Supramolecular Interaction of Atenolol and Propranolol with β-Cyclodextrin Spectroscopic Characterization and Analytical Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Spectral Characterizations
2.2. Analysis of Infrared Spectra
2.3. 1H NMR Spectroscopy
2.4. Emission Spectra Characterizations
2.5. Optimization of Parameters Affecting Inclusion Complex Formation
2.5.1. Optimization of the pH of the Inclusion Complexes
2.5.2. Optimization of the Complexation Time
2.5.3. Optimization of β-CD Concentration
2.6. Stoichiometry of Inclusion Complexes
2.7. Validation of the Analytical Methods
2.7.1. Linearity, LODs, and LOQs
2.7.2. Accuracy and Precision of Spectrofluorometric Methods
2.7.3. Robustness of Spectrofluorometric Methods
2.7.4. Analysis of Pharmaceutical Formulations
3. Experimental
3.1. Chemical Reagents
3.2. Instruments and Apparatus
3.3. Preparation of Standard Solutions of Drugs and Cyclodextrin
3.4. Buffer Solutions
3.5. UV–Visible Spectroscopy Measurement
3.6. Fluorescence Measurement
3.7. Determination of Stochiometric Ratio
3.8. Limits of Detection (LODs) and Limits of Quantification (LODs)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.M.; Shamim, S. Structure Elucidation of Benzhexol-β-Cyclodextrin Complex in Aqueous Medium by 1H NMR Spectroscopic and Computational Methods. J. Encapsulation Adsorpt. Sci. 2014, 4, 63–70. [Google Scholar]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- Diez, N.M.; de la Peña, A.M.; García, M.C.M.; Gil, D.B.; Cañada-Cañada, F. Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration. J. Fluoresc. 2007, 17, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, A.A.; Dsugi, N.F.A.; Aboul-Enein, H.Y. Supramolecular Study on the Interaction Between Ofloxacin and Methyl β-Cyclodextrin by Fluorescence Spectroscopy and Its Analytical Application. J. Fluoresc. 2014, 24, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Y.X.; Huang, G.L.; Ren, F.; Zheng, F.L.; Kim, S.J. Room Temperature Phosphorescence from Inclusion Complex of Beta-Cyclodextrin and 1-Bromonaphthalene in the Presence of Phenol and 1-Butanol. Bull. Korean Chem. Soc. 2001, 22, 1397–1399. [Google Scholar]
- Linares, M.; de Bertorello, M.M.; Longhi, M. Solubilization of Naphthoquinones by Complexation with Hydroxypropyl-β-Cyclodextrin. Int. J. Pharm. 1997, 159, 13–18. [Google Scholar] [CrossRef]
- Xie, H.; Wang, H.Y.; Ma, L.Y.; Xiao, Y.; Han, J. Spectrophotometric Study of the Inclusion Complex between β-Cyclodextrin and Dibenzoyl Peroxide and Its Analytical Application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Meng, D.; Li, J.; Xu, H.; Huang, S. Preparation and Study on the Novel Solid Inclusion Complex of Ciprofloxacin with HP-β-Cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 729–734. [Google Scholar] [CrossRef]
- Chao, J.B.; Tong, H.B.; Liu, D.S.; Huang, S.P. Preparation and Characterization of Inclusion Complexes of Pefloxacin Mesylate with Three Kinds of Cyclodextrins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64, 166–170. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Saad, B.; Mohamed Ali, A.S.; Saleh, M.I.; Aboul-Enein, H.Y. Determination of Ofloxacin Enantiomers in Pharmaceutical Formulations by Capillary Electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2007, 31, 348–360. [Google Scholar] [CrossRef]
- Suliman, F.E.O.; Elbashir, A.A. Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: A molecular modeling approach. J. Mol. Struct. 1019, 2012, 43–49. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Dsugi, N.F.A.; Mohmed, T.O.M.; Aboul-Enein, H.Y. Spectrofluorometric Analytical Applications of Cyclodextrins. Luminescence 2014, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, A.A.; Altayib Alasha Abdalla, F.; Aboul-Enein, H.Y. Host-guest inclusion complex of mesalazine and β-cyclodextrin and spectrofluorometric determination of mesalazine. Luminescence 2015, 30, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghannam, S.M. A Simple Spectrophotometric Method for the Determination of Beta-Blockers in Dosage Forms. J. Pharm. Biomed. Anal 2006, 40, 151–156. