Synthesis and Characterisation of Core–Shell Microparticles Formed by Ni-Mn-Co Oxides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsurkan, V.; Krug von Nidda, H.A.; Deisenhofer, J.; Lunkenheimer, P.; Loidl, A. On the Complexity of Spinels: Magnetic, Electronic, and Polar Ground States. Phys. Rep. 2021, 926, 1–86. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Z.; Meng, F. Spinel-Type Materials Used for Gas Sensing: A Review. Sensors 2020, 20, 5413. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Lee, K.S. Spinel Cathodes for Advanced Lithium Ion Batteries: A Review of Challenges and Recent Progress. Mater. Technol. 2016, 31, 628–641. [Google Scholar] [CrossRef]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and Classification of the Spinel Supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef]
- Yan, J.; Liu, X.; Li, B. Recent Progress in Li-Rich Layered Oxides as Cathode Materials for Li-Ion Batteries. RSC Adv. 2014, 4, 63268–63284. [Google Scholar] [CrossRef]
- Xu, J.; Lin, F.; Doeff, M.M.; Tong, W. A Review of Ni-Based Layered Oxides for Rechargeable Li-Ion Batteries. J. Mater. Chem. A 2017, 5, 874–901. [Google Scholar] [CrossRef]
- Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries. Nat. Mater. 2009, 8, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yao, J.; Zhu, W.; Huang, X.; Kuai, X.; Tang, J.; Li, X.; Dai, S.; Shen, L.; Yang, R.; et al. Enhanced High-Voltage Cycling Stability of Ni-Rich Cathode Materials: Via the Self-Assembly of Mn-Rich Shells. J. Mater. Chem. A 2019, 7, 20262–20273. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, W.; Yao, J.; Bu, L.; Li, X.; Tian, K.; Lu, H.; Quan, C.; Xu, S.; Xu, K.; et al. Suppressing Structural Degradation of Ni-Rich Cathode Materials towards Improved Cycling Stability Enabled by a Li2MnO3 Coating. J. Mater. Chem. A 2020, 8, 17429–17441. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Yu, L.; Zhang, Y.; Hou, D.; Li, T. Facile Synthesis of NiMn2O4 Nanosheet Arrays Grown on Nickel Foam as Novel Electrode Materials for High-Performance Supercapacitors. Ceram. Int. 2016, 42, 14963–14969. [Google Scholar] [CrossRef]
- Larbi, T.; Amara, A.; Ouni, B.; Inoubli, A.; Karyaoui, M.; Yumak, A.; Saadallah, F.; Boubaker, K.; Amlouk, M. Physical Investigations on NiMn2O4 Sprayed Magnetic Spinel for Sensitivity Applications. J. Magn. Magn. Mater. 2015, 387, 139–146. [Google Scholar] [CrossRef]
- Prakash, S.; Paruthimal Kalaignan, G. Investigation of Morphological Changes on Nickel Manganese Oxide and Their Capacitance Activity. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125875. [Google Scholar] [CrossRef]
- Karmakar, S.; Mistari, C.D.; Parey, V.; Thapa, R.; More, M.A.; Behera, D. Microporous Networks of NiMn2O4 as a Potent Cathode Material for Electric Field Emission. J. Phys. D Appl. Phys. 2020, 53, 055103. [Google Scholar] [CrossRef]
- Saavedra-Arias, J.J.; Karan, N.K.; Pradhan, D.K.; Kumar, A.; Nieto, S.; Thomas, R.; Katiyar, R.S. Synthesis and Electrochemical Properties of Li(Ni0.8Co0.1Mn0.1)O2 Cathode Material: Ex Situ Structural Analysis by Raman Scattering and X-Ray Diffraction at Various Stages of Charge–Discharge Process. J. Power Sources 2008, 183, 761–765. [Google Scholar] [CrossRef]
