The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems
Abstract
:1. Introduction
2. Results
Types | Bond Lengths (Å) | |||||
---|---|---|---|---|---|---|
Cu(I) | Cu(II) | |||||
[CuCl]0 | [CuCl2]− | [CuCl3]2− | [Cu(HS)2]− | [Cu(H2O)6]2+ | ||
Cu-Cl | Cu-Cl | Cu-Cl | Cu-S | Cu-O1 | Cu-O2 | |
This study | 2.101 | 2.167 | 2.408 | 2.213 | 2.28 | 2.02 |
theoretical calculation method A | 2.095 | 2.165 | 2.403 | 2.207 | ||
theoretical calculation method B | 2.30 | 2.02–2.03 | ||||
experimental data | 2.052 [21] | 2.13 [22] | 2.28 [20] | 2.00 [20] |
Temperature (°C) | 0 | 25 | 50 | 100 | 150 | 200 | 300 | 500 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
Cu(I) | |||||||||
[CuCl]·(H2O)42 | 2.19 | 1.86 | 1.59 | 1.21 | 0.94 | 0.76 | 0.52 | 0.28 | |
[CuCl2]−·(H2O)42 | 2.09 | 1.76 | 1.51 | 1.14 | 0.89 | 0.71 | 0.49 | 0.27 | |
[CuCl3]2−·(H2O)42 | 1.67 | 1.41 | 1.20 | 0.90 | 0.70 | 0.56 | 0.38 | 0.21 | |
[Cu(HS)2]−·(H2O)42 | 2.82 | 2.39 | 2.04 | 1.55 | 1.21 | 0.97 | 0.66 | 0.37 | |
[Cu(HS)(H2O)]·(H2O)42 | 2.52 | 2.13 | 1.83 | 1.38 | 1.08 | 0.87 | 0.59 | 0.33 | |
[Cu(HS)(H2S)]·(H2O)42 | 2.51 | 2.12 | 1.82 | 1.37 | 1.07 | 0.86 | 0.59 | 0.32 | |
Cu(II) | |||||||||
[Cu(NO3)2]·(H2O)42 | 5.77 | 4.91 | 4.22 | 3.21 | 2.53 | 2.04 | 1.40 | 0.78 | |
[Cu(NO3)(H2O)4]+·(H2O)42 | 5.56 | 4.72 | 4.06 | 3.09 | 2.43 | 1.96 | 1.35 | 0.75 | |
[CuCN]+·(H2O)42 | 5.39 | 4.57 | 3.93 | 2.99 | 2.35 | 1.89 | 1.30 | 0.72 | |
[Cu(H2O)6]2+(H2O)42 | 5.86 | 4.98 | 4.28 | 3.26 | 2.56 | 2.07 | 1.42 | 0.79 | |
[CuCl]+·(H2O)42 | 5.40 | 4.58 | 3.94 | 2.99 | 2.35 | 1.89 | 1.30 | 0.72 | |
[CuCl2]·(H2O)42 | 4.80 | 4.07 | 3.49 | 2.65 | 2.08 | 1.68 | 1.15 | 0.64 | |
[CuCl3]−·(H2O)42 | 4.07 | 3.45 | 2.95 | 2.24 | 1.75 | 1.41 | 0.97 | 0.54 | |
[CuBr2]·(H2O)42 | 4.29 | 3.64 | 3.12 | 2.37 | 1.86 | 1.50 | 1.03 | 0.57 | |
[Cu(OH)2]·(H2O)42 | 5.70 | 4.85 | 4.17 | 3.18 | 2.50 | 2.02 | 1.39 | 0.77 | |
[Cu(COOHCOOH)]+·(H2O)42 | 5.57 | 4.73 | 4.06 | 3.09 | 2.43 | 1.96 | 1.35 | 0.75 | |
[Cu(CH3CH2COO)]+·(H2O)42 | 5.68 | 4.83 | 4.15 | 3.16 | 2.48 | 2.00 | 1.38 | 0.76 | |
[Cu(HOC6H4COO)]+·(H2O)42 | 5.73 | 4.86 | 4.18 | 3.18 | 2.49 | 2.01 | 1.38 | 0.77 | |
[Cu(SO4)(H2O)3]·(H2O)42 | 5.69 | 4.84 | 4.16 | 3.17 | 2.49 | 2.01 | 1.39 | 0.77 |
Temperature (°C) | 0 | 25 | 50 | 100 | 150 | 200 | 300 | 500 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
Cu(I) | |||||||||
[CuCl] | 1.82 | 1.55 | 1.33 | 1.01 | 0.79 | 0.63 | 0.44 | 0.24 | |
[CuCl2]− | 3.02 | 2.56 | 2.19 | 1.66 | 1.30 | 1.04 | 0.72 | 0.40 | |
