Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Automated Solid-Phase Extraction Procedures
2.1.1. Cartridge Sorbents
2.1.2. Elution Solvent and Eluent Volume
2.1.3. Effect of Na2EDTA
2.1.4. Effect of pH Value
2.2. Matrix Effect
2.3. Evaluation of the Method Performance
2.4. Real Water Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sampling and Preparation
3.3. Automated Solid-Phase Extraction
3.4. Instrumental Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.Y.; Zhang, H.; Xiong, P.; Zhu, Q.Q.; Liao, C.Y.; Jiang, G.B. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Buta, E.L. The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 2021, 13, 2085. [Google Scholar] [CrossRef]
- Han, W.; Zhang, M.; Zhao, Y.; Chen, W.C.; Sha, H.X.; Wang, L.; Diao, Y.R.; Tan, Y.J.; Zhang, Y. Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution. Sci. Total Environ. 2024, 912, 168744. [Google Scholar] [CrossRef]
- Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotics 2023, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chen, Y.; Ding, C.; Liang, H.; Yang, B. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal. RSC Adv. 2015, 5, 59326–59334. [Google Scholar] [CrossRef]
- Nebot, C.; Guarddon, M.; Seco, F.; Iglesias, A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS. Food Control 2014, 46, 495–501. [Google Scholar] [CrossRef]
- Li, P.Y.; Rao, D.M.; Wang, Y.M.; Hu, X.R. Adsorption characteristics of polythiophene for tetracyclines and determination of tetracyclines in fish and chicken manure by solid phase extraction-HPLC method. Microchem. J. 2022, 173, 106935. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Lijalem, Y.G.; Yu, H.; Lim, D.K.; Ahn, S.; Choi, K.; Kim, B. Accurate determination of four tetracycline residues in chicken meat by isotope dilution-liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2023, 1691, 463818. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Sun, C.J.; Wu, L. Sample preparation and instrumental detection methods for tetracycline antibiotics. Int. J. Environ. An. Ch. 2023, 1–30. [Google Scholar]
- Scaria, J.; Anupama, K.V.; Nidheesh, P.V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci. Total Environ. 2021, 771, 145291. [Google Scholar] [CrossRef]
- Xue, M.; Wu, H.C.; Liu, S.Y.; Huang, X.H.; Jin, Q.; Ren, R. Simultaneous determination of 44 pharmaceutically active compounds in water samples using solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 203–222. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Chen, Q.W.; Zhang, J.Y.; Dong, J.W.; Yan, H.L.; Chen, C.; Feng, R.R. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River. J. Environ. Manag. 2019, 244, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Granados, M.; Encabo, M.; Compañó, R.; Prat, M.D. Determination of tetracyclines in water samples using liquid chromatography with fluorimetric detection. Chromatographia 2005, 61, 471–477. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.Y.; Tian, H.; Wei, Q.H.; Liu, B.S.; Bao, G.M.; Liao, M.L.; Peng, J.L.; Huang, X.Q.; Wang, L.Q. High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 2019, 230, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.Q.; Xu, X.; Gao, Y.F.; Zheng, D.Z.; Wang, J.Y.; Li, Z.G. Preparation of magnetic activated carbon from waste rice husk for the determination of tetracycline antibiotics in water samples. RSC Adv. 2016, 6, 112166–112174. [Google Scholar] [CrossRef]
- Panditi, V.R.; Batchu, S.R.; Gardinali, P.R. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters. Anal. Bioanal. Chem. 2013, 405, 5953–5964. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Xu, Y.J.; Wang, Y.; Chen, J.; Wang, S. Rapid and ultra-trace levels analysis of 33 antibiotics in water by on-line solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2022, 1677, 463304. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Francisco, J.G.; Andrade, G.C.R.M.; Botelho, R.G.; Figueiredo, L.A.; Tornisielo, V.L. Study of spatial and temporal distribution of antimicrobial in water and sediments from caging fish farms by on-line SPE-LC-MS/MS. J. Environ. Sci. Health B 2016, 51, 634–643. [Google Scholar] [CrossRef]
