Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties
Abstract
:1. Introduction
2. Methodology
3. Nutritional Properties
4. Secondary Metabolites
Species | Part of Plant | Extracts/Fractions | Compounds | References |
---|---|---|---|---|
D. assurgens | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 67, 68, 70, 75, 76, 82, 84, 85) | [25] |
D. berthautii | Leaves | Methanol (70% + 10%) | Glucosinolates (62, 64, 75, 84, 86) | [25] |
D. brachycarpa | Leaves | Methanol (70% + 10%) | Glucosinolates (75, 76, 77, 85) | [25] |
D. brevisiliqua | Leaves | Methanol (70% + 10%) | Glucosinolates (86) | [25] |
D. catholica | Leaves | Methanol (70% + 10%) | Glucosinolates (62, 68, 75, 76, 77, 82, 85) | [25] |
Seeds | Methanol (100% + 70%) | Glucosinolates (76) | [37] | |
D. cretacea | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 67, 70, 79, 82, 83) | [25] |
D. erucoides | Aerial part (per-flowering) | Ethanol (100%) | Oxylipins (59, 60) Glucosinolates (68, 76, 77, 86) | [26] |
Aerial part (non-flowering) | Ethanol (80%)/n-butanol | Flavonols (27) | [19] | |
Flowers | Methanol (70%) | Glucosinolates (70, 79, 81) | [31] | |
Leaves | Methanol (70%) | Glucosinolates (62, 70, 79, 81) | [31] | |
Methanol (70% + 10%) | Glucosinolates (61, 62, 67, 68, 70, 75, 76, 80, 84, 86) | [25] | ||
Roots | Methanol (70%) | Glucosinolates (62, 70, 79, 82) | [31] | |
Seeds | Methanol (100% + 70%) | Glucosinolates (73, 82) | [37] | |
Methanol (70%) | Glucosinolates (70, 79) | [31] | ||
D. harra | Flowers | Methanol (100%) | Hydroxycinnamic acids (41, 45, 48), Flavanols (50) | [29] |
Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 66, 67, 68, 75, 76, 79, 82, 84, 86, 88) | [25] | |
Seeds | Methanol (100% + 70%) | Glucosinolates (82) | [37] | |
D. ibicensis | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 68, 75, 84, 86, 88) | [25] |
D. ilorcitana | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 68, 75, 84, 86) | [25] |
D. muralis | Flowers | Ethanol (80%)/ethyl acetate | Flavonols (7, 25) | [36] |
Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 66, 67, 70, 75, 77, 78, 79, 83, 84) | [25] | |
D. ollivieri | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 68, 70, 75, 82, 84, 85, 86) | [25] |
D. siettiana | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 68, 75, 84, 86) | [25] |
D. simplex | Flowers | Methanol (100%) | Hydroxycinnamic acids (41, 43, 48) Flavanols (50) Hydroxybenzoic acids (54) | [29] |
Ethanol (100%) | Flavonols (1, 5, 6, 19, 21, 23, 26, 27, 28, 30, 33) Triterpenes (55, 56) Alkaloids (57, 58) | [27] | ||
Ethyl acetate:ethanol (1:1) | Flavonols (1, 3, 4, 34, 36, 37, 38, 39) Hydroxycinnamic acids (42, 43, 44, 46, 47) Flavanone (51) Hydroxybenzoic acids (52, 53) | [28] | ||
Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 64, 66, 67, 68, 70, 77, 79, 83, 84) | [25] | |
Leaves | Ethanol (100%) | Flavonols (3, 4, 34, 35, 36, 37, 38, 39) Hydroxycinnamic acids (43, 44, 49) Flavanols (50) Flavanones (51) Hydroxybenzoic acids (52, 53) | [12] | |
D. siifolia | Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 64, 66, 68, 75, 76, 78, 82, 84, 85, 88) | [25] |
Seeds | Methanol (100% + 70%) | Glucosinolates (76, 82, 86) | [37] | |
D. tenuifolia | Flowers | Methanol (70%) | Glucosinolates (70, 79, 81) | [31] |
Leaves | Methanol (50%) | Flavonols (8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 32) | [23,34,35,38] | |
Methanol (70%) | Flavonols (2, 8, 9, 13, 20, 29, 24, 31, 32, 40) Glucosinolates (61, 62, 63, 65, 66, 70, 72, 75, 73, 79, 80, 81, 83) | [31,33] | ||