- Yao, X.; Xu, Z.; Yao, Z.; Cheng, W.; Gao, H.; Zhao, Q.; Li, J.; Zhou, A. Oxalate Co-Precipitation Synthesis of LiNi0.6Co0.2Mn0.2O2 for Low-Cost and High-Energy Lithium-Ion Batteries. Mater. Today Commun. 2019, 19, 262–270. [Google Scholar] [CrossRef]
- Nisa, S.S.; Rahmawati, M.; Yudha, C.S.; Nilasary, H.; Nursukatmo, H.; Oktaviano, H.S.; Muzayanha, S.U.; Purwanto, A. A Fast Approach to Obtain Layered Transition-Metal Cathode Material for Rechargeable Batteries. Batteries 2022, 8, 4. [Google Scholar] [CrossRef]
- Subramaniyam, C.M.; Celio, H.; Shiva, K.; Gao, H.; Goodneough, J.B.; Liu, H.K.; Dou, S.X. Long Stable Cycling of Fluorine-Doped Nickel-Rich Layered Cathodes for Lithium Batteries. Sustain. Energy Fuels 2017, 1, 1292–1298. [Google Scholar] [CrossRef]
- Wu, Q.; Maroni, V.A.; Gosztola, D.J.; Miller, D.J.; Dees, D.W.; Lu, W. A Raman-Based Investigation of the Fate of Li2MnO3 in Lithium- and Manganese-Rich Cathode Materials for Lithium Ion Batteries. J. Electrochem. Soc. 2015, 162, A1255–A1264. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Peng, W.; Li, L.; Chen, W.; Guo, H.; Li, X. Spray-Drying Synthesized LiNi0.6Co0.2Mn0.2O2 and Its Electrochemical Performance as Cathode Materials for Lithium Ion Batteries. Powder Technol. 2011, 214, 279–282. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, S.; Zhao, Y.; Roy, S.; Lu, X.; Hou, Y.; Zhang, J. A Review of Nickel-Rich Layered Oxide Cathodes: Synthetic Strategies, Structural Characteristics, Failure Mechanism, Improvement Approaches and Prospects. Appl. Energy 2022, 305, 117849. [Google Scholar] [CrossRef]
- Guo, C.W.; Cao, Y.; Xie, S.H.; Dai, W.L.; Fan, K.N. Fabrication of Mesoporous Core-Shell Structured Titania Microspheres with Hollow Interiors. Chem. Commun. 2003, 3, 700–701. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R.A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chem. Mater. 2001, 13, 109–116. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, D.; Chen, Z.; Zhang, Y. Controlled Synthesis of Core/Shell Magnetic Iron Oxide/Carbon Systems via a Self-Template Method. J. Mater. Chem. 2009, 19, 7710–7715. [Google Scholar] [CrossRef]
- Sun, Y.K.; Myung, S.T.; Kim, M.H.; Prakash, J.; Amine, K. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries. J. Am. Chem. Soc. 2005, 127, 13411–13418. [Google Scholar] [CrossRef]
- Hou, P.; Zhang, H.; Zi, Z.; Zhang, L.; Xu, X. Core–Shell and Concentration-Gradient Cathodes Prepared via Co-Precipitation Reaction for Advanced Lithium-Ion Batteries. J. Mater. Chem. A 2017, 5, 4254–4279. [Google Scholar] [CrossRef]
- Song, L.; Jiang, P.; Xiao, Z.; Cao, Z.; Zhou, C.; Du, J.; Liu, P. Core-Shell Structure LiNi0.8Co0.1Mn0.1O2 Cathode Material with Improved Electrochemical Performance at High Voltage. Ionics 2021, 27, 949–959. [Google Scholar] [CrossRef]
- Zangrando, M.; Finazzi, M.; Paolucci, G.; Comelli, G.; Diviacco, B.; Walker, R.P.; Cocco, D.; Parmigiani, F. BACH, the Beamline for Advanced Dichroic and Scattering Experiments at ELETTRA. Rev. Sci. Instrum. 2001, 72, 1313–1319. [Google Scholar] [CrossRef]
- Zangrando, M.; Zacchigria, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F. Polarized High-Brilliance and High-Resolution Soft X-ray Source at ELETTRA: The Performance of Beamline BACH. Rev. Sci. Instrum. 2004, 75, 31–36. [Google Scholar] [CrossRef]