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, L.R.P.; de Castro, S.A.C.; Pedrazzoli, J. Atenolol Quantification in Human Plasma by High-Performance Liquid Chromatography: Application to Bioequivalence Study. AAPS PharmSci. 2003, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.S.; Ibrahim, M.K.; Al, A.F.D. A Simple and Sensitive Colorimetric Method for the Determination of Propranolol Hydrochloride in Pure and Pharmaceutical Preparation via Oxidative Coupling Organic Reaction. J. Pharm. Sci. 2018, 10, 3025–3030. [Google Scholar]
- Ficarra, R.; Ficarra, P.; Di Bella, M.R.; Raneri, D.; Tommasini, S.; Calabrò, M.L.; Villari, A.; Coppolino, S. Study of the Inclusion Complex of Atenolol with Beta-Cyclodextrins. J. Pharm. Biomed. Anal 2000, 23, 231–236. [Google Scholar] [CrossRef]
- Nikolić, V.; Nikolić, L.; Stanković, M.; Kapor, A.; Popsavin, M.; Cvetković, D. A Molecular Inclusion Complex of Atenolol with 2-Hydroxypropyl-β- Cyclodextrin; the Production and Characterization Thereof. J. Serbian Chem. Soc. 2007, 72, 737–746. [Google Scholar] [CrossRef]
- Arias, R.; Jiménez, R.M.; Alonso, R.M.; Télez, M.; Arrieta, I.; Flores, P.; Ortiz-Lastra, E. Determination of the Beta-Blocker Atenolol in Plasma by Capillary Zone Electrophoresis. J. Chromatogr. A 2001, 916, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Assi, K.A.; Clark, B.J.; Altria, K.D. Enantiomeric Purity Determination of Propranolol by Capillary Electrophoresis Using Dual Cyclodextrins and a Polyacrylamide-Coated Capillary. Electrophoresis 1999, 20, 2723–2725. [Google Scholar] [CrossRef]
- de Castro, R.A.E.; Canotilho, J.; Barbosa, R.M.; Redinha, J.S. Infrared Spectroscopy of Racemic and Enantiomeric Forms of Atenolol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, E.D.H.; Sulaiman, I.D. Spectrophotometric Determination of Propranolol Hydrochloride via Oxidative Coupling Reaction with 2, 4-Dinitrophenyl Hydrazine. Int. J. Drug Deliv. Technol. 2021, 11, 29–35. [Google Scholar]
- Bhavar, G.; Chatpalliwar, V.A. Quantitative Analysis of Propranolol Hydrochloride by High Performance Thin Layer Chromatography. Indian J. Pharm. Sci. 2008, 70, 395–398. [Google Scholar] [PubMed]
- Abdine, H.; Sultan, M.A.; Hefnawy, M.M.; Belal, F. Spectrofluorometric Determination of Some Beta-Blockers in Tablets and Human Plasma Using 9,10-Dimethoxyanthracene-2-Sodium Sulfonate. Pharmazie 2005, 60, 265–268. [Google Scholar] [PubMed]
- Madrakian, T.; Afkhami, A.; Mohammadnejad, M. Simultaneous Spectrofluorimetric Determination of Levodopa and Propranolol in Urine Using Feed-Forward Neural Networks Assisted by Principal Component Analysis. Talanta 2009, 78, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Arslan, S. GC–MS Determination of Atenolol Plasma Concentration after Derivatization with N-Methyl-N-(Trimethylsilyl)Trifluoroacetamide. Chromatographia 2009, 70, 1399–1404. [Google Scholar] [CrossRef]
- Di Salle, E.; Baker, K.M.; Bareggi, S.R.; Watkins, W.D.; Chidsey, C.A.; Frigerio, A.; Morselli, P.L. A Sensitive Gas Chromatographic Method for the Determination of Propranolol in Human Plasma. J. Chromatogr. 1973, 84, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Hernawan, H.; Nurhayati, S.; Nisa, K.; Indrianingsih, A.W.; Darsih, C.; Kismurtono, M. formulation and in vitro study of propranolol hydrochloride controlled release from carboxymethyl chitosan-based matrix tablets. Indones. J. Chem. 2013, 13, 242–247. [Google Scholar] [CrossRef]
- Sompornpisut, P.; Deechalao, N.; Vongsvivut, J. An Inclusion Complex of β-Cyclodextrin-L-Phenylalanine: 1H NMR and Molecular Docking Studies. ScienceAsia 2002, 28, 263. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Ali, S.M. Solution Structure of Loperamide and β-Cyclodextrin Inclusion Complexes Using NMR Spectroscopy. J. Chem. Sci. 2009, 121, 521–527. [Google Scholar] [CrossRef]