[CuCl3]2− | 1.02 | 0.85 | 0.73 | 0.55 | 0.43 | 0.34 | 0.23 | 0.13 | |
[Cu(HS)2]− | 2.89 | 2.44 | 2.10 | 1.59 | 1.24 | 1.00 | 0.68 | 0.38 | |
[Cu(HS)(H2O)] | 3.30 | 2.80 | 2.40 | 1.83 | 1.43 | 1.15 | 0.79 | 0.44 | |
[Cu(HS)(H2S)] | 2.71 | 2.30 | 1.97 | 1.49 | 1.17 | 0.94 | 0.65 | 0.36 | |
Cu(II) | |||||||||
[Cu(NO3)2] | 6.31 | 5.35 | 4.60 | 3.50 | 2.75 | 2.21 | 1.52 | 0.84 | |
[Cu(NO3)(H2O)4]+ | 5.46 | 4.64 | 3.99 | 3.03 | 2.38 | 1.92 | 1.32 | 0.73 | |
[CuCN]+ | 5.65 | 4.80 | 4.13 | 3.14 | 2.47 | 1.99 | 1.37 | 0.76 | |
[Cu(H2O)6]2+ | 5.37 | 4.56 | 3.92 | 2.98 | 2.34 | 1.88 | 1.29 | 0.72 | |
[CuCl]+ | 1.48 | 1.25 | 1.07 | 0.81 | 0.63 | 0.51 | 0.35 | 0.19 | |
[CuCl2] | 4.28 | 3.64 | 3.13 | 2.39 | 1.88 | 1.51 | 1.04 | 0.58 | |
[CuCl3]− | 3.94 | 3.33 | 2.85 | 2.16 | 1.69 | 1.35 | 0.93 | 0.51 | |
[CuBr2] | 3.62 | 3.06 | 2.62 | 1.99 | 1.56 | 1.25 | 0.86 | 0.47 | |
[Cu(OH)2] | 6.79 | 5.85 | 5.09 | 3.94 | 3.14 | 2.55 | 1.78 | 1.00 | |
[Cu(COOHCOOH)]+ | 2.09 | 1.77 | 1.51 | 1.15 | 0.90 | 0.72 | 0.49 | 0.27 | |
[Cu(CH3CH2COO)]+ | 2.38 | 2.02 | 1.73 | 1.31 | 1.03 | 0.83 | 0.57 | 0.31 | |
[Cu(HOC6H4COO)]+ | 3.68 | 3.13 | 2.69 | 2.05 | 1.62 | 1.30 | 0.90 | 0.50 | |
[Cu(SO4)(H2O)3] | 5.17 | 4.40 | 3.78 | 2.88 | 2.26 | 1.82 | 1.25 | 0.70 |
Coefficients | a | b | c | d | |
---|---|---|---|---|---|
Species | |||||
Cu(I) | |||||
[CuCl]·(H2O)42 | 8.8731 × 10−6 | −8.9619 × 10−4 | 1.7445 × 10−1 | 6.3391 × 10−4 | |
[CuCl2]−·(H2O)42 | 4.8850 × 10−6 | −6.1887 × 10−4 | 1.6351 × 10−1 | 3.4897 × 10−4 | |
[CuCl3]2−·(H2O)42 | 1.7512 × 10−6 | −2.7831 × 10−4 | 1.2851 × 10−1 | 2.1363 × 10−4 | |
[Cu(HS)2]−·(H2O)42 | 6.9430 × 10−6 | −9.8807 × 10−4 | 2.2272 × 10−1 | 2.3775 × 10−4 | |
[Cu(HS)(H2O)]·(H2O)42 | 7.8718 × 10−6 | −8.9365 × 10−4 | 1.9919 × 10−1 | 5.3897 × 10−4 | |
[Cu(HS)(H2S)]·(H2O)42 | 5.4942 × 10−6 | −7.5608 × 10−4 | 1.9695 × 10−1 | 3.2375 × 10−4 | |
[CuCl] | 4.5682 × 10−6 | −7.5276 × 10−4 | 1.4526 × 10−1 | 4.7295 × 10−5 | |
[CuCl2]− | 6.0135 × 10−6 | −1.0369 × 10−3 | 2.3831 × 10−1 | 5.9667 × 10−5 | |
[CuCl3]2− | 6.0219 × 10−8 | −5.3906 × 10−5 | 7.6549 × 10−2 | 1.0912 × 10−7 | |
[Cu(HS)2]− | 6.3388 × 10−6 | −1.0069 × 10−3 | 2.2784 × 10−1 | 1.0440 × 10−4 | |
[Cu(HS)(H2O)] | 1.2316 × 10−5 | −1.6046 × 10−3 | 2.6532 × 10−1 | 2.1774 × 10−4 | |
[Cu(HS)(H2S)] | 6.7653 × 10−6 | −1.0290 × 10−3 | 2.1507 × 10−1 | 1.0880 × 10−4 | |
Cu(II) | |||||
[Cu(NO3)2] | 3.4536 × 10−5 | −3.3387 × 10−3 | 5.0881 × 10−1 | 2.2326 × 10−3 | |
[Cu(NO3)(H2O)4]+ | 2.9116 × 10−5 | −2.8825 × 10−3 | 4.4105 × 10−1 | 1.3720 × 10−3 | |