Methanol (70% + 10%) | Glucosinolates (61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 89) | [23,25,35] | ||
Roots | Methanol (70%) | Glucosinolates (62, 70, 79, 82) | [31] | |
Seeds | Methanol (70%) Methanol (100% + 70%) | Glucosinolates (70, 79) | [31,37] | |
D. tenusiliqua | Leaves | Methanol (70% + 10%) | Glucosinolates (75, 86, 88) | [25] |
D. viminea | Leaves | Methanol (70% + 10%) | Glucosinolates (67, 75, 84, 88) | [25] |
Seeds | Methanol (100% + 70%) | Glucosinolates (69, 78, 86) | [37] | |
D. virgata | Flowers | Ethanol (80%)/n-butanol | Flavonols (22) | [19] |
Leaves | Methanol (70% + 10%) | Glucosinolates (61, 62, 67, 68, 70, 75, 76, 77, 82, 84, 85, 86, 88) | [25] |
5. Biological Properties
5.1. Antioxidant Activity
5.2. Anti-Inflammatory Activity
5.3. Antibacterial Activity
5.4. Hypoglycemic and Hypolipidemic Activity
5.5. Cytotoxicity and Antiproliferative Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, S.; Das, M. Functional Foods: An Overview. Food Sci. Biotechnol. 2011, 20, 861–875. [Google Scholar] [CrossRef]
- Martirosyan, D.; Miller, E. Bioactive Compounds: The Key to Functional Foods. Bioact. Compd. Health Dis. 2018, 1, 36–39, ISSN 2574-0334 (Online), ISSN 2769-2426 (Print). [Google Scholar] [CrossRef]
- Mondal, S.; Soumya, N.P.P.; Mini, S.; Sivan, S.K. Bioactive Compounds in Functional Food and Their Role as Therapeutics. Bioact. Compd. Health Dis. 2021, 4, 24–39, ISSN 2574-0334 (Online), ISSN 2769-2426 (Print). [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Coelho, M.S.; de las Mercedes Salas-Mellado, M. Chapter 7—Bioactive Compounds as Ingredients of Functional Foods: Polyphenols, Carotenoids, Peptides From Animal and Plant Sources New. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 129–142. ISBN 978-0-12-814774-0. [Google Scholar]
- Tripodi, P.; Francese, G.; Mennella, G. Rocket Salad: Crop Description, Bioactive Compounds and Breeding Perspectives. Adv. Hortic. Sci. 2017, 31, 107–113. [Google Scholar] [CrossRef]
- Pignone, D.; Martínez-Laborde, J.B. Diplotaxis. In Wild Crop Relatives: Genomic and Breeding Resources: Oilseeds; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 137–147. ISBN 978-3-642-14871-2. [Google Scholar]
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop Systems, Quality and Protection of Diplotaxis Tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef]
- Sanchez-Yelamo, M.D.; Martinez-Laborde, J.B. Chemotaxonomic Approach to Diplotaxis Muralis (Cruciferae: Brassiceae) and Related Species. Biochem. Syst. Ecol. 1991, 19, 477–482. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes as Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Front. Plant Sci. 2017, 8, 246365. [Google Scholar] [CrossRef]
- Bell, L.; Wagstaff, C. Rocket Science: A Review of Phytochemical & Health-Related Research in Eruca & Diplotaxis Species. Food Chem. X 2018, 1, 100002. [Google Scholar] [CrossRef]
- Jdir, H.; Jridi, M.; Mabrouk, M.; Ayadi, M.A.; Nasri, M.; Zouari, N.; Fakhfakh, N. The Rocket, Diplotaxis Simplex, as a Functional Ingredient: LC-ESI-MS Analysis and Its Effect on Antioxidant and Physical Properties of Bread. J. Food Nutr. Res. 2017, 5, 197–204. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Cerretani, L.; Caboni, M.F.; D’Antuono, L.F. Rocket Salad (Diplotaxis and Eruca Spp.) Sensory Analysis and Relation with Glucosinolate and Phenolic Content. J. Sci. Food Agric. 2011, 91, 2858–2864. [Google Scholar] [CrossRef] [PubMed]
- Fukalova, T.; García Martínez, M.D.; Raigón, M.D. Five Undervalued Edible Species Inherent to Autumn-Winter Season: Nutritional Composition, Bioactive Constituents and Volatiles Profile. PeerJ 2021, 9, e12488. [Google Scholar] [CrossRef]