- Raoufi, A.; Ebrahimi, M.; Bozorgmehr, M.R. Application of Response Surface Modeling and Chemometrics Methods for the Determination of Atenolol, Metoprolol and Propranolol in Blood Sample Using Dispersive Liquid-Liquid Microextraction Combined with HPLC-DAD. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1132, 121823. [Google Scholar] [CrossRef] [PubMed]
- Nevado, J.J.; Pulgarín, J.A.; Laguna, M.A. Spectrofluorimetric Study of the Beta-Cyclodextrin:Vitamin K3 Complex and Determination of Vitamin K3. Talanta 2001, 53, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Borman, P.; Elder, D. Q2(R1) Validation of Analytical Procedures: Text and Methodology. In ICH Quality Guidelines; Teasdale, A., Elder, D., Nims, R.W., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 127–166. [Google Scholar]
Proton ATE | ATE Free (ppm) δ | ATE Complexed (ppm) δ | ∆ δ (ATE Complexed-ATE Free) (ppm) |
---|---|---|---|
2H-2′H | 7.144 | 7.0870 | −0.057 |
3H-3′H | 6.892 | 6.820 | −0.072 |
6H-6′H | 4.00 | 4.867 | 0.867 |
5H | 3.905 | 3.631 | −0.27 |
1H-1′H | 3.439 | 4.821 | 1.3 |
4H-4′H | 2.739 | 2.740 | 0.001 |
7H | 2.597 | 2.592 | −0.005 |
8H-8′H | 0.944 | 0.945 | 0.001 |
∆ δ (PRO Complexed—PRO Free) (ppm) | PRO Complexed (ppm) δ | PRO Free (ppm) δ | Proton PRO |
14-H | 8.219 | 8.099 | 0.12 |
7-H | 7.662 | 7.776 | −0.114 |
4-H | 7.643 | 7.769 | −0.126 |
3-H,5-H,6-H | 7.467 | 7.471 | −0.004 |
2-H | 7.327 | 7.430 | −0.103 |
1-H | 6.001 | 6.819 | −0.818 |
9-H | 4.911 | 4.694 | 0.217 |
8-H | 4.258 | 4.111 | 0.147 |
8′-H | 4.260 | 4.131 | 0.129 |
12-H | 3.916 | 3.525 | 0.391 |
10′-H | 3.287 | 3.206 | 0.081 |
10-H | 3.186 | 3.106 | 0.08 |
11-H,13-H | 1.194 | 1.268 | −0.074 |
Parameter | Value (ATE) | Value (PRO) |
---|---|---|
Linear range | 0.3–1.7 μM | 0.1–1.1 μM |
Slope | 31,015 | 152,649 |
Intercept | 431.73 | 15,307 |
LOD (μM) | 0.13 | 0.01 |
LOQ (μM) | 0.40 | 0.3 |
Correlation coefficient (r) | 0.99 | 0.99 |
Optimum pH | pH = 3.0 | pH = 6 |
Optimum β-CD concentration | 400 μM | 200 μM |
Optimum complexation time | 10 min | 20 min |
Sample Content (μM) | Standard Added (μM) | Amount Found (μM) | Recovery% ± RSD * |
---|---|---|---|
ATE | |||
0.5 | 0.1 | 0.61 | 101% ± 1.8 |
0.5 | 0.4 | 0.85 | 94.4% ± 1.0 |
0.5 | 0.6 | 1.12 | 101% ± 0.2 |
PRO | |||
0.2 | 0.1 | 0.38 | 126% |
0.2 | 0.4 | 0.7 | 116% |
0.2 | 0.9 | 1.17 | 106% |
Parameter Standard Condition | Recovery ± SD * 101% ± 0.1 |
---|---|
ATE | |
pH | |
3.2 | 111% ± 0.3 |
2.8 | 122% ± 0.2 |
β-CD concentration (μM) | |
420 | 107% ± 0.3 |
380 | 111% ± 0.2 |
Reaction time (min) | |
10 | 122% ± 0.2 |
15 | 122% ± 0.19 |
Parameter Standard Condition | Recovery SD * 116% 0.5 |
PRO | |
pH | |
6.2 | 93.3% ± 3.7 |
5.8 | 91.6% ± 0.2 |
β-CD concentration (μM) | |
220 | 98.3% ± 1.8 |
180 | 105% ± 1.2 |
Reaction time (min) | |
20 | 86.6% ± 2.1 |
25 | 91.6% ± 2.0 |
Concentration Taken (μM) | Concentration Found (μM) | Recovery% ± RSD * |
---|---|---|
ATE | ||
1 | 1.03 | 103% ± 0.5 |
PRO | ||
0.5 | 0.5 | 100% ± 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alramadhan, H.; Elbashir, A.A.; Alnajjar, A.O. Supramolecular Interaction of Atenolol and Propranolol with β-Cyclodextrin Spectroscopic Characterization and Analytical Application. Molecules 2024, 29, 2875. https://doi.org/10.3390/molecules29122875
Alramadhan H, Elbashir AA, Alnajjar AO. Supramolecular Interaction of Atenolol and Propranolol with β-Cyclodextrin Spectroscopic Characterization and Analytical Application. Molecules. 2024; 29(12):2875. https://doi.org/10.3390/molecules29122875
Chicago/Turabian StyleAlramadhan, Hebah, Abdalla Ahmed Elbashir, and Ahmed O. Alnajjar. 2024. "Supramolecular Interaction of Atenolol and Propranolol with β-Cyclodextrin Spectroscopic Characterization and Analytical Application" Molecules 29, no. 12: 2875. https://doi.org/10.3390/molecules29122875
APA StyleAlramadhan, H., Elbashir, A. A., & Alnajjar, A. O. (2024). Supramolecular Interaction of Atenolol and Propranolol with β-Cyclodextrin Spectroscopic Characterization and Analytical Application. Molecules, 29(12), 2875. https://doi.org/10.3390/molecules29122875