- Liao, J.Y.; Oh, S.M.; Manthiram, A. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 24543–24549. [Google Scholar] [CrossRef]
- Rathore, D.; Garayt, M.; Liu, Y.; Geng, C.; Johnson, M.; Dahn, J.R.; Yang, C. Preventing Interdiffusion during Synthesis of Ni-Rich Core-Shell Cathode Materials. ACS Energy Lett. 2022, 7, 2189–2195. [Google Scholar] [CrossRef]
- Elsaidi, S.K.; Venna, S.R.; Mohamed, M.H.; Gipple, M.J.; Hopkinson, D.P. Dual-Layer MOF Composite Membranes with Tuned Interface Interaction for Postcombustion Carbon Dioxide Separation. Cell Rep. Phys. Sci. 2020, 1, 100059. [Google Scholar] [CrossRef]
- Lapham, D.P.; Tseung, A.C.C. The Effect of Firing Temperature, Preparation Technique and Composition on the Electrical Properties of the Nickel Cobalt Oxide Series NixCo1−XOy. J. Mater. Sci. 2004, 39, 251–264. [Google Scholar] [CrossRef]
- Iliev, M.N.; Silwal, P.; Loukya, B.; Datta, R.; Kim, D.H.; Todorov, N.D.; Pachauri, N.; Gupta, A. Raman Studies of Cation Distribution and Thermal Stability of Epitaxial Spinel NiCo2O4 Films. J. Appl. Phys. 2013, 114, 033514. [Google Scholar] [CrossRef]
- Gaur, A.; Mohiddon, M.A.; Sglavo, V.M. Phenomenological Understanding of Flash Sintering in MnCo2O4. J. Eur. Ceram. Soc. 2018, 38, 4543–4552. [Google Scholar] [CrossRef]
- Sannasi, V.; Subbian, K. High-Pseudocapacitance of MnCo2O4 Nanostructures Prepared by Phenolphthalein Assisted Hydrothermal and Microwave Methods. Ceram. Int. 2020, 46, 15510–15520. [Google Scholar] [CrossRef]
- White, W.B.; DeAngelis, B.A. Interpretation of the Vibrational Spectra of Spinels. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 985–995. [Google Scholar] [CrossRef]
- Guan, D.; Shi, C.; Xu, H.; Gu, Y.; Zhong, J.; Sha, Y.; Hu, Z.; Ni, M.; Shao, Z. Simultaneously Mastering Operando Strain and Reconstruction Effects via Phase-Segregation Strategy for Enhanced Oxygen-Evolving Electrocatalysis. J. Energy Chem. 2023, 82, 572–580. [Google Scholar] [CrossRef]
- Larbi, T.; Doll, K.; Manoubi, T. Density Functional Theory Study of Ferromagnetically and Ferrimagnetically Ordered Spinel Oxide Mn3O4. A Quantum Mechanical Simulation of Their IR and Raman Spectra. J. Alloys Compd. 2016, 688, 692–698. [Google Scholar] [CrossRef]
- Larbi, T.; Doll, K.; Amlouk, M. Temperature Dependence of Raman Spectra and First Principles Study of NiMn2O4 Magnetic Spinel Oxide Thin Films. Application in Efficient Photocatalytic Removal of RhB and MB Dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 117–124. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakayama, H.; Fukao, K.; Munakata, F. Transport and X-ray Photoelectron Spectroscopy Properties of (Ni1−xCux)Mn2O4 and Ni(Mn2−yCuy)O4. J. Appl. Phys. 2011, 110, 023519. [Google Scholar] [CrossRef]
- Ngo, Y.L.T.; Sui, L.; Ahn, W.; Chung, J.S.; Hur, S.H. NiMn2O4 Spinel Binary Nanostructure Decorated on Three-Dimensional Reduced Graphene Oxide Hydrogel for Bifunctional Materials in Non-Enzymatic Glucose Sensor. Nanoscale 2017, 9, 19318–19327. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.A.; Langell, M.A. Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490. [Google Scholar] [CrossRef]