- Jdir, H.; Khemakham, B.; Chakroun, M.; Zouari, S.; Ali, Y.B.; Zouari, N. Diplotaxis Simplex Suppresses Postprandial Hyperglycemia in Mice by Inhibiting Key-Enzymes Linked to Type 2 Diabetes. Rev. Bras. Farm. 2015, 25, 152–157. [Google Scholar] [CrossRef]
- Pimpini, F.; Giannini, M.; Lazzarin, R. Ortaggi Da Foglia e Da Taglio; Veneto Agricoltura: Venezia, Italy, 2005. [Google Scholar]
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council; Official Journal of the European Union: Brussels, Belgium, 2011; Volume L304, pp. 18–63. [Google Scholar]
- Gisbert, C.; Clemente, R.; Navarro-Aviñó, J.; Baixauli, C.; Ginér, A.; Serrano, R.; Walker, D.J.; Bernal, M.P. Tolerance and Accumulation of Heavy Metals by Brassicaceae Species Grown in Contaminated Soils from Mediterranean Regions of Spain. Environ. Exp. Bot. 2006, 56, 19–27. [Google Scholar] [CrossRef]
- Salah, N.B.; Casabianca, H.; Jannet, H.B.; Chenavas, S.; Sanglar, C.; Fildier, A.; Bouzouita, N. Phytochemical and Biological Investigation of Two Diplotaxis Species Growing in Tunisia: D. virgata & D. erucoides. Molecules 2015, 20, 18128–18143. [Google Scholar] [CrossRef]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Garg, G.; Sharma, V. Eruca sativa (L.): Botanical Description, Crop Improvement, and Medicinal Properties. J. Herbs Spices Med. Plants 2014, 20, 171–182. [Google Scholar] [CrossRef]
- Hetta, M.H.; Owis, A.I.; Haddad, P.S.; Eid, H.M. The Fatty Acid-Rich Fraction of Eruca Sativa (Rocket Salad) Leaf Extract Exerts Antidiabetic Effects in Cultured Skeletal Muscle, Adipocytes and Liver Cells. Pharm. Biol. 2017, 55, 810–818. [Google Scholar] [CrossRef]
- Bell, L.; Wagstaff, C. Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). J. Agric. Food Chem. 2014, 62, 4481–4492. [Google Scholar] [CrossRef]
- Abdel-Massih, R.M.; Debs, E.; Othman, L.; Attieh, J.; Cabrerizo, F.M. Glucosinolates, a Natural Chemical Arsenal: More to Tell than the Myrosinase Story. Front. Microbiol. 2023, 14, 1130208. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Elementi, S.; Neri, R. Glucosinolates in Diplotaxis and Eruca Leaves: Diversity, Taxonomic Relations and Applied Aspects. Phytochemistry 2008, 69, 187–199. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Napolitano, A.; Bruno, M.; Geraci, A.; Schicchi, R.; Leporini, M.; Tundis, R.; Piacente, S. LC-ESI/HRMS Analysis of Glucosinolates, Oxylipins and Phenols in Italian Rocket Salad (Diplotaxis erucoides Subsp. erucoides (L.) DC.) and Evaluation of Its Healthy Potential. J. Sci. Food Agric. 2021, 101, 5872–5879. [Google Scholar] [CrossRef] [PubMed]
- Jdir, H.; Kolsi, R.B.A.; Zouari, S.; Hamden, K.; Zouari, N.; Fakhfakh, N. The Cruciferous Diplotaxis Simplex: Phytochemistry Analysis and Its Protective Effect on Liver and Kidney Toxicities, and Lipid Profile Disorders in Alloxan-Induced Diabetic Rats. Lipids Health Dis. 2017, 16, 100. [Google Scholar] [CrossRef] [PubMed]
- Jdir, H.; Elfalleh, W.; Najjaa, H.; Jridi, M.; Abousalham, A.; Zouari, N.; Fakhfakh, N. Phenolic Compounds from the Cruciferous Diplotaxis simplex and Their Inhibitory Effects on Pancreatic Lipase and Cancer Cells. Experiment 2020, 48, 2659–2668. [Google Scholar]
- Falleh, H.; Msilini, N.; Oueslati, S.; Ksouri, R.; Magne, C.; Lachaâl, M.; Karray-Bouraoui, N. Diplotaxis Harra and Diplotaxis Simplex Organs: Assessment of Phenolics and Biological Activities before and after Fractionation. Ind. Crops Prod. 2013, 45, 141–147. [Google Scholar] [CrossRef]