[CuCN]+ | 3.3608 × 10−5 | −3.2563 × 10−3 | 4.5892 × 10−1 | 2.1177 × 10−3 | |
[Cu(H2O)6]2+ | 2.5416 × 10−5 | −2.7630 × 10−3 | 4.3295 × 10−1 | 7.8647 × 10−4 | |
[CuCl]+ | 2.4464 × 10−6 | −4.8443 × 10−4 | 1.1625 × 10−1 | 2.0312 × 10−5 | |
[CuCl2] | 2.0937 × 10−5 | −2.5141 × 10−3 | 3.4937 × 10−1 | 3.2586 × 10−4 | |
[CuCl3]− | 5.5308 × 10−6 | −1.1281 × 10−3 | 3.0821 × 10−1 | 4.5520 × 10−5 | |
[CuBr2] | 7.0621 × 10−6 | −1.2608 × 10−3 | 2.8550 × 10−1 | 6.6567 × 10−5 | |
[Cu(OH)2] | 1.4317 × 10−4 | −9.7179 × 10−3 | 6.1070 × 10−1 | 5.4551 × 10−3 | |
[Cu(COOHCOOH)]+ | 8.2807 × 10−6 | −7.6525 × 10−4 | 1.6457 × 10−1 | 6.6464 × 10−4 | |
[Cu(CH3CH2COO)]+ | 1.0411 × 10−5 | −1.0043 × 10−3 | 1.8932 × 10−1 | 5.6713 × 10−4 | |
[Cu(HOC6H4COO)]+ | 3.1919 × 10−5 | −2.4572 × 10−3 | 3.0175 × 10−1 | 1.7156 × 10−3 | |
[Cu(SO4)(H2O)3] | 3.3183 × 10−5 | −3.0106 × 10−3 | 4.2027 × 10−1 | 2.1138 × 10−3 | |
[Cu(NO3)2]·(H2O)42 | 4.1814 × 10−5 | −3.4885 × 10−3 | 4.6982 × 10−1 | 3.1179 × 10−3 | |
[Cu(NO3)(H2O)4]+ (H2O)42 | 4.0737 × 10−5 | −3.2940 × 10−3 | 4.5120 × 10−1 | 3.2766 × 10−3 | |
[CuCN]+ (H2O)42 | 3.4484 × 10−5 | −2.9083 × 10−3 | 4.3460 × 10−1 | 3.2864 × 10−3 | |
[Cu(H2O)6]2+(H2O)42 | 4.4401 × 10−5 | −3.6211 × 10−3 | 4.7723 × 10−1 | 3.4596 × 10−3 | |
[CuCl]+ (H2O)42 | 3.5134 × 10−5 | −2.9826 × 10−3 | 4.3617 × 10−1 | 2.7235 × 10−3 | |
[CuCl2] (H2O)42 | 2.6456 × 10−5 | −2.3114 × 10−3 | 3.8432 × 10−1 | 2.2532 × 10−3 | |
[CuCl3]− (H2O)42 | 1.5882 × 10−5 | −1.5604 × 10−3 | 3.2191 × 10−1 | 1.4476 × 10−3 | |
[CuBr2] (H2O)42 | 2.3327 × 10−5 | −1.9949 × 10−3 | 3.4273 × 10−1 | 2.0328 × 10−3 | |
[Cu(OH)2] (H2O)42 | 4.5740 × 10−5 | −3.7295 × 10−3 | 4.6680 × 10−1 | 3.4371 × 10−3 | |
[Cu(COOHCOOH)]+ (H2O)42 | 3.8027 × 10−5 | −3.1905 × 10−3 | 4.5119 × 10−1 | 2.8230 × 10−3 | |
[Cu(CH3CH2COO)]+ (H2O)42 | 3.9108 × 10−5 | −3.2751 × 10−3 | 4.6054 × 10−1 | 3.0062 × 10−3 | |
[Cu(HOC6H4COO)]+ (H2O)42 | 3.4751 × 10−5 | −2.9986 × 10−3 | 4.6155 × 10−1 | 2.4027 × 10−3 | |
[Cu(SO4)(H2O)3] (H2O)42 | 4.5256 × 10−5 | −3.6418 × 10−3 | 4.6494 × 10−1 | 3.3710 × 10−3 |
Temperature (°C) | 0 | 25 | 50 | 100 | 150 | 200 | 300 | 500 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
Cu(I) | |||||||||
[CuCl]·(H2O)42 vs. [CuCl] | 0.38 | 0.32 | 0.27 | 0.20 | 0.16 | 0.13 | 0.09 | 0.05 | |
[CuCl2]−·(H2O)42 vs. [CuCl2]− | −0.93 | −0.79 | −0.68 | −0.52 | −0.40 | −0.33 | −0.22 | −0.12 | |
[CuCl3]2−·(H2O)42 vs. [CuCl3]2− | 0.66 | 0.56 | 0.48 | 0.36 | 0.28 | 0.23 | 0.16 | 0.09 | |
[Cu(HS)2]−·(H2O)42 vs. [Cu(HS)2]− | −0.06 | −0.05 | −0.05 | −0.04 | −0.03 | −0.02 | −0.02 | −0.01 | |
