A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Geometry
2.2. Dimers
2.3. Oligomers Formed by Equal Molar Ratios of EDA and CA
2.4. Oligomers Formed by Unequal Molar Ratios of EDA and CA
2.4.1. The Molar Ratio of EDA to CA Is 2.0
2.4.2. The Molar Ratio of EDA to CA Is 3.0
2.4.3. The Molar Ratio of EDA to CA Is 0.5
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Chen, Y.; Dai, X.; Li, P.; Stoddart, J.F.; Liu, Y. In Situ Photoconversion of Multicolor Luminescence and Pure White Light Emission Based on Carbon Dot-supported Supramolecular Assembly. J. Am. Chem. Soc. 2019, 141, 6583–6591. [Google Scholar] [CrossRef]
- Hutton, G.A.M.; Martindale, B.C.M.; Reisner, E. Carbon Dots as Photosensitisers for Solar-driven Catalysis. Chem. Soc. Rev. 2017, 46, 6111–6123. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent Progress on the Photocatalysis of Carbon Dots: Classification, Mechanism and Applications. Nano Today 2018, 19, 201–218. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; et al. Two-photon-excited Near-infrared Emissive Carbon Dots as Multifunctional Agents for Fluorescence Imaging and Photothermal Therapy. Nano Res. 2017, 10, 3113–3123. [Google Scholar] [CrossRef]
- Ma, J.; Sun, L.; Gao, F.; Zhang, S.; Zhang, Y.; Wang, Y.; Zhang, Y.; Ma, H. Local A Review of Dual-Emission Carbon Dots and Their Applications. Molecules 2023, 28, 8134. [Google Scholar] [CrossRef]
- Chung, Y.J.; Lee, C.H.; Lim, J.; Jang, J.; Kang, H.; Park, C.B. Photomodulating Carbon Dots for Spatiotemporal Suppression of Alzheimer’s β-amyloid Aggregation. ACS Nano 2020, 14, 16973–16983. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, 1904362. [Google Scholar] [CrossRef]
- Ye, H.; Lu, X.; Cheng, R.; Guo, J.; Li, H.; Wang, C.; Chen, S. Mild Bottom-up Synthesis of Carbon Dots with Temperature-dependent Fluorescence. J. Lumin. 2021, 238, 118311. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Chen, L.; Wang, H.; Shang, L.; He, P.; Dong, H.; Wang, G.; Ding, G. Fabrication of Carbon-based Quantum Dots via a “Bottom-Up” Approach: Topology, Chirality, and Free Radical Processes in “Building Blocks”. Small 2023, 19, 2205957. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, S.; Feng, T.; Xia, C.; Song, Y.; Yang, B. The Polymeric Characteristics and Photoluminescence Mechanism in Polymer Carbon Dots: A Review. Mater. Today Chem. 2017, 6, 13–25. [Google Scholar] [CrossRef]
- Arroyave, J.M.; Ambrusi, R.E.; Robein, Y.; Pronsato, M.E.; Brizuela, G.; Nezio, M.S.D.; Centurio’n, M.E. Carbon Dots Structural Characterization by Solution-state NMR and UV-visible Spectroscopy and DFT Modeling. Appl. Surf. Sci. 2021, 564, 150195. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-doped Graphene Quantum Dots with Oxygen-rich Functional Groups. J. Am. Chem. Soc. 2012, 134, 15–18. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Wang, X.; Zang, Z.; Liu, H.; Li, L.; Yu, X.; Yang, X.; Lu, Z.; Zhang, X. Surface Amino Group Modulation of Carbon Dots with Blue, Green and Red Emission as Cu2+ Ion Reversible Detector. Appl. Surf. Sci. 2022, 598, 153892. [Google Scholar] [CrossRef]
- Strauss, V.; Wang, H.; Delacroix, S.; Ledendecker, M.; Wessig, P. Carbon Nanodots Revised: The Thermal Citric Acid/Urea Reaction. Chem. Sci. 2020, 11, 8256–8266. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from Chemical Structure to Photoluminescent Mechanism: A Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine. J. Mater. Chem. C 2015, 3, 5976–5984. [Google Scholar] [CrossRef]
- Vallan, L.; Urriolabeitia, E.P.; Ruipérez, F.; Matxain, J.M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A.M.; Maser, W.K. Supramolecular-enhanced Charge-transfer within Entangled Polyamide Chains as Origin of the Universal Blue Fluorescence of Polymer Carbon Dots. J. Am. Chem. Soc. 2018, 140, 12862–12869. [Google Scholar] [CrossRef]