- Li, T.; Wang, C.; Xu, Z.A.; Chakraborty, A. A coupled method of on-line solid phase extraction with the UHPLC-MS/MS for detection of sulfonamides antibiotics residues in aquaculture. Chemosphere 2020, 254, 126765. [Google Scholar] [CrossRef]
- Van De Steene, J.C.; Lambert, W.E. Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. J. Am. Soc. Mass Spectr. 2008, 19, 713–718. [Google Scholar] [CrossRef]
- Zhu, Y.J.; He, P.F.; Hu, H.M.; Qi, M.Y.; Li, T.J.; Zhang, X.N.; Guo, Y.M.; Wu, W.Y.; Lan, Q.P.; Yang, C.C.; et al. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2022, 1208, 123390. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.J.; Liu, J.; Xu, X.; Li, J.; Zhang, B.J.; Wei, L.J.; Cai, H.P.; Cheng, X.L. Ultrasensitive high-performance liquid chromatography determination of tetracycline antibiotics and their 4-epimer derivatives based on dual effect of methanesulfonic acid. J. Sep. Sci. 2020, 43, 398–405. [Google Scholar] [CrossRef]
- Ri, H.C.; Piao, J.S.; Cai, L.; Jin, X.J.; Piao, X.F.; Jin, X.Z.; Jon, C.S.; Liu, L.; Zhao, J.H.; Shang, H.B.; et al. A reciprocating magnetic field assisted on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry determination of trace tetracyclines in water. Anal. Chim. Acta 2021, 1182, 338957. [Google Scholar] [CrossRef]
- Huang, M.F.; Li, M.; Liu, J.; Yao, Q.; Wang, C.; Feng, C.L.; Sun, F.H.; Chen, Y.; Chang, H. Research and application of simultaneous detection method for 20 tetracyclines and transformation products in surface water. Environ. Chem. 2024, 43, 1111–1122. (In Chinese) [Google Scholar]
- Abafe, O.A.; Gatyeni, P.; Matika, L. A multi-class multi-residue method for the analysis of polyether ionophores, tetracyclines and sulfonamides in multi-matrices of animal and aquaculture fish tissues by ultra-high performance liquid chromatography tandem mass spectrometry. Food Addit. Contam. A 2020, 37, 438–450. [Google Scholar] [CrossRef]
- Qi, M.Y.; He, P.F.; Hu, H.M.; Zhang, T.T.; Li, T.J.; Zhang, X.N.; Qin, Y.L.; Zhu, Y.J.; Guo, Y.M. An Automated Solid-Phase Extraction-UPLC-MS/MS Method for Simultaneous Determination of Sulfonamide Antimicrobials in Environmental Water. Molecules 2023, 28, 4694. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.E.; Meyer, T.M.; Thurman, E.M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 2001, 73, 4640–4646. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Wu, S.C.; Zhu, Y. Magnetic solid phase extraction based on graphene oxide/nanoscale zero-valent iron for the determination of tetracyclines in water and milk by using HPLC-MS/MS. RSC Adv. 2017, 7, 44578–44586. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Gracia-Marín, E.; Ibáñez, M.; Pitarch, E.; Hernández, F. Analytical key issues and challenges in the LC-MS/MS determination of antibiotics in wastewater. Anal. Chim. Acta 2023, 1239, 340739. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Altunay, N.; Tuzen, M. Preparation of fatty acid-based ternary deep eutectic solvents: Application for determination of tetracycline residue in water, honey and milk samples by using vortex-assisted microextraction. Food Chem. 2023, 400, 134085. [Google Scholar] [CrossRef]
- Chang, D.H.; Mao, Y.Z.; Qiu, W.; Wu, Y.S.; Cai, B.Y. The source and distribution of tetracycline antibiotics in China: A review. Toxics 2023, 11, 214. [Google Scholar] [CrossRef] [PubMed]
SPE Cartridge | Dimensions | Sorbent Properties |
---|---|---|
CNW LC-C18 | 40–63 μm a, 500 mg b, 6 mL c | C18 alkyl-bonded silica |
CNW MCX | 92 μm, 500 mg, 6 mL | mixed-mode cation exchange |
CNW MAX | 35–45 μm, 500 mg, 6 mL | mixed-mode anion exchange |
CNW XAD2 | 694 μm, 500 mg, 6 mL | non-ionic reticulated styrene–divinylbenzene polymer |
CNW HLB | 66 μm, 500 mg, 6 mL | Hydrophilic–lipophilic-balanced reverse phase polymer |
OASIS HLB | 58.4 μm, 500 mg, 6 mL | Hydrophilic–lipophilic-balanced reverse phase polymer |
Prime HLB | 60–80 μm, 500 mg, 6 mL | Hydrophilic–lipophilic-balanced reverse phase polymer |