[Cu(HS)(H2O)]·(H2O)42 vs. [Cu(HS)(H2O)] | −0.77 | −0.66 | −0.57 | −0.44 | −0.35 | −0.28 | −0.19 | −0.11 | |
[Cu(HS)(H2S)]·(H2O)42 vs. [Cu(HS)(H2S)] | −0.20 | −0.17 | −0.15 | −0.12 | −0.09 | −0.08 | −0.05 | −0.03 | |
Cu(II) | |||||||||
[Cu(NO3)2]·(H2O)42 vs. [Cu(NO3)2] | −0.53 | −0.45 | −0.38 | −0.28 | −0.22 | −0.18 | −0.12 | −0.06 | |
[Cu(NO3)(H2O)4]+·(H2O)42 vs. [Cu(NO3)(H2O)4]+ | 0.09 | 0.08 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03 | 0.02 | |
[CuCN]+·(H2O)42 vs. [CuCN]+ | −0.26 | −0.23 | −0.20 | −0.16 | −0.12 | −0.10 | −0.07 | −0.04 | |
[Cu(H2O)6]2+·(H2O)42 vs. [Cu(H2O)6]2+ | 0.49 | 0.42 | 0.36 | 0.28 | 0.23 | 0.19 | 0.13 | 0.07 | |
[CuCl]+·(H2O)42 vs. [CuCl]+ | 3.92 | 3.33 | 2.87 | 2.18 | 1.72 | 1.38 | 0.95 | 0.53 | |
[CuCl2]·(H2O)42 vs. [CuCl2] | 0.52 | 0.43 | 0.36 | 0.27 | 0.20 | 0.16 | 0.11 | 0.06 | |
[CuCl3]−·(H2O)42 vs. [CuCl3]− | 0.13 | 0.12 | 0.10 | 0.08 | 0.07 | 0.05 | 0.04 | 0.02 | |
[CuBr2]·(H2O)42 vs. [CuBr2] | 0.68 | 0.58 | 0.50 | 0.38 | 0.30 | 0.24 | 0.17 | 0.10 | |
[Cu(OH)2]·(H2O)42 vs. [Cu(OH)2] | −1.09 | −1.00 | −0.92 | −0.76 | −0.64 | −0.53 | −0.39 | −0.23 | |
[Cu(COOHCOOH)]+·(H2O)42 vs. [Cu(COOHCOOH)]+ | 3.48 | 2.96 | 2.55 | 1.95 | 1.53 | 1.24 | 0.85 | 0.47 | |
[Cu(CH3CH2COO)]+·(H2O)42 vs. [Cu(CH3CH2COO)]+ | 3.30 | 2.81 | 2.42 | 1.84 | 1.45 | 1.17 | 0.81 | 0.45 | |
[Cu(HOC6H4COO)]+·(H2O)42 vs. [Cu(HOC6H4COO)]+ | 2.05 | 1.73 | 1.48 | 1.12 | 0.88 | 0.70 | 0.48 | 0.27 | |
[Cu(SO4)(H2O)3]·(H2O)42 vs. [Cu(SO4)(H2O)3] | 0.52 | 0.44 | 0.38 | 0.29 | 0.23 | 0.19 | 0.13 | 0.07 |
Temperature (°C) | 0 | 25 | 50 | 100 | 150 | 200 | 300 | 500 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
Cu(I) | |||||||||
[CuCl]·(H2O)42 vs. [CuCl2]−·(H2O)42 | 0.11 | 0.09 | 0.08 | 0.07 | 0.05 | 0.04 | 0.03 | 0.02 | |
[CuCl]·(H2O)42 vs. [CuCl3]2−·(H2O)42 | 0.52 | 0.45 | 0.39 | 0.30 | 0.24 | 0.19 | 0.13 | 0.08 | |
[CuCl]·(H2O)42 vs. [Cu(HS)2]−·(H2O)42 | −0.63 | −0.53 | −0.45 | −0.34 | −0.27 | −0.21 | −0.15 | −0.08 | |
[CuCl]·(H2O)42 vs. [Cu(HS)(H2O)]·(H2O)42 | −0.33 | −0.28 | −0.24 | −0.18 | −0.14 | −0.11 | −0.08 | −0.04 | |
[CuCl]·(H2O)42 vs. [Cu(HS)(H2S)]·(H2O)42 | −0.32 | −0.27 | −0.23 | −0.17 | −0.13 | −0.10 | −0.07 | −0.04 | |
Cu(II) | |||||||||
[Cu(NO3)2]·(H2O)42 vs. [CuNO3(H2O)4]+·(H2O)42 | 0.22 | 0.19 | 0.16 | 0.12 | 0.10 | 0.08 | 0.05 | 0.03 | |
[Cu(NO3)2]·(H2O)42 vs. [CuCN]+·(H2O)42 | 0.39 | 0.33 | 0.29 | 0.23 | 0.18 | 0.15 | 0.10 | 0.06 | |
[Cu(NO3)2]·(H2O)42 vs. [Cu(H2O)6]2+·(H2O)42 | −0.08 | −0.07 | −0.06 | −0.05 | −0.04 | −0.03 | −0.02 | −0.01 | |
