Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of Ag NP@W-PS/PDMS Film
3.3. Characterization
3.4. SERS Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Pu, H.; Huang, L.; Sun, D. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 2016, 88, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhou, X.; Liu, Y.; Wang, X. Ultrasensitive, recyclable and portable microfluidic surface-enhanced Raman scattering (SERS) biosensor for uranyl ions detection. Sens. Actuators B Chem. 2020, 311, 127676. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Hu, Z.; Gu, C.; Chen, D.; Wang, J.; Li, B.; Jiang, T.; Zhou, X. Hydrophilic–hydrophobic silver nanowire paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl. Surf. Sci. 2021, 556, 149748. [Google Scholar] [CrossRef]
- Tang, S.; Liu, H.; Tian, Y.; Chen, D.; Gu, C.; Wei, G.; Jiang, T.; Zhou, J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic–hydrophobic Ag-modified PMMA substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 262, 120092. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Wang, J.; Luo, X.; Xie, L.; Zhan, S.; Kim, J.; Wang, X.; Liu, X.; Ying, Y. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 2021, 7, eabe4553. [Google Scholar] [CrossRef] [PubMed]
- Camden, J.; Dieringer, J.; Wang, Y.; Masiello, D.; Marks, L.; Schatz, G.; Van Duyne, R. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Gou, L.; Wei, S.; Hou, X.; Wu, L. Au Nanoparticles Decorated CoP Nanowire Array: A Highly Sensitive, Anticorrosive, and Recyclable Surface-Enhanced Raman Scattering Substrate. Anal. Chem. 2023, 95, 11037–11046. [Google Scholar] [CrossRef]
- Gao, R.; Song, X.; Zhan, C.; Weng, C.; Cheng, S.; Guo, K.; Ma, N.; Chang, H.; Guo, Z.; Luo, L.; et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem. 2020, 314, 128081. [Google Scholar] [CrossRef]
- Sitjar, J.; Liao, J.-D.; Lee, H.; Pan, L.; Liu, B.; Fu, W.; Chen, G. Ag nanostructures with spikes on adhesive tape as a flexible SERS-active substrate for in situ trace detection of pesticides on fruit skin. Nanomaterials 2019, 9, 1750. [Google Scholar] [CrossRef]
- Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; WachsmannHogiu, S. Inexpensive and flexible SERS substrates on adhesive tape based on biosilica plasmonic nanocomposites. ACS Appl. Nano Mater. 2018, 1, 5316–5326. [Google Scholar] [CrossRef]
- Kolluru, C.; Gupta, R.; Jiang, Q.; Williams, M.; Derami, H.; Cao, S.; Noel, R.; Singamaneni, S.; Prausnitz, M. Plasmonic paper microneedle patch for on-patch detection of molecules in dermal interstitial fluid. ACS Sens. 2019, 4, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Oh, K.; Choi, H.-K.; Lee, S.; Youn, H.; Lee, H.; Jeong, D. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Du, H.; Cheng, F.; Wang, C.; Wang, C.; Fan, M. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; He, M.; Ran, J.; Cai, G.; Wu, J.; Wang, X. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens. Actuators B Chem. 2018, 270, 508–517. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969. [Google Scholar] [CrossRef]
- Xie, L.; Zeng, H.; Zhu, J.; Zhang, Z.; Sun, H.; Xia, W.; Du, Y. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Res. 2022, 15, 4374–4394. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Tian, Y.; Gu, C.; Jiang, T. Contrastive Study of In Situ Sensing and Swabbing Detection Based on SERS-Active Gold Nanobush−PDMS Hybrid Film. J. Agric. Food Chem. 2021, 69, 1975–1983. [Google Scholar] [CrossRef]
- Zhong, L.; Yin, J.; Zheng, Y.; Liu, Q.; Cheng, X.; Luo, F. Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates. Anal. Chem. 2014, 86, 6262–6267. [Google Scholar] [CrossRef] [PubMed]
- Barveen, N.; Wang, T.-J.; Chang, Y.-H. Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in-situ detection of antibiotics on curved surfaces. Chem. Eng. J. 2022, 431, 134240. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhu, K.; Gu, C.; Wen, Y.; Cui, G.; Qu, J. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (Polyethylene terephthalate) for in-situ detection. Appl. Surf. Sci. 2016, 379, 66–72. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Xiao, X.; Zhang, T.; Yang, H.; Zhao, Y.; Wang, J.; Jiang, K.; Fan, S.; Li, Q. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10, 15195–15204. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Chen, C.; Liu, J.; Lu, J.; Lu, N. Fabrication of Flexible Pyramid Array as SERS Substrate for Direct Sampling and Reproducible Detection. Anal. Chem. 2023, 95, 14184–14191. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89, 2424–2431. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Shi, X.; Feng, Y.; He, M.; Ye, C.; Zhou, H.; Zhang, M.; Zhang, W.; Li, J.; Jiang, C. Lotus leaf mastoid inspired Ag micro/nanoarrays on PDMS film as flexible SERS sensor for in-situ analysis of pesticide residues on nonplanar surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 288, 122211. [Google Scholar] [CrossRef]