OASIS HLB | 58.4 μm, 200 mg, 6 mL | Hydrophilic–lipophilic-balanced reverse phase polymer |
Prime HLB | 60–80 μm, 200 mg, 6 mL | Hydrophilic–lipophilic-balanced reverse phase polymer |
Abbreviation | Full Name | Molecular Weight | Solubility (mg/L) | Log KOW | pKa | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|---|---|---|
MTC | Methacycline | 442.42 | 7550 | −1.37 | 3.50, 7.60, 9.20 | 8.78 | 443.1 | 380.9, 426.3 * | 34 | 20, 25 |
ETC | 4-Epitetracycline | 444.44 | 3880 | −1.33 | 4.50, 11.02 | 5.06 | 445.1 | 410.0 *, 427.0 | 25 | 20, 14 |
TC | Tetracycline | 444.43 | 231 | −1.30 | 3.30, 7.68, 9.69 | 5.78 | 445.1 | 410.0 *, 427.0 | 25 | 20, 14 |
TC-D6 | 450.47 | 5.74 | 451.1 | 416.0 * | 25 | 20 | ||||
DXC | Doxycycline | 444.44 | 630 | −0.02 | 3.02, 7.97, 9.15 | 9.09 | 445.2 | 410.0, 428.0 * | 30 | 24, 18 |
DXC-D3 | 447.48 | 9.07 | 448.2 | 431.0 * | 30 | 18 | ||||
EOTC | 4-Epioxytetracycline | 460.43 | 501 | −1.50 | NA | 5.59 | 461.1 | 426.0 *, 442.9 | 20 | 20, 15 |
OTC | Oxytetracycline | 460.44 | 313 | −1.12 | 3.27, 7.32, 9.11 | 5.95 | 461.1 | 426.0 *, 442.9 | 20 | 20, 15 |
OTC−13C2215N2 | 484.44 | 5.95 | 485.1 | 449.0 * | 20 | 20 | ||||
EDCTC | 4-Epidemeclocycline | 464.85 | NA | −0.81 | 7.46 | 5.79 | 465.2 | 430 *, 448.1 | 25 | 22, 17 |
DCTC | Demeclocycline | 464.85 | 1520 | −1.14 | 8.23 | 6.67 | 465.2 | 430.0 *, 448.1 | 30 | 22, 18 |
MCC | Meclocycline | 476.86 | NA | NA | NA | 9.52 | 477.1 | 235.0, 460.1 * | 30 | 20, 17 |
ECTC | 4-Epichlortetracycline | 478.88 | NA | −0.53 | 6.90 | 6.85 | 479.1 | 444.1 *, 462.0 | 15 | 20, 18 |
CTC | Chlortetracycline | 478.88 | 630 | −0.62 | 3.30, 7.55, 9.15 | 7.77 | 479.1 | 444.1 *, 462.0 | 15 | 20, 18 |
CTC-13C-D3 | 482.88 | 7.77 | 483.1 | 448.1 * | 15 | 20 | ||||
ICTC | Isochlortetracycline | 478.88 | NA | 1.99 | 4.50, 11.02 | 6.45 | 479.1 | 197.0, 462.1 * | 30 | 25, 18 |
Analyte | ILIS | Linear Range (μg/L) | Regression Equation | r2 | LOD a (ng/L) | LOQ b (ng/L) | EFs | Precision, RSD (%, n = 5) | |
---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||||||
MTC | OTC-13C2215N2 | 0.2−100 | y = 0.19x + 0.02 | 0.9979 | 0.10 | 0.30 | 828 | 4.81 | 5.05 |
ETC | TC-D6 | 0.2−100 | y = 0.69x − 0.0.02 | 0.9978 | 0.02 | 0.06 | 798 | 4.82 | 4.39 |
TC | TC-D6 | 0.2−100 | y = 0.42x + 0.05 | 0.9992 | 0.02 | 0.06 | 978 | 10.58 | 8.85 |
DXC | DXC-D3 | 0.2−100 | y = 0.97x + 0.19 | 0.9996 | 0.01 | 0.03 | 934 | 1.62 | 3.28 |
EOTC | OTC-13C2215N2 | 0.2−100 | y = 0.43x + 0.07 | 0.9980 | 0.03 | 0.10 | 865 | 11.25 | 12.51 |
OTC | OTC-13C2215N2 | 0.2−100 | y = 0.80x − 0.03 | 0.9991 | 0.03 | 0.10 | 907 | 10.43 | 13.51 |
EDCTC | CTC-13C-D3 | 0.2−100 | y = 0.27x + 0.02 | 0.9959 | 0.15 | 0.50 | 826 | 11.86 | 10.16 |
DCTC | CTC-13C-D3 | 0.2−100 | y = 0.25x + 0.02 | 0.9974 | 0.15 | 0.50 | 1059 | 7.43 | 11.63 |
MCC | OTC-13C2215N2 | 0.2−100 | y = 0.59x + 0.13 | 0.9984 | 0.06 | 0.20 | 886 | 4.55 | 5.04 |
ECTC | CTC-13C-D3 | 0.2−100 | y = 0.36x − 0.04 | 0.9986 | 0.01 | 0.03 | 903 | 10.99 | 9.34 |
CTC | CTC-13C-D3 | 0.2−100 | y = 0.50x + 0.53 | 0.9990 | 0.01 | 0.03 | 880 | 3.82 | 3.93 |
ICTC | CTC-13C-D3 | 0.2−100 | y = 1.15x + 0.30 | 0.9982 | 0.03 | 0.10 | 962 | 11.68 | 13.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Zhang, X.; Yu, J.; Hu, H.; He, P.; Li, Z.; Fang, Y.; Li, T.; Guo, Y. Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2024, 29, 2921. https://doi.org/10.3390/molecules29122921
Zhang T, Zhang X, Yu J, Hu H, He P, Li Z, Fang Y, Li T, Guo Y. Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2024; 29(12):2921. https://doi.org/10.3390/molecules29122921
Chicago/Turabian StyleZhang, Tongtong, Xiangyang Zhang, Jiangmei Yu, Hongmei Hu, Pengfei He, Zhenhua Li, Yi Fang, Tiejun Li, and Yuanming Guo. 2024. "Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry" Molecules 29, no. 12: 2921. https://doi.org/10.3390/molecules29122921
APA StyleZhang, T., Zhang, X., Yu, J., Hu, H., He, P., Li, Z., Fang, Y., Li, T., & Guo, Y. (2024). Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 29(12), 2921. https://doi.org/10.3390/molecules29122921