[Cu(NO3)2]·(H2O)42 vs. [Cu(OH)2]·(H2O)42 | 0.07 | 0.06 | 0.05 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | |
[Cu(NO3)2]·(H2O)42 vs. [CuSO4(H2O)3]·(H2O)42 | 0.08 | 0.07 | 0.06 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 | |
[CuCl]+·(H2O)42 vs. [CuCl2]·(H2O)42 | 0.60 | 0.51 | 0.44 | 0.34 | 0.27 | 0.22 | 0.15 | 0.09 | |
[CuCl]+·(H2O)42 vs. [CuCl3]−·(H2O)42 | 1.32 | 1.13 | 0.98 | 0.76 | 0.60 | 0.49 | 0.34 | 0.19 | |
[CuCl]+·(H2O)42 vs. [CuBr2]·(H2O)42 | 1.10 | 0.94 | 0.82 | 0.63 | 0.49 | 0.40 | 0.28 | 0.15 | |
[Cu(COOHCOO)]+·(H2O)42 vs. [Cu(CH3CH2COO)]+·(H2O)42 | −0.11 | −0.10 | −0.08 | −0.06 | −0.05 | −0.04 | −0.03 | −0.02 | |
[Cu(COOHCOO)]+·(H2O)42 vs. [Cu(HOC6H4COO)]+·(H2O)42 | −0.16 | −0.14 | −0.11 | −0.08 | −0.06 | −0.05 | −0.03 | −0.02 |
3. Discussion
- (1)
- The information of the optimized structures of Cu-bearing species
- (2)
- Calculated data of Cu isotope fractionation
- (3)
- solvation effect on the Cu isotope fractionation
- (4)
- Cu isotope fractionation factors (Cu(I) and Cu(II)) between different Cu-bearing complex solutions
- (5)
- Implication for Cu isotope fractionation in different systems.
4. Methods
- (1)
- Theoretical calculation method
- (2)
- computation details
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.Y. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coord. Chem. Rev. 2003, 246, 327–347. [Google Scholar] [CrossRef]
- Reed, M.H. Sulfide Mineral Precipitation from Hydrothermal Fluids. Rev. Mineral. Geochem. 2006, 61, 609–631. [Google Scholar] [CrossRef]
- Bigalke, M.; Weyer, S.; Wilcke, W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization. Geochim. Cosmochim. Acta 2011, 75, 3119–3134. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Chryssoulis, S.L.; Venter, D.; Kesler, S.E. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 2009, 37, 707–710. [Google Scholar] [CrossRef]
- Richet, P.; Bottinga, Y.; Javoy, M. A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules. Annu. Rev. Earth Planet. Sci. 1977, 5, 65–110. [Google Scholar] [CrossRef]
- Bigeleisen, J.; Mayer, M.G. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. J. Chem. Phys. 1947, 15, 261–267. [Google Scholar] [CrossRef]
- Schauble, E.A. Applying Stable Isotope Fractionation Theory to New Systems. Rev. Mineral. Geochem. 2004, 55, 65–111. [Google Scholar] [CrossRef]
- Urey, H.C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562–581. [Google Scholar] [CrossRef] [PubMed]
