; Drosos, M.; Cozzolino, V. The Soil Humeome: Chemical Structure, Functions and Technological Perspectives; Springer: Berlin/Heidelberg, Germany, 2019; pp. 183–222. [Google Scholar]
- Piccolo, A.; Conte, P.; Trivellone, E.; van Lagen, B.; Buurman, P. Reduced Heterogeneity of a Lignite Humic Acid by Preparative HPSEC Following Interaction with an Organic Acid. Characterization of Size-Separates by Pyr-GC-MS And 1H-NMR Spectroscopy. Environ. Sci. Technol. 2002, 36, 76–84. [Google Scholar] [CrossRef]
- Debska, B.; Banach-Szott, M.; Dziamski, A.; Gonet, S.S. Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers. Chem. Ecol. 2010, 26, 49–57. [Google Scholar] [CrossRef]
- Debska, B.; Drag, M.; Banach-Szott, M. Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil. Soil Water Res. 2007, 2, 45–53. [Google Scholar] [CrossRef]
- Polyakov, V.; Petrov, A.; Abakumov, E. Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia. Soil Syst. 2022, 6, 68. [Google Scholar] [CrossRef]
- Okonesnikova, M.V.; Ivanova, A.Z. Soils and technogenic surface formations of an industrial base of Yakutsk city. Vestn. North-East. Fed. Univ. 2020, 6, 5–19. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. [Google Scholar]
- GLOSOLAN-SOP-02; Standard Operating Procedure for Soil Organic Carbon. Walkley-Black Method Titration Colorimetric Method. Global Soil Laboratory Network GLOSOLAN: Rome, Italy, 2019; pp. 1–25.
- Bowman, G.; Hutka, J. Particle Size Analysis. In Soil Physical Measurment and Interpritation for Land Evaluation; McKezie, N., Coughlan, K., Cresswell, H., Eds.; CSIRO Publishing: Victoria, TX, Canada, 2002; pp. 224–239. [Google Scholar]
Soil ID | Mass Fraction, % | Molar Ratios | w | |||||
---|---|---|---|---|---|---|---|---|
N | C | H | O | C/N | H/C | O/C | ||
Y1 | 3.79 ± 0.01 | 45.57 ± 0.43 | 4.44 ± 0.05 | 46.20 | 14.03 | 1.16 | 0.76 | 0.36 |
Y2 | 3.27 ± 0.03 | 45.84 ± 0.28 | 4.81 ± 0.12 | 46.08 | 16.35 | 1.25 | 0.75 | 0.26 |
Y3 | 2.94 ± 0.03 | 46.36 ± 0.37 | 5.01 ± 0.05 | 45.69 | 18.42 | 1.28 | 0.74 | 0.20 |
Y4 | 2.78 ± 0.06 | 41.62 ± 1.11 | 5.03 ± 0.04 | 50.57 | 17.48 | 1.44 | 0.91 | 0.39 |
Y5 | 4.81 ± 0.02 | 46.16 ± 0.41 | 4.79 ± 0.03 | 44.24 | 11.19 | 1.23 | 0.72 | 0.21 |
Y6 | 5.62 ± 0.01 | 49.98 ± 0.17 | 4.45 ± 0.07 | 39.95 | 10.37 | 1.06 | 0.60 | 0.14 |
Y7 | 4.37 ± 0.04 | 50.61 ± 0.63 | 3.69 ± 0.24 | 41.33 | 13.51 | 0.87 | 0.61 | 0.36 |
Y8 | 5.05 ± 0.02 | 49.83 ± 0.04 | 4.66 ± 0.02 | 40.46 | 11.52 | 1.11 | 0.61 | 0.11 |
Y9 | 4.39 ± 0.02 | 50.69 ± 0.22 | 3.87 ± 0.04 | 41.05 | 13.46 | 0.91 | 0.61 | 0.31 |
Y10 | 3.81 ± 0.01 | 52.56 ± 0.11 | 4.09 ± 0.05 | 39.54 | 16.11 | 0.93 | 0.56 | 0.20 |