- Lu, C.-H.; Cheng, M.-R.; Chen, S.; Syu, W.-L.; Chien, M.-Y.; Wang, K.-S.; Chen, J.-S.; Lee, P.-H.; Liu, T.-Y. Flexible PDMS-Based SERS Substrates Replicated from Beetle Wings for Water Pollutant Detection. Polymers 2023, 15, 191. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Wang, Z.; Zhu, Y.; Zhang, J. Open nanocavity-assisted Ag@PDMS as a soft SERS substrate with ultra-sensitivity and high uniformity. Opt. Express 2023, 31, 16484–16496. [Google Scholar]
- Gao, R.; Qian, H.; Weng, C.; Wang, X.; Xie, C.; Guo, K.; Zhang, S.; Xuan, S.; Guo, Z.; Luo, L.-B. A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sens. Actuators B 2020, 321, 128543. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Wang, J.; Shi, Z.; Du, L. Reproducible Flexible SERS Substrates Inspired by Bionic Micro-Nano Hierarchical Structures of Rose Petals. Adv. Mater. Interfaces 2022, 9, 2102468. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Wang, Y.; Hao, X.; Wang, C.; Yang, Z.; Li, H. Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 299, 122877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, N.; Li, H.; Wang, M.; Hao, X.; Sun, M.; Li, X.; Yang, Z.; Yu, H.; Tian, C.; et al. 3D Flexible SERS Substrates Integrated with a Portable Raman Analyzer and Wireless Communication for Point-of-Care Application. ACS Appl. Mater. Interfaces 2022, 14, 51253–51264. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, W.; Kwon, S.; Park, J.; Park, J.-O.; Bang, D. Bending-Insensitive Flexible SERS Sensor for Stable and Sensitive Detection on Curved Surfaces. Adv. Mater. Technol. 2022, 7, 2101716. [Google Scholar] [CrossRef]
- Hyun, D.C.; Jeong, U. Substrate thickness: An effective control parameter for polymer thin film buckling on PDMS substrates. J. Appl. Polym. Sci. 2009, 112, 2683–2690. [Google Scholar] [CrossRef]
- Kiba, T.; Masui, K.; Inomata, Y.; Furumoto, A.; Kawamura, M.; Abe, Y.; Kim, K.H. Control of localized surface plasmon resonance of Ag nanoparticles by changing its size and morphology. Vacuum 2021, 192, 110432. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Tegegne, W.A.; Su, W.-N.; Beyene, A.B.; Huang, W.-H.; Tsai, M.-C.; Hwang, B.-J. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Micorchem. J. 2021, 168, 106349. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J.; Wang, S.; Fang, J. Fabrication of triangular Au/Ag nanoparticle arrays with sub-10 nm nanogap controlled by flexible substrate for surface-enhanced Raman scattering. Nanotechnology 2023, 34, 015302. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Wang, H.; Huang, L.; Yang, Z.; Wang, Y.; Li, H. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film. Opt. Express 2023, 31, 21025–21037. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, S.; Du, P.; Wen, Y.; Wang, J.; Cai, Z.; Ge, F. Optimization of cotton SERS substrates based on different weave structures for surface trace detection. Opt. Mater. 2024, 150, 115338. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhao, K.; Wang, H.; Zhang, Z.; Huang, L.; Niu, H.; Yang, Z.; Wang, C. Biomimetic flexible SERS substrates replicated from cicada wings for portable in situ detection. Opt. Mater. 2024, 149, 114801. [Google Scholar] [CrossRef]
- Niu, F.; Jiang, P.; Wang, L.; Gao, Y.; Zhu, H.; Gao, N.; Cai, Z.; He, H.; He, Y.; Chang, G. Controllable growth of Au NBPs@Ag nanorods modified PDMS as SERS substrate for rapid detection of malachite green in aquatic products. Micorchem. J. 2024, 201, 110569. [Google Scholar] [CrossRef]
- Supriya, A.; Aidan, J.C.; Tuan, V.-D. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. Analyst 2024, 149, 2084–2096. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Huang, L.; Wang, H.; Zhang, Z.; Niu, H.; Yang, Z.; Li, H. Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection. Molecules 2024, 29, 2946. https://doi.org/10.3390/molecules29122946
Sun M, Huang L, Wang H, Zhang Z, Niu H, Yang Z, Li H. Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection. Molecules. 2024; 29(12):2946. https://doi.org/10.3390/molecules29122946
Chicago/Turabian StyleSun, Meng, Lili Huang, Hongjun Wang, Zhaoyi Zhang, Huijuan Niu, Zhenshan Yang, and Hefu Li. 2024. "Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection" Molecules 29, no. 12: 2946. https://doi.org/10.3390/molecules29122946
APA StyleSun, M., Huang, L., Wang, H., Zhang, Z., Niu, H., Yang, Z., & Li, H. (2024). Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection. Molecules, 29(12), 2946. https://doi.org/10.3390/molecules29122946