- Bigalke, M.; Weyer, S.; Wilcke, W. Copper isotope fractionation during complexation with insolubilized humic acid. Environ. Sci. Technol. 2010, 44, 5496–5502. [Google Scholar] [CrossRef]
- Collings, M.D.; Sherman, D.M.; Ragnarsdottir, K.V. Complexation of Cu2+ in oxidized NaCl brines from 25 °C to 175 °C: Results from in situ EXAFS spectroscopy. Chem. Geol. 2000, 167, 65–73. [Google Scholar] [CrossRef]
- Maréchal, C.; Albarède, F. Ion-exchange fractionation of copper and zinc isotopes. Geochim. Cosmochim. Acta 2002, 66, 1499–1509. [Google Scholar] [CrossRef]
- Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. 2003, 591, 1220–1247. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, S.K.; Lee, I. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem. Geol. 2007, 243, 225–237. [Google Scholar] [CrossRef]
- Sherman, D.M. Complexation of Cu+ in Hydrothermal NaCl Brines: Ab initio molecular dynamics and energetics. Geochim. Cosmochim. Acta 2007, 71, 714–722. [Google Scholar] [CrossRef]
- Sherman, D.M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory. Geochim. Cosmochim. Acta 2013, 118, 85–97. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y. First-principles calculations of equilibrium bromine isotope fractionations. Geochim. Cosmochim. Acta 2021, 297, 65–81. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Tang, M.; Liu, Y. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications. Earth Planet. Sci. Lett. 2009, 287, 1–11. [Google Scholar] [CrossRef]
- Zhang, J. Equilibrium sulfur isotope fractionations of several important sulfides. Geochem. J. 2021, 55, 135–147. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Revision B. 01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Fujii, T.; Moynier, F.; Abe, M.; Nemoto, K.; Albarède, F. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim. Cosmochim. Acta 2013, 110, 29–44. [Google Scholar] [CrossRef]
- Manson, E.L.; De Lucia, F.C.; Gordy, W. Millimeter- and submillimeter-wave spectrum and molecular constants of cuprous chloride. J. Chem. Phys. 1975, 62, 1040–1043. [Google Scholar] [CrossRef]
- Fulton, J.L.; Hoffmann, M.M.; Darab, J.G. An X-ray absorption fine structure study of copper(I) chloride coordination structure in water up to 325 °C. Chem. Phys. Lett. 2000, 330, 300–308. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen Isotope Fractionation in Divalent Metal Carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Estrin, D.A.; Paglieri, L.; Corongiu, G.; Clementi, E. Small Clusters of Water Molecules Using Density Functional Theory. J. Phys. Chem. 1996, 100, 8701–8711. [Google Scholar] [CrossRef]