- Sanchez-Yelamo, M.D. A Chemosystematic Survey of Flavonoids in the Brassicinae: Diplotaxis. Bot. J. Linn. Soc. 1994, 115, 9–18. [Google Scholar] [CrossRef]
- Bennett, R.N.; Rosa, E.A.S.; Mellon, F.A.; Kroon, P.A. Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). J. Agric. Food Chem. 2006, 54, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and Quantification of Glucosinolate and Flavonol Compounds in Rocket Salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the Potential for Improving Nutritional Value of Rocket Crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Llorach, R.; Gil, M.I.; Ferreres, F. Identification of New Flavonoid Glycosides and Flavonoid Profiles To Characterize Rocket Leafy Salads (Eruca vesicaria and Diplotaxis tenuifolia). J. Agric. Food Chem. 2007, 55, 1356–1363. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of Glucosinolates and Phenolic Compounds in Rocket Salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. Genetic Resources. Food Chem. 2012, 133, 1025–1033. [Google Scholar] [CrossRef]
- Alaniya, M.D.; Kavtaradze, N.S.; Skhirtladze, A.V.; Sutiashvili, M.G.; Kemertelidze, E.P. Flavonoid Glycosides from Flowers of Sisymbrium Officinale and Diplotaxis Muralis Growing in Georgia. Chem. Nat. Compd. 2012, 48, 315–316. [Google Scholar] [CrossRef]
- Daxenbichler, M.E.; Spencer, G.F.; Carlson, D.G.; Rose, G.B.; Brinker, A.M.; Powell, R.G. Glucosinolate Composition of Seeds from 297 Species of Wild Plants. Phytochemistry 1991, 30, 2623–2638. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A Comparative Study of Flavonoid Compounds, Vitamin C, and Antioxidant Properties of Baby Leaf Brassicaceae Species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef]
- Jdir, H.; Khemakham, B.; Najjaa, H.; Chakroun, M.; Jridi, M.; Ben Arfa, A.; Ben Ali, Y.; Zouari, N. Anti-Inflammatory and Anti-Proliferative Activities of the Wild Edible Cruciferous: Diplotaxis Simplex. Pharm. Biol. 2016, 54, 2111–2118. [Google Scholar] [CrossRef]
- Bahloul, N.; Bellili, S.; Aazza, S.; Chérif, A.; Faleiro, M.L.; Antunes, M.D.; Miguel, M.G.; Mnif, W. Aqueous Extracts from Tunisian Diplotaxis: Phenol Content, Antioxidant and Anti-Acetylcholinesterase Activities, and Impact of Exposure to Simulated Gastrointestinal Fluids. Antioxidants 2016, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Alzuaibr, F.M.; El-Amier, Y.A.; Al-Barati, S.A. Phytochemical Screening, Antioxidant and Allelopathic Activities of Diplotaxis Harra Crude Extracts. Plant Arch. 2020, 20, 621–626. [Google Scholar]
- Ahmed, A.F.; Wen, Z.-H.; Bakheit, A.H.; Basudan, O.A.; Ghabbour, H.A.; Al-Ahmari, A.; Feng, C.-W. A Major Diplotaxis Harra-Derived Bioflavonoid Glycoside as a Protective Agent against Chemically Induced Neurotoxicity and Parkinson’s Models; In Silico Target Prediction; and Biphasic HPTLC-Based Quantification. Plants 2022, 11, 648. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Azzini, E.; Lazzè, M.C.; Raguzzini, A.; Pizzala, R.; Maiani, G. Italian Wild Rocket Diplotaxis tenuifolia (L.) DC.: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects. Agriculture 2013, 3, 285–298. [Google Scholar] [CrossRef]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild Mediterranean Dietary Plants as Inhibitors of Pancreatic Lipase. Phytother. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Vincieri, F.F.; Romani, A. Antiradical Activity and Polyphenol Composition of Local Brassicaceae Edible Varieties. Food Chem. 2006, 99, 464–469. [Google Scholar] [CrossRef]
- Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.-Y. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020, 25, 3682. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive Oxygen Species (ROS) Scavenging Biomaterials for Anti-Inflammatory Diseases: From Mechanism to Therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.-L.; Wong, R.S.-M.; Lam, K.-H.; Hung, L.-K.; Wong, M.-M.; Yung, L.-H.; Ho, Y.-W.; Wong, W.-Y.; Hau, D.K.-P.; Gambari, R.; et al. The Role of Reactive Oxygen Species in the Biological Activity of Antimicrobial Agents: An Updated Mini Review. Chem.-Biol. Interact. 2020, 320, 109023. [Google Scholar] [CrossRef] [PubMed]
- Pokusa, M.; Kráľová Trančíková, A. The Central Role of Biometals Maintains Oxidative Balance in the Context of Metabolic and Neurodegenerative Disorders. Oxidative Med. Cell. Longev. 2017, 2017, e8210734. [Google Scholar] [CrossRef] [PubMed]
- van de Laar, F.A. Alpha-Glucosidase Inhibitors in the Early Treatment of Type 2 Diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D. α-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef] [PubMed]
- Borges, P.H.O.; Pedreiro, S.; Baptista, S.J.; Geraldes, C.F.G.C.; Batista, M.T.; Silva, M.M.C.; Figueirinha, A. Inhibition of α-Glucosidase by Flavonoids of Cymbopogon Citratus (DC) Stapf. J. Ethnopharmacol. 2021, 280, 114470. [Google Scholar] [CrossRef] [PubMed]
- Da Ressurreição, S.; Pedreiro, S.; Batista, M.T.; Figueirinha, A. Effect of Phenolic Compounds from Cymbopogon Citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules 2022, 27, 7338. [Google Scholar] [CrossRef]
- Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of Pancreatic Lipase: State of the Art and Clinical Perspectives. EXCLI J. 2014, 13, 897–921. [Google Scholar]
Species (and Subspecies) | Native Geographical Area |
---|---|
D. acris (Forssk.) Boiss. | Egypt, Near East (to Iraq) |
D. antoniensis Rustan | Cape Verde |
D. assurgens (Delile) Gren. ex Thell. | Morocco |
subsp. tetragona (Maire) Nègre. | Morocco |
D. berthautii Braun-Blanq. & Maire | Morocco |
D. brachycarpa Godron | Northern Algeria |
D. brevisiliqua (Coss.) Mart.-Laborde | Northwest Africa |
D. catholica (L.) DC. | Portugal, Spain, Morocco |
D. cretacea Kotov | Northeast of Ukraine, South of Russia |
D. cyrenaica (E.A. Durand & Barratte) Maire & Weiller | Moldova, Ukraine, Russia |
D. duveyrierana Coss. | Libya |
D. erucoides (L.) DC. | Europe, Northern Africa, Near East (to Iraq) |
subsp. cossoniana (Reut. ex Boiss.) Mart.-Laborde | Algeria |
subsp. longisiliqua (Coss.) Gómez-Campo | Morocco and Algeria |
D. glauca (J.A. Schmidt) O.E. Schulz | Cape Verde |
D. gorgadensis Rustan | Cape Verde |
D. gracilis (Webb) O.E. Schulz | Cape Verde |
D. griffithii (Hook.f. & W. Thomps.) Boiss. | Afghanistan, Pakistan |
D. harra (Forssk.) Boiss. | Spain, Sicilia, Northern Africa, Near East |
subsp. crassifolia (Raf.) Maire | Spain, Northern Africa |
subsp. glauca (J.A. Schmidt) Sobr.-Vesp. | Northern Africa |
subsp. hirta (A. Chev.) Sobr.-Vesp. | Northern Africa |
D. hirta (A. Chev.) Rustan & Borgen | Cape Verde |
D. ibicensis (Pau) Gómez-Campo | East Coast of Spain, Balearic Islands |
D. ilorcitana (Sennen) Aedo, Mart.-Laborde & Munõz Garm. | East Spain |
D. kohlaanensis A.G. Miller & J. Nyberg | Northern Yemen |
D. muralis (L.) DC. | Europe, Northern Africa, Southwest Australia |
subsp. ceratophylla (Batt.) Mart.-Laborde | Northeast Algeria, Northern Tunisia |
D. nepalensis H. Hara | Western Nepal |
D. ollivieri Maire | Southern Morocco |
D. pitardiana Maire | Northwestern Africa |
D. saharensis (Coss.) Mart.-Laborde | Northwestern Africa |
