Antimicrobial Activity of Drimanic Sesquiterpene Compounds from Drimys winteri against Multiresistant Microorganisms
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Antibacterial Activity
2.3. Evaluation of Antifungal Activity
2.3.1. Effect of Compounds 1–10 on Growth of Yeast
2.3.2. Effect of Compounds 1–10 on the Growth of Filamentous Fungi
2.4. Anti-Oomycete Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Extraction and Isolation
4.3. Isolation of Natural Compounds and Preparation of Derivatives
4.4. Antibacterial Activity
4.4.1. Microbial Culture
4.4.2. Determination of the Minimum Inhibitory Concentration (MIC)
4.4.3. Determination of the Minimum Bactericidal Concentration (MBC)
4.5. Antifungal Evaluation
4.5.1. Microorganisms and Media
4.5.2. Antifungal Susceptibility Testing Minimum Inhibitory Concentration (MIC)
4.5.3. Determination of MIC and MOC
4.5.4. Membrane Damage
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zapata, N.; Budia, F.; Viñuela, E.; Medina, P. Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae). Ind. Crops Prod. 2009, 30, 119–125. [Google Scholar] [CrossRef]
- Monsálvez, M.; Zapata, N.; Vargas, M.; Berti, M.; Bittner, M.; Hernández, V. Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark against Take-All disease. Ind. Crops Prod. 2010, 31, 239–244. [Google Scholar] [CrossRef]
- Montenegro, I.J. Estudio Comparativo de Actividades Biológicas Para Metabolitos Secundarios y Derivados Sintéticos Desde Drimys winteri Forst. Ph.D. Thesis, Universidad Técnica Federico Santa María, Valparaíso, Chile, 24 January 2013. [Google Scholar]
- Huang, Y.; Hoefgen, S.; Valiante, V. Biosynthesis of Fungal Drimane-Type Sesquiterpene Esters. Angew. Chem. Int. Ed. 2021, 60, 23763–23770. [Google Scholar] [CrossRef] [PubMed]
- Rihak, K.J.; Bissember, A.C.; Smith, J.A. Polygodial: A viable natural product scaffold for the rapid synthesis of novel polycyclic pyrrole and pyrrolidine derivatives. Tetrahedron 2018, 74, 1167–1174. [Google Scholar] [CrossRef]
- Ghosh, C.; Bhowmik, J.; Ghosh, R.; Das, M.C.; Sandhu, P.; Kumari, M.; Bhattacharjee, S. The anti-biofilm potential of triterpenoids isolated from Sarcochlamys pulcherrima (Roxb.) Gaud. Microb. Pathog. 2020, 139, 103901. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.; Claudino, V.D.; Yunes, R.A.; Cechinel-Filho, V.; Malheiros, A.; Cordova, C.M.; Cruz, A.B. Antibacterial activity and toxicity of Drimys brasiliensis. Lat. Am. J. Pharm. 2012, 31, 935–940. [Google Scholar]
- Liu, X.H.; Miao, F.P.; Qiao, M.F.; Cichewicz, R.H.; Ji, N.Y. Terretonin, ophiobolin, and drimane terpenes with absolute configurations from an algicolous Aspergillus ustus. RSC Adv. 2013, 3, 588–595. [Google Scholar] [CrossRef]
- Moodie, L.W.; Trepos, R.; Cervin, G.; Larsen, L.; Larsen, D.S.; Pavia, H.; Hellio, C.; Cahill, P.; Svenson, J. Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification. J. Nat. Prod. 2017, 80, 515–525. [Google Scholar] [CrossRef]
- Montenegro, I.; Tomasoni, G.; Bosio, C.; Quiñones, N.; Madrid, A.; Carrasco, H.; Olea, A.; Martinez, R.; Cuellar, M.; Villena, J. Study on the Cytotoxic Activity of Drimane Sesquiterpenes and Nordrimane Compounds against Cancer Cell Lines. Molecules 2014, 19, 18993–19006. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Cardile, V.; Graziano, A.C.E.; Avola, R.; Montenegro, I.; Cuellar, M.; Villena, J.; Madrid, A. Antigrowth activity and induction of apoptosis in human melanoma cells by Drymis winteri forst extract and its active components. Chem. Biol. Interact. 2019, 305, 79–85. [Google Scholar] [CrossRef]