- Yang, X.; Ai, L.; Yu, J.; Waterhouse, G.I.N.; Sui, L.; Ding, J.; Zhang, B.; Yong, X.; Lu, S. Photoluminescence Mechanisms of Red-emissive Carbon Dots Derived from Non-conjugated Molecules. Sci. Bull. 2022, 67, 1450–1457. [Google Scholar] [CrossRef]
- Kasprzyk, W.; Świergosz, T.; Bednarz, S.; Walas, K.; Bashmakova, N.V.; Bogdał, D. Luminescence Phenomena of Carbon Dots Derived from Citric Acid and Urea-a Molecular Insight. Nanoscale 2018, 10, 13889–13894. [Google Scholar] [CrossRef]
- Mintz, K.J.; Bartoli, M.; Rovere, M.; Zhou, Y.-Q.; Hettiarachchi, S.D.; Paudyal, S.; Chen, J.-Y.; Domena, J.B.; Liyanage, P.Y.; Sampson, R.; et al. A Deep Investigation into the Structure of Carbon Dots. Carbon 2021, 173, 433–447. [Google Scholar] [CrossRef]
- Rydel-Ciszek, K. DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes. Molecules 2024, 29, 1579. [Google Scholar] [CrossRef]
- Tukachev, N.V.; Maslennikov, D.R.; Sosorev, A.Y.; Tretiak, S.; Zhugayevych, A. Ground-state Geometry and Vibrations of Polyphenylenevinylene Oligomers. J. Phys. Chem. Lett. 2019, 10, 3232–3239. [Google Scholar] [CrossRef]
- Kurzydym, I.; Czekaj, I. Mechanisms for deNOx and deN2O Processes on FAU Zeolite with a Bimetallic Cu-Fe Dimer in the Presence of a Hydroxyl Group—DFT Theoretical Calculations. Molecules 2024, 29, 2329. [Google Scholar] [CrossRef]
- Chen, J.; Dong, K.; Liu, L.; Zhang, X.; Zhang, S. Anti-electrostatic Hydrogen Bonding Between Anions of Ionic Liquids: A Density Functional Theory Study. Phys. Chem. Chem. Phys. 2021, 23, 7426–7433. [Google Scholar] [CrossRef]
- Bhuyan, R.; Kommula, B.; Bishwal, L.; Mandal, S.; Bhattacharyya, S. From Small Molecules to Zero-dimensional Carbon Nanodots: Chasing the Stepwise Transformations During Carbonization. J. Phys. Chem. C 2022, 126, 16377–16386. [Google Scholar] [CrossRef]
- Chahal, S.; Yousefi, N.; Tufenkji, N. Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustain. Chem. Eng. 2020, 8, 5566–5575. [Google Scholar] [CrossRef]
- Servinis, K.L.; Beggs, K.M.; Scheffler, C.; Wöfel, E.; Randall, J.D.; Gengenbach, T.R.; Demir, B.; Walsh, T.R.; Doeven, E.H.; Francis, P.S.; et al. Electrochemical Surface Modification of Carbon Fibres by Grafting of Amine, Carboxylic and Lipophilic Amide Groups. Carbon 2017, 118, 393–403. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Knorr, A.; Fumino, K.; Bonsa, A.M.; Ludwig, R. Spectroscopic Evidence of Cholinium ‘Jumping and Pecking’ and H-bond Enhanced Cation-cation Interaction in Ionic Liquids. Phys. Chem. Chem. Phys. 2015, 17, 30978–30982. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Takano, Y.; Houk, K.N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. J. Chem. Theory Comput. 2005, 1, 70–77. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Czarnecki, C.W.; Czarnecki, M.A. Spectra–Structure Correlations in Isotopomers of Ethanol (CX3CX2OX; X = H, D): Combined Near-Infrared and Anharmonic Computational Study. Molecules 2019, 24, 2189. [Google Scholar] [CrossRef]
- Molski, M. Density Functional Theory Studies on the Chemical Reactivity of Allyl Mercaptan and Its Derivatives. Molecules 2024, 29, 668. [Google Scholar] [CrossRef]
- Makoś, M.Z.; Gurunathan, P.K.; Raugei, S.; Kowalski, K.; Glezakou, V.; Rousseau, R. Modeling Absolute Redox Potentials of Ferrocene in the Condensed Phase. J. Phys. Chem. Lett. 2022, 13, 10005–10010. [Google Scholar] [CrossRef]
- Fukui, K. The Path of Chemical Reactions-the IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction Path Following in Mass-weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lu, T. Molclus Program, Version 1.9. Available online: http://www.keinsci.com/research/molclus.html (accessed on 9 December 2022).