- Aswathy, N.R.; Varghese, J.J.; Nair, S.R.; Kumar, R.V. Structural, Optical, and Magnetic Properties of Mn-Doped NiO Thin Films Prepared by Sol-Gel Spin Coating. Mater. Chem. Phys. 2022, 282, 125916. [Google Scholar] [CrossRef]
- Töpfer, J.; Feltz, A.; Gräf, D.; Hackl, B.; Raupach, L.; Weissbrodt, P. Cation Valencies and Distribution in the Spinels NiMn2O4 and MzNiMn2−zO4 (M = Li, Cu) Studied by XPS. Phys. Status Solidi 1992, 134, 405–415. [Google Scholar] [CrossRef]
- Freitas Cabral, A.J.; Peña Serna, J.D.; Salles, B.R.; Amorim, H.S.; Rocha Remédios, C.M.; Novak, M.A. Magnetic Dynamics of NiMn2O4 Spinel Produced by a Simple Aqueous Sol–Gel Route. J. Magn. Magn. Mater. 2021, 538, 168291. [Google Scholar] [CrossRef]
- Macklen, E.D. Electrical Conductivity and Cation Distribution in Nickel Manganite. J. Phys. Chem. Solids 1986, 47, 1073–1079. [Google Scholar] [CrossRef]
- Taeño, M.; Bartolomé, J.; Gregoratti, L.; Modrzynski, P.; Maestre, D.; Cremades, A. Self-Organized NiO Microcavity Arrays Fabricated by Thermal Treatments. Cryst. Growth Des. 2020, 20, 4082–4091. [Google Scholar] [CrossRef]
- Pollen, H.N.; Nylund, I.E.; Dahl, O.; Svensson, A.M.; Brandell, D.; Younesi, R.; Tolchard, J.R.; Wagner, N.P. Interphase Engineering of LiNi0.88Mn0.66Co0.66O2 Cathodes Using Octadecyl Phosphonic Acid Coupling Agents. ACS Appl. Energy Mat. 2023, 6, 12032–12042. [Google Scholar] [CrossRef]
- Taguchi, H. Relationship between Crystal Structure and Electrical Properties of Murdochite-Type Ni6+2xMn1−xO8. Solid State Commun. 1998, 108, 635–639. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Li, X.; Xu, J. Fabrication of Porous NiMn2O4 Nanosheet Arrays on Nickel Foam as an Advanced Sensor Material for Non-Enzymatic Glucose Detection. Sci. Rep. 2019, 9, 18121. [Google Scholar] [CrossRef]
Sample | Analysed Region | Ni:Mn:O |
---|---|---|
C-5 | Core | 8.1:1.0:0.9 |
CS-5 | Crack | 7.0:1.7:1.2 |
Edge | 6.7:2.5:0.9 | |
CS-8 | Crack | 7.3:1.6:1.0 |
Edge | 6.5:2.2:1.2 |
Oxidation States | |||||
---|---|---|---|---|---|
Ni2+ (NiO) | Ni2+ | Ni3+ | Mn2+ | Mn3+ | Mn4+ |
9.1 | 63.4 | 27.5 | 6.3 | 58.8 | 34.9 |
Sample | Structure | Treatment |
---|---|---|
C-5 | Core | 500 °C/2 h |
CS-5 | Core–shell | 500 °C/2 h |
CS-8 | Core–shell | 500 °C/2 h + 800 °C/2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Alonso, J.; Krüger, S.; Saruhan, B.; Maestre, D.; Méndez, B. Synthesis and Characterisation of Core–Shell Microparticles Formed by Ni-Mn-Co Oxides. Molecules 2024, 29, 2927. https://doi.org/10.3390/molecules29122927
García-Alonso J, Krüger S, Saruhan B, Maestre D, Méndez B. Synthesis and Characterisation of Core–Shell Microparticles Formed by Ni-Mn-Co Oxides. Molecules. 2024; 29(12):2927. https://doi.org/10.3390/molecules29122927
Chicago/Turabian StyleGarcía-Alonso, Javier, Svitlana Krüger, Bilge Saruhan, David Maestre, and Bianchi Méndez. 2024. "Synthesis and Characterisation of Core–Shell Microparticles Formed by Ni-Mn-Co Oxides" Molecules 29, no. 12: 2927. https://doi.org/10.3390/molecules29122927
APA StyleGarcía-Alonso, J., Krüger, S., Saruhan, B., Maestre, D., & Méndez, B. (2024). Synthesis and Characterisation of Core–Shell Microparticles Formed by Ni-Mn-Co Oxides. Molecules, 29(12), 2927. https://doi.org/10.3390/molecules29122927