Soil ID | High Molecular Fraction | Medium Molecular Fraction | Low Molecular Fraction | Mn, kDa | Mw, kDa | Mz, kDa | Mw/Mn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mr, kDa | S * | Molecular Fraction, % | Mr, kDa | S * | Molecular Fraction, % | Mr, kDa | S * | Molecular Fraction, % | |||||||||||
x | S | x | S | x | S | x | S | x | S | x | S | ||||||||
У1 | 432 | 5 | 14.5 | 0.30 | 24.8 | 0.1 | 30.1 | 0.8 | 1.35 | 0.03 | 55.4 | 1.1 | 70.7 | 2.3 | 384 | 5 | 429 | 5 | 5.4 |
У2 | 397 | 0.9 | 14.1 | 0.06 | 28.3 | 0.2 | 34.0 | 0.5 | 1.58 | 0.03 | 51.9 | 0.5 | 66.4 | 0.4 | 339 | 0.7 | 393 | 1.0 | 5.1 |
У3 | 415 | 5 | 18.8 | 0.40 | 29.6 | 0.3 | 33.5 | 0.7 | 1.56 | 0.03 | 47.7 | 1.0 | 88.8 | 2.8 | 369 | 4 | 412 | 5 | 4.2 |
У4 | 409 | 4 | 18.6 | 0.80 | 29.3 | 1.0 | 26.8 | 0.6 | 1.07 | 0.02 | 54.6 | 1.5 | 84.0 | 3.0 | 371 | 4 | 406 | 4 | 4.4 |
У5 | 411 | 5 | 10.5 | 0.40 | 19.1 | 0.3 | 21.4 | 0.8 | 1.18 | 0.01 | 68.1 | 0.4 | 48.1 | 1.9 | 371 | 8 | 409 | 5 | 7.7 |
У6 | 319 | 2.2 | 6.6 | 0.10 | 24.3 | 0.1 | 34.8 | 0.9 | 1.55 | 0.04 | 58.6 | 0.8 | 30.5 | 0.2 | 228 | 5 | 310 | 2.7 | 7.5 |
У7 | 316 | 0.7 | 2.9 | 0.03 | 17.9 | 0.1 | 24.4 | 1.3 | 1.34 | 0.04 | 72.7 | 1.2 | 14.7 | 0.1 | 207 | 4 | 308 | 1.2 | 14.1 |
У8 | 311 | 0.7 | 3.6 | 0.05 | 21.3 | 0.1 | 30.9 | 0.6 | 1.40 | 0.01 | 65.6 | 0.5 | 18.6 | 0.1 | 194 | 2.8 | 300 | 1.1 | 10.4 |
У9 | 319 | 2.2 | 4.0 | 0.50 | 18.8 | 0.5 | 28 | 3 | 1.34 | 0.08 | 68 | 4 | 18.9 | 2.5 | 220 | 1.9 | 312 | 1.9 | 11.7 |
У10 | 301 | 0.1 | 1.8 | 0.06 | 18.0 | 0.1 | 24.9 | 1.6 | 1.39 | 0.05 | 73.3 | 1.6 | 10.9 | 0.5 | 156 | 2.0 | 287 | 0.6 | 14.4 |
Soil ID | Horizon | Depth, cm | Description | Location | Coordinates | Soil Name * |
---|---|---|---|---|---|---|
Y1 | Abhp | 6–30 | Buried ploughing horizon with accumulation of humified organic matter, inclusion of coal | Fallow lands, beginning to overgrow with Betula platyphylla, Populus tremuloides | N 62.10211 E 129.2778 | Plaggic Anthrosol (Loamic) |
Y2 | Abhp | 0–20 | Buried ploughing horizon with accumulation of humified organic matter, inclusion of coal | Fallow lands, overgrow by Chamaenerion sp. | N 62.10258 E 129.2766 | Plaggic Anthrosol (Loamic) |
Y3 | Ah | 4–15 | Horizon with accumulation of poorly decomposed organic matter | Background forest with domination of Larix dahurica, Betula platyphylla | N 62.09103 E 129.2554 | Calcic Cryosol (Loamic) |
Y4 | Ah | 0–15 | Pyrogenic material, dark, moist, sandy loam, humus leaks | Background forest with domination of Larix dahurica, Betula platyphylla | N 62.21319 E 127.6947 | Calcic Cryosol (Loamic, Pyrogenic) |