- Montenegro, I.J.; Del Corral, S.; Diaz-Napal, G.N.; Carpinella, M.C.; Mellado, M.; Madrid, A.M.; Villena, J.; Palacios, S.M.; Cuellar, M.A. Antifeedant effect of polygodial and drimenol derivatives against Spodoptera frugiperda and Epilachna paenulata and quantitative structure-activity analysis. Pest Manag. Sci. 2018, 74, 1623–1629. [Google Scholar] [CrossRef]
- Derita, M.; Montenegro, I.; Garibotto, F.; Enriz, R.D.; Fritis, M.C.; Zacchino, S.A. Structural Requirements for the Antifungal Activities of Natural Drimane Sesquiterpenes and Analogues, Supported by Conformational and Electronic Studies. Molecules 2013, 18, 2029–2051. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Samy, A.L.P.A.; Narvekar, P.; Dontaraju, V.S.; Dasari, R.; Kornienko, A.; Munirathinam, G. Polygodial analog induces apoptosis in LNCaP prostate cancer cells. Eur. J. Pharmacol. 2018, 828, 154–162. [Google Scholar] [CrossRef]
- Anke, H.; Sterner, O. Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated sesquiterpene dialdehydes from plants and mushrooms. Planta Medica 1991, 57, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Fujita, K.I.; Lee, S.H.; Ha, T.J. Antibacterial activity of polygodial. Phytother. Res. 2005, 19, 1013–1017. [Google Scholar] [CrossRef]
- Vu, T.T.; Choi, G.J.; Kim, J.C. Plant-derived Antibacterial Metabolites Suppressing Tomato Bacterial Wilt Caused by Ralstonia solanacearum. Res. Plant Dis. 2017, 23, 89–98. [Google Scholar] [CrossRef]
- Montenegro, I.; Madrid, A.; Cuellar, M.; Seeger, M.; Alfaro, J.F.; Besoain, X.; Martínez, J.P.; Ramirez, I.; Olguín, Y.; Valenzuela, M. Biopesticide Activity from Drimanic Compounds to Control Tomato Pathogens. Molecules 2018, 23, 2053. [Google Scholar] [CrossRef]
- Carrasco, H.; Robles-Kelly, C.; Rubio, J.; Olea, A.F.; Martínez, R.; Silva-Moreno, E. Antifungal Effect of Polygodial on Botrytis cinerea, a Fungal Pathogen Affecting Table Grapes. Int. J. Mol. Sci. 2017, 18, 2251. [Google Scholar] [CrossRef]
- Andes, D.R.; Safdar, N.; Baddley, J.W.; Alexander, B.; Brumble, L.; Freifeld, A.; Hadley, S.; Herwaldt, L.; Kauffman, C.; Lyon, G.M.; et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl. Infect. Dis. 2016, 18, 921–931. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing for Yeasts. Approved Standard M27-A2, 2nd ed.; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002. [Google Scholar]
- CLSI. Clinical and Laboratory Standards Institute Document M27-A3, 3rd ed.; NCCLS: Pennsylvania, PA, USA, 2008; Volume 28, pp. 1–25. [Google Scholar]
- Ounoughi, A.; Ramdani, M.; Lograda, T.; Chalard, P. Chemotypes and antibacterial activities of Inula viscosa essential oils from Algeria. Biodiversitas 2020, 21, 1504–1517. [Google Scholar] [CrossRef]
- Fratoni, E.; de Athayde, A.E.; da Silva Machado, M.; Zermiani, T.; Venturi, I.; Corrêa Dos Santos, M.; Lobato, F.; Cechinel Filho, V.; Franchi, G.C., Jr.; Nowill, A.E.; et al. Antiproliferative and toxicological properties of drimanes obtained from Drimys brasiliensis stem barks. Biomed. Pharmacother. 2018, 103, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Kipanga, P.N.; Demuyser, L.; Vrijdag, J.; Eskes, E.; D’hooge, P.; Matasyoh, J.; Callewaert, G.; Winderickx, J.; Van Dijck, P.; Luyten, W. Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in Saccharomyces cerevisiae. Int. J. Mol. Sci. 2021, 22, 5756. [Google Scholar] [CrossRef] [PubMed]
- D’Ischia, M.; Prota, G.; Sodano, G. Reaction of polygodial with primary amines: An alternative explanation to the antifeedant activity1. Tetrahedron. Lett. 1982, 23, 3295–3298. [Google Scholar] [CrossRef]