D. schweinfurthii O.E. Schulz | Egypt |
D. siettiana Maire | Spain, Northern Africa |
D. siifolia Kunze | Portugal, Spain, Northern Africa |
subsp. bipinnatifida (Coss.) Mart.-Laborde | Southern Morocco |
subsp. vicentina (Sampaio) Mart.-Laborde | Southwestern Portugal |
D. simplex (Viv.) Spreng. | Northern Africa |
D. sundingii Rustan | Cape Verde |
D. tenuifolia (L.) DC. | Europe, North of Africa, Near East |
D. tenuisiliqua Delile | Morocco and Algeria |
subsp. rupestris (J. Ball) Mart.-Laborde | Morocco |
D. varia Rustan | Cape Verde |
D. villosa Boulos & Jall. | Jordan |
D. viminea (L.) DC. | Europe, Northern Africa, Near East |
D. virgata (Cav.) DC. | Portugal, Spain, Northern Africa |
subsp. brachycarpa (Godr.) Nègre | Northwestern Africa |
subsp. cavanillesiana (Nègre) Maire & Weiller | Portugal, Spain |
subsp. cyrenaica (Durand & Barratte) Nègre | Northern Africa |
D. vogelli (Webb) Cout. | Cape Verde |
D. wirtgenii | Europe |
Composition | D. tenuifolia Leaves | D. erucoides Leaves | D. simplex Leaves | D. simplex Flowers |
---|---|---|---|---|
Moisture (g 100 g−1) | 91.00 | 88.27 | 69.26 | 67.21 |
Ash (g 100 g−1) | 1.30 | 2.18 | 8.28 | 3.65 |
Potassium (mg 100 g−1) | 468.00 | 157.70 | 1161.97 | 1209.95 |
Calcium (mg 100 g−1) | 309.00 | 60.00 | 359.66 | 295.11 |
Magnesium (mg 100 g−1) | - | 114.10 | 98.37 | 167.23 |
Phosphorus (mg 100 g−1) | 41.00 | 47.70 | - | - |
Sodium (mg 100 g−1) | - | 14.80 | 30.74 | 252.48 |
Ion (mg 100 g−1) | 5.20 | 1.20 | 19.71 | 0.52 |
Zinc (mg 100 g−1) | - | 0,50 | - | - |
Copper (mg 100 g−1) | - | 0.10 | 0.15 | 0.16 |
Protein (g 100 g−1) | 2.60 | 2.25 | 7.03 | 8.70 |
Lipids (g 100 g−1) | 0.30 | 0.25 | 0.69 | 1.38 |
Fiber (g 100 g−1) | 0.90 | 2.93 | - | - |
Carbohydrate including fiber (g 100 g−1) | 4.80 | 7.06 | 14.75 | 19.06 |
Energy (kcal 100 g−1) | 28.70 | 27.73 | - | - |
Composition | D. simplex Leaves | D. simplex Flowers | D. viragata Flowers | D. erucoides Non-Flowering Aerial Parts |
---|---|---|---|---|
Caprylic acid (C8:0) | - | 1.0 | - | - |
Capric acid (C10:0) | - | 0.9 | - | - |
Lauric acid (C12:0) | - | 1.0 | - | - |
Myristic acid (C14:0) | - | 3.4 | - | - |
Palmitic acid (C16:0) | 13.2 | 15.3 | 18.2 | 14.4 |
Margaric acid (C17:0) | - | 0.5 | - | - |
Stearic acid (C18:0) | - | - | 3.1 | - |
Oleic acid (C18:1) | 7.7 | 6.1 | 3.4 | - |
Linoleic acid (C18:2 n − 6) | 4.4 | 5.6 | 23.7 | 29.1 |
Linolelaidic acid (C18:2 n − 6) | - | - | 15.7 | 6.9 |
α-Linolenic acid (C18:3 n − 3) | 25.4 | 27.7 | - | - |
Arachidic acid (C20:0) | - | 2.5 | - | - |
Ethyl linoleate | 14.4 | 1.4 | - | - |
Octane | - | 2.6 | - | - |
Nonane | 2.8 | 1.0 | - | - |
Pentacosane | - | 5.1 | - | - |
Hexacosane | - | 5.7 | - | - |
Phytol | 17.6 | 3.7 | - | - |
Total | 85.5 | 83.5 | 64.0 | 50.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ressurreição, S.; Salgueiro, L.; Figueirinha, A. Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties. Molecules 2024, 29, 2612. https://doi.org/10.3390/molecules29112612
Ressurreição S, Salgueiro L, Figueirinha A. Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties. Molecules. 2024; 29(11):2612. https://doi.org/10.3390/molecules29112612
Chicago/Turabian StyleRessurreição, Sandrine, Lígia Salgueiro, and Artur Figueirinha. 2024. "Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties" Molecules 29, no. 11: 2612. https://doi.org/10.3390/molecules29112612
APA StyleRessurreição, S., Salgueiro, L., & Figueirinha, A. (2024). Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties. Molecules, 29(11), 2612. https://doi.org/10.3390/molecules29112612