- Stewart, J.J.P. MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016; Available online: http://OpenMOPAC.net (accessed on 9 December 2022).
Isomer | Frequency/cm−1 | Gibbs Free Energy/Hartree | a ΔG/kJ∙mol−1 |
---|---|---|---|
te-IM4-1-1 | 18 | −1748.653039 | 0 |
te-IM4-1-2 | 20 | −1748.637239 | 41.5 |
te-IM4-1-3 | 13 | −1748.650431 | 6.9 |
te-IM4-1-4 | 19 | −1748.652169 | 2.3 |
te-IM4-1-5 | 12 | −1748.633345 | 51.7 |
te-IM4-1-6 | 17 | −1748.644994 | 21.1 |
te-IM4-1-7 | 12 | −1748.648700 | 11.4 |
te-IM4-1-8 | 21 | −1748.626855 | 68.8 |
te-IM4-1-9 | 12 | −1748.643023 | 26.3 |
te-IM4-1-10 | 18 | −1748.633756 | 50.7 |
te-IM6-1 + H2O | 8, 1610 | −1748.649504 | 9.3 |
Isomer | Frequency/cm−1 | Gibbs Free Energy/Hartree | a ΔG/kJ∙mol−1 |
---|---|---|---|
CA-3EDA-IM3 + CA-3EDA-IM3 | 12, 12 | 2204.917002 | 0 |
oct-IM1-1 | 10 | −2204.922257 | −13.8 |
oct-IM1-2 | 19 | −2204.921466 | −11.7 |
oct-IM1-3 | 17 | −2204.910057 | 18.2 |
oct-IM1-4 | 14 | −2204.917378 | −1.0 |
oct-IM1-5 | 18 | −2204.908480 | 22.4 |
oct-IM1-6 | 14 | −2204.914584 | 6.4 |
oct-IM1-7 | 11 | −2204.916880 | 0.3 |
oct-IM1-8 | 15 | −2204.909931 | 18.6 |
oct-IM1-9 | 14 | −2204.912994 | 10.5 |
oct-IM1-10 | 8 | −2204.919530 | −6.6 |
Isomer | Frequency/cm−1 | Gibbs Free Energy/Hartree | a ΔG/kJ∙mol−1 |
---|---|---|---|
2CA-EDA-IM1-1 | 13 | −1634.583669 | 0 |
2CA-EDA-IM1-2 | 16 | −1634.576321 | 19.3 |
2CA-EDA-IM1-3 | 15 | −1634.569386 | 37.5 |
2CA-EDA-IM1-4 | 13 | −1634.572770 | 28.6 |
2CA-EDA-IM1-5 | 46 | −1634.562267 | 56.2 |
2CA-EDA-IM1-6 | 18 | −1634.565983 | 46.5 |
2CA-EDA-IM1-7 | 9 | −1634.578954 | 12.4 |
2CA-EDA-IM1-8 | 12 | −1634.562583 | 55.4 |
2CA-EDA-IM1-9 | 19 | −1634.564734 | 49.7 |
2CA-EDA-IM1-10 | 19 | −1634.559758 | 62.8 |
2CA-EDA-IM3 + H2O | 12, 1610 | −1634.571953 | 30.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhu, X.; Xu, M. A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors. Molecules 2024, 29, 2920. https://doi.org/10.3390/molecules29122920
Li C, Zhu X, Xu M. A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors. Molecules. 2024; 29(12):2920. https://doi.org/10.3390/molecules29122920
Chicago/Turabian StyleLi, Chunlan, Xu Zhu, and Maotian Xu. 2024. "A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors" Molecules 29, no. 12: 2920. https://doi.org/10.3390/molecules29122920
APA StyleLi, C., Zhu, X., & Xu, M. (2024). A Theoretical Investigation into the Oligomer Structure of Carbon Dots Formed from Small-Molecule Precursors. Molecules, 29(12), 2920. https://doi.org/10.3390/molecules29122920