Y5 | Ahp | 6–10 | Horizon with accumulation of humified organic matter, signs of overcompaction | Fallow lands, pasture | N 62.14756 E 128.029 | Plaggic Anthrosol (Loamic) |
Y6 | Ahp | 0–24 | Ploughing horizon with accumulation of organic matter | Fallow lands, hayfield. | N 62.13653 E 128.1949 | Plaggic Anthrosol (Loamic) |
Y7 | Ahp | 0–26 | Ploughing horizon with accumulation of humified organic matter | Experimental school field | N 62.26608 E 129.8299 | Plaggic Anthrosol (Loamic) |
Y8 | Ah | 0–6 | Horizon with accumulation of humified organic matter | Background forest with domination of Betula platyphylla, Chamaenerion sp. | N 61.685317 E 129.379186 | Calcic Cryosol (Loamic) |
Y9 | Ahp | 0–15 | Ploughing horizon with accumulation of humified organic matter, accumulation of salts on soil surface | Arable land without grasses | N 61.684961 E 129.379279 | Plaggic Anthrosol (Loamic) |
Y10 | Ahp | 0–25 | Ploughing horizon with accumulation of humified organic matter | Arable land with oats. | N 61.68469 E 129.3808 | Plaggic Anthrosol (Loamic) |
Soil ID | Horizon | pH | C, % | Particle Size Distribution | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||
Y1 | Abhp | 5.72 | 0.64 | 54 | 39 | 7 |
Y2 | Abhp | 5.69 | 1.19 | 55 | 43 | 2 |
Y3 | Ah | 5.23 | 6.51 | 72 | 26 | 2 |
Y4 | Ah | 5.15 | 2.53 | 81 | 14 | 5 |
Y5 | Ahp | 5.43 | 5.66 | 50 | 44 | 6 |
Y6 | Ahp | 5.47 | 3.85 | 47 | 47 | 6 |
Y7 | Ahp | 6.12 | 6.85 | 52 | 38 | 10 |
Y8 | Ah | 6.95 | 5.32 | 65 | 34 | 11 |
Y9 | Ahp | 6.47 | 6.86 | 60 | 35 | 5 |
Y10 | Ahp | 6.08 | 7.09 | 52 | 39 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Abakumov, E.; Lodygin, E.; Vasilevich, R.; Petrov, A. Molecular Weight Distribution of Humic Acids Isolated from Calcic Cryosol in Central Yakutia, Russia. Molecules 2024, 29, 3008. https://doi.org/10.3390/molecules29133008
Polyakov V, Abakumov E, Lodygin E, Vasilevich R, Petrov A. Molecular Weight Distribution of Humic Acids Isolated from Calcic Cryosol in Central Yakutia, Russia. Molecules. 2024; 29(13):3008. https://doi.org/10.3390/molecules29133008
Chicago/Turabian StylePolyakov, Vyacheslav, Evgeny Abakumov, Evgeny Lodygin, Roman Vasilevich, and Alexey Petrov. 2024. "Molecular Weight Distribution of Humic Acids Isolated from Calcic Cryosol in Central Yakutia, Russia" Molecules 29, no. 13: 3008. https://doi.org/10.3390/molecules29133008
APA StylePolyakov, V., Abakumov, E., Lodygin, E., Vasilevich, R., & Petrov, A. (2024). Molecular Weight Distribution of Humic Acids Isolated from Calcic Cryosol in Central Yakutia, Russia. Molecules, 29(13), 3008. https://doi.org/10.3390/molecules29133008