- Thapa, D.; Louis, P.; Losa, R.; Zweifel, B.; Wallace, R.J. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology 2015, 161, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour. Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Duraipandiyan, V.; Indwar, F.; Ignacimuthu, S. Antimicrobial activity of confertifolin from Polygonum hydropiper. Pharm. Biol. 2010, 48, 187–190. [Google Scholar] [CrossRef]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef]
- Robles-Kelly, C.; Rubio, J.; Thomas, M.; Sedán, C.; Martínez, R.; Olea, A.F.; Carrasco, H.; Taborga, L.; Silva-Moreno, E. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action. Pestic. Biochem. Physiol. 2017, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Cotoras, M.; Folch, C.; Mendoza, L. Characterization of the Antifungal Activity on Botrytis cinerea of the Natural Diterpenoids Kaurenoic Acid and 3β-Hydroxy-kaurenoic Acid. J. Agric. Food Chem. 2004, 52, 2821–2826. [Google Scholar] [CrossRef] [PubMed]
- Grayer, R.J.; Harborne, J.B. A survey of antifungal compounds from higher plants, 1982–1993. Phytochem 1994, 37, 19–42. [Google Scholar] [CrossRef]
- Cameron, J.N.; Carlile, M.J. Fatty acids, aldehydes and alcohols as attractants for zoospores of Phytophthora palmivora. Nature 1978, 271, 448–449. [Google Scholar] [CrossRef]
- Werner, E.; Montenegro, I.; Said, B.; Godoy, P.; Besoain, X.; Caro, N.; Madrid, A. Synthesis and Anti-Saprolegnia Activity of New 2′,4′-Dihydroxydihydrochalcone Derivatives. Antibiotics 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, F.R.; Wikler, M.; Bush, K.; Dudley, M.; Eliopoulos, G.; Hardy, D.; Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing for Yeasts (M27 A3), 3rd ed.; CLSI: Wayne, PA, USA, 2008; Volume 28, No. 14; pp. 1–25. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing for and for Filamentous Fungi (M38 A2), 2nd ed.; CLSI: Wayne, PA, USA, 2008; Volume 28, No. 16; pp. 1–35. [Google Scholar]
- Montenegro, I.; Madrid, A. Synthesis of dihydroisorcordoin derivatives and their in vitro anti-oomycete activities. Nat. Prod. Res. 2019, 33, 1214–1217. [Google Scholar] [CrossRef]
- Montenegro, I.; Muñoz, O.; Villena, J.; Werner, E.; Mellado, M.; Ramírez, I.; Caro, N.; Flores, S.; Madrid, A. Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules 2018, 23, 1377. [Google Scholar] [CrossRef]
Compound | K. pneumonia | E. avium | E. coli | P. aeruginosa | S. tiphy | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
1 | 16 | 32 | 8 | 16 | 2 | 4 | 16 | 32 | 4 | 8 |
2 | 64 | 128 | 16 | 32 | 16 | 32 | 32 | 64 | 4 | 16 |
3 | 256 | >256 | 256 | 256 | 256 | 256 | >256 | >256 | 128 | 256 |
4 | 16 | 32 | 64 | 64 | 32 | 32 | 64 | 128 | 64 | 64 |
5 | 32 | 64 | 64 | 64 | 64 | 64 | 128 | 128 | 128 | 256 |
6 | 16 | 32 | 64 | 64 | 128 | 256 | 256 | 256 | 128 | 128 |
7 | 32 | 64 | 128 | 128 | 32 | 64 | 64 | 128 | 128 | 256 |
8 | 64 | 128 | 64 | 128 | 64 | 128 | 128 | >256 | 128 | >256 |
9 | 256 | >256 | 256 | 256 | >256 | >256 | >256 | >256 | >256 | >256 |
10 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 |
Doripenem | 128 | 256 | 128 | 256 | 256 | 256 | >256 | >256 | >256 | >256 |
Ciprofloxacin | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 |
Compound | C. albicans | C. lusitaneae | C. tropicalis | C. krusei | C. glabrata | C. parasilopsis | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
1 | 8 | 16 | 8 | 8 | 32 | 32 | 16 | 16 | 64 | 64 | 8 | 32 |
2 | 64 | 128 | 64 | 64 | 64 | 64 | 128 | 128 | 128 | 128 | 32 | 64 |
3 | 128 | 128 | 128 | 128 | 64 | 64 | 64 | 64 | 256 | 256 | 64 | 128 |
4 | 32 | 64 | 16 | 32 | 64 | 128 | 32 | 64 | 128 | 256 | 32 | 32 |
5 | 64 | 64 | 256 | 256 | 256 | 256 | 64 | 64 | 32 | 32 | 64 | 128 |
6 | 128 | 256 | 128 | 128 | 128 | 256 | 128 | >256 | 128 | >256 | 128 | >256 |