- Tajiri, Y.; Wakita, H. An EXAFS Investigation of the Coordination Structure of Copper(II) Ions in Aqueous Cu(ClO4)2 and Methanolic CuCl2 Solutions. Bull. Chem. Soc. Jpn. 1986, 59, 2285–2291. [Google Scholar] [CrossRef]
- Moffett, J.W.; Zika, R.G. Oxidation kinetics of Cu(I) in seawater: Implications for its existence in the marine environment. Mar. Chem. 1983, 13, 239–251. [Google Scholar] [CrossRef]
- Sholkovitz, E.R.; Copland, D. The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water. Geochim. Cosmochim. Acta 1981, 45, 181–189. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet. Sci. Lett. 1978, 41, 77–86. [Google Scholar] [CrossRef]
- Schröder, D.; Schwarz, H.; Wu, J.; Wesdemiotis, C. Long-lived dications of Cu(H2O)2+ and Cu(NH3)2+ do exist! Chem. Phys. Lett. 2001, 343, 258–264. [Google Scholar] [CrossRef]
- Kremling, K.; Hydes, D. Summer distribution of dissolved Al, Cd, Co, Cu, Mn and Ni in surface waters around the British Isles. Cont. Shelf Res. 1988, 8, 89–105. [Google Scholar] [CrossRef]
- Manning, P.G.; Ramamoorthy, S. Equilibrium studies of metal-ion complexes of interest to natural waters—VII Mixed-ligand complexes of Cu(II) involving fulvic acid as primary ligand. J. Inorg. Nucl. Chem. 1973, 35, 1577–1581. [Google Scholar] [CrossRef]
- Stoilova, D.; Koleva, V. IR study of solid phases formed in the Mg(HCOO)2–Cu(HCOO)2–H2O system. J. Mol. Struct. 2000, 553, 131–139. [Google Scholar] [CrossRef]
- Nila, C.; González, I. Thermodynamics of Cu-H2SO4-Cl−-H2O and Cu-NH4Cl-H2O based on predominance-existence diagrams and Pourbaix-type diagrams. Hydrometallurgy 1996, 42, 63–82. [Google Scholar] [CrossRef]
- Weng, D.; Mu, W.; Zheng, X.; Fang, D.; Jin, L. Hydrothermal in situ synthesis and characterization of Cu(II) complexes. Inorg. Chem. 2008, 47, 1249–1251. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Brugger, J.; Chen, Y.; Li, W. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 2015, 395, 154–164. [Google Scholar] [CrossRef]
- Little, S.H.; Munson, S.; Prytulak, J.; Coles, B.J.; Hammond, S.J.; Widdowson, M. Cu and Zn isotope fractionation during extreme chemical weathering. Geochim. Cosmochim. Acta 2019, 263, 85–107. [Google Scholar] [CrossRef]
- Mathur, R.; Titley, S.; Barra, F.; Brantley, S.; Wilson, M.; Phillips, A.; Munizaga, F.; Maksaev, V.; Vervoort, J.; Hart, G. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor. 2009, 102, 1–6. [Google Scholar] [CrossRef]
