Kallopterolides A–I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Structural Analysis
2.2. Biogenesis
2.3. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Collection and Extraction of Antillogorgia kallos
3.3. Isolation of Natural Products
3.4. Computational Method
3.5. Anti-Inflammation Bioassay
3.6. Antiplasmodial Bioassay
3.7. Antimycobacterial Bioassay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUPAC Commission on the Nomenclature of Organic Chemistry. Section F: Natural Products and Related Compounds. Eur. J. Biochem. 1978, 86, 1–8. [Google Scholar]
- Sinnwell, V.; Heemann, V.; Bylov, A.-M.; Hass, W.; Kahre, C.; Seehofer, F. A New Cembranoid from Tobacco, IV*. Naturforsch 1984, 39, 1023–1026. [Google Scholar]
- Cheng, S.-Y.; Wang, S.-W.; Duh, C.-Y. Secocrassumol, a seco-Cembranoid from the Dongsha Atoll Soft Coral Lobophytum crissum. Mar. Drugs 2014, 12, 6028–6037. [Google Scholar] [CrossRef]
- Wahlberg, I.; Eklund, A.M. Cembranoids, Pseudopteranoids, and Cubitanoids of Natural Occurrence. Prog. Chem. Org. Nat. Prod. 1992, 59, 141–294. [Google Scholar]
- Lui, Y.; Zhang, S.; Abreu, P.J.M. Heterocyclic Terpenes: Linear Furano- and Pyrroloterpenoids. Nat. Prod. Rep. 2006, 23, 630–651. [Google Scholar]
- Rodríguez, A.D.; Shi, Y.-P. New Metabolites from the West Indian Sea Feather Pseudoterogorgia bipinnata. J. Nat. Prod. 2000, 63, 1548–1550. [Google Scholar] [CrossRef] [PubMed]
- Ospina, C.A.; Rodríguez, A.D.; Sánchez, J.A.; Ortiga-Barria, E.; Capson, T.L.; Mayer, A.M.S. Caucanolides A-F. Unusual Antiplasmodial Constituents from a Colombian Collection of the Gorgonian Coral Pseudoterogorgia bipinnata. J. Nat. Prod. 2005, 68, 1519–1526. [Google Scholar] [CrossRef]
- Williams, G.C.; Chen, J.-Y. Resurrection of the Octocorallian Genus Antillogorgia for Caribbean Species Previously Assigned to Pseudopterogorgia, and a Taxonomic Assessment of the Relationship of These Genera with Leptogorgia (Cnidaria, Anthozoa, Gorgoniidae). Zootaxa 2012, 3505, 39–52. [Google Scholar] [CrossRef]
- Altona, C.; Haasnoot, C.A.G. Prediction of Anti and Gauche Vicinal Proton-Proton Coupling Contants in Carbohydrates: A Simple Additivity Rule for Pyranose Rings. Org. Mag. Res. 1980, 13, 417–429. [Google Scholar] [CrossRef]
- Novitskiy, I.M.; Kutateladze, A.G. DU8ML: Machine Learning-Augmented Density Functional Theory Nuclear Magnetic Resonance Computations for High-Throughput In Silico Solution Structure Validation and Revision of Complex Alkaloids. J. Org. Chem. 2022, 87, 4818–4828. [Google Scholar] [CrossRef]
- Novitskiy, I.M.; Kutateladze, A.G. Peculiar Reaction Products and Mechanisms Revisited with Machine Learning-Augmented Computational NMR. J. Org. Chem. 2022, 87, 8589–8598. [Google Scholar] [CrossRef]
- Köck, M.; Junker, J. How Many NOE Derived Restraints are Necessary for a Reliable Determination of the Relative Configuration of an Organic Compound? Application to a Model System. J. Org. Chem. 1997, 62, 8614–8615. [Google Scholar] [CrossRef]
- Roethle, P.A.; Hernández, P.T.; Trauner, D. Exploring Biosynthetic Relationships among Furanocembranoids: Synthesis of (-)-Bipinnatin J, (+)-Intricarene, (+)-Rubifolide, and (+)-Isoepilophodione B. Org. Lett. 2006, 8, 5901–5904. [Google Scholar] [CrossRef] [PubMed]
- Ribaucourt, A.; Hodgson, D.M. Total Synthesis and Structural Revision of the Cytotoxin Aruncin B. Org. Lett. 2016, 18, 4364–4367. [Google Scholar] [CrossRef]