7 | 64 | 128 | 32 | 64 | 128 | 64 | 128 | 64 | 128 | 256 | 128 | 256 |
8 | 64 | 128 | 64 | 128 | 64 | 128 | 32 | 64 | 32 | 64 | 16 | 32 |
9 | 128 | >256 | 128 | >256 | >256 | >256 | >256 | >256 | 128 | >256 | >256 | >256 |
10 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 | >256 |
Terbinafine | 0.125 | 0.125 | 0.250 | 0.250 | 1 | 1 | 1 | 1 | 4 | 8 | 4 | 8 |
Fluconazole | 1 | 1 | 0.250 | 0.250 | 0.5 | 0.5 | 0.5 | 0.5 | 2 | 0.5 | 2 | 4 |
Compound | A. flavus | A. niger | A. terreus | A. fumigatus | F. solani | F. oxisporum | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
1 | 8 | 16 | 8 | 8 | 32 | 32 | 16 | 16 | 64 | 64 | 8 | 32 |
2 | 64 | 128 | 64 | 64 | 64 | 64 | 128 | 128 | 128 | 128 | 32 | 64 |
3 | 128 | 128 | 128 | 128 | 64 | 64 | 64 | 64 | 256 | 256 | 64 | 128 |
4 | 32 | 64 | 16 | 32 | 32 | 64 | 16 | 256 | 256 | 256 | 32 | 32 |
5 | 64 | 64 | 256 | 256 | 256 | 256 | 64 | 64 | 32 | 32 | 64 | 128 |
6 | 128 | 256 | 128 | 64 | 128 | 256 | 128 | >256 | 128 | >256 | 128 | >256 |
7 | 64 | 128 | 128 | 128 | 64 | 128 | 64 | 128 | 32 | 64 | 32 | 64 |
8 | 64 | 256 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 256 |
9 | 128 | 256 | 128 | >256 | 128 | >256 | 128 | >256 | 128 | >256 | 128 | >256 |
10 | 128 | 128 | 128 | 256 | 128 | 256 | 128 | 256 | 128 | 128 | 128 | 256 |
AmfoB | 0.125 | 0.125 | 0.250 | 0.250 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 8 |
Itraconazole | 1 | 1 | 0.250 | 0.250 | 0.5 | 0.5 | 0.5 | 0.5 | 2 | 0.5 | 2 | 4 |
Compound | Log P | MIC a Sp | MIC a Pc | MOC a Sp | MOC a Pc | Damage (%) b | |
---|---|---|---|---|---|---|---|
Sp | Pc | ||||||
1 | 2.33 | 12.5 | 12.5 | 12.5 | 12.5 | 100 | 100 |
2 | 2.33 | 12.5 | 25 | 25 | 50 | 100 | 100 |
3 | 3.83 | 200 | >200 | 200 | >200 | 0 | 0 |
4 | 3.53 | 75 | 100 | 75 | 100 | 75 | 65 |
5 | 3.84 | 125 | 150 | 125 | 150 | 25 | 20 |
6 | 3.35 | >200 | >200 | >200 | >200 | 0 | 0 |
7 | 3.37 | 100 | 125 | 150 | 150 | 20 | 15 |
8 | 4.65 | 50 | 50 | 50 | 50 | 75 | 50 |
9 | 2.77 | 75 | 100 | 75 | 100 | 25 | 30 |
10 | 2.77 | 150 | 175 | 150 | 175 | 20 | 20 |
Bronopol | >200 | >200 | >200 | >200 | 30 | 30 | |
Fluconazole | 150 | 175 | 150 | 175 | Nd | Nd | |
SDS | Nd | Nd | Nd | Nd | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenegro, I.; Pazmiño, R.; Araque, I.; Madrid, A.; Besoain, X.; Werner, E.; Espinoza-Catalán, L.; Olea, A.F.; Parra, C.; Navarrete Molina, V.; et al. Antimicrobial Activity of Drimanic Sesquiterpene Compounds from Drimys winteri against Multiresistant Microorganisms. Molecules 2024, 29, 2844. https://doi.org/10.3390/molecules29122844
Montenegro I, Pazmiño R, Araque I, Madrid A, Besoain X, Werner E, Espinoza-Catalán L, Olea AF, Parra C, Navarrete Molina V, et al. Antimicrobial Activity of Drimanic Sesquiterpene Compounds from Drimys winteri against Multiresistant Microorganisms. Molecules. 2024; 29(12):2844. https://doi.org/10.3390/molecules29122844
Chicago/Turabian StyleMontenegro, Iván, Rolando Pazmiño, Ileana Araque, Alejandro Madrid, Ximena Besoain, Enrique Werner, Luis Espinoza-Catalán, Andrés F. Olea, Claudio Parra, Valentina Navarrete Molina, and et al. 2024. "Antimicrobial Activity of Drimanic Sesquiterpene Compounds from Drimys winteri against Multiresistant Microorganisms" Molecules 29, no. 12: 2844. https://doi.org/10.3390/molecules29122844
APA StyleMontenegro, I., Pazmiño, R., Araque, I., Madrid, A., Besoain, X., Werner, E., Espinoza-Catalán, L., Olea, A. F., Parra, C., Navarrete Molina, V., Godoy, P., Olguín, Y., & Cuellar, M. A. (2024). Antimicrobial Activity of Drimanic Sesquiterpene Compounds from Drimys winteri against Multiresistant Microorganisms. Molecules, 29(12), 2844. https://doi.org/10.3390/molecules29122844