- Ehrlich, S.; Butler, I.; Halicz, L.; Rickard, D.; Oldroyd, A.; Matthews, A. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chem. Geol. 2004, 209, 259–269. [Google Scholar] [CrossRef]
- Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L. Copper isotope fractionation in acid mine drainage. Geochim. Cosmochim. Acta 2009, 73, 1247–1263. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Liu, J.; Yang, Z.; Liu, J.; Shi, Y. Equilibrium Cu isotope fractionation in copper minerals: A first-principles study. Chem. Geol. 2021, 564, 120060. [Google Scholar] [CrossRef]
- Ryan, B.M.; Kirby, J.K.; Degryse, F.; Scheiderich, K.; McLaughlin, M.J. Copper isotope fractionation during equilibration with natural and synthetic ligands. Environ. Sci. Technol. 2014, 48, 8620–8626. [Google Scholar] [CrossRef]
- Weinstein, C.; Moynier, F.; Wang, K.; Paniello, R.; Foriel, J.; Catalano, J.; Pichat, S. Isotopic fractionation of Cu in plants. Chem. Geol. 2011, 286, 266–271. [Google Scholar] [CrossRef]
- Gao, C.; Cao, X.; Liu, Q.; Yang, Y.; Zhang, S.; He, Y.; Tang, M.; Liu, Y. Theoretical calculation of equilibrium Mg isotope fractionations between minerals and aqueous solutions. Chem. Geol. 2018, 488, 62–75. [Google Scholar] [CrossRef]
- Fujii, T.; Moynier, F.; Blichert-Toft, J.; Albarède, F. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim. Cosmochim. Acta 2014, 140, 553–576. [Google Scholar] [CrossRef]
- Liu, Y.; Tossell, J.A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim. Cosmochim. Acta 2005, 69, 3995–4006. [Google Scholar] [CrossRef]
- Liu, Q.; Tossell, J.A.; Liu, Y. On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim. Cosmochim. Acta 2010, 74, 6965–6983. [Google Scholar] [CrossRef]
- Gibbs, G.V. Molecules as models for bonding in silicates. Am. Mineral. 1982, 67, 421–450. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J. The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems. Molecules 2024, 29, 2582. https://doi.org/10.3390/molecules29112582
Zhang J. The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems. Molecules. 2024; 29(11):2582. https://doi.org/10.3390/molecules29112582
Chicago/Turabian StyleZhang, Jixi. 2024. "The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems" Molecules 29, no. 11: 2582. https://doi.org/10.3390/molecules29112582
APA StyleZhang, J. (2024). The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems. Molecules, 29(11), 2582. https://doi.org/10.3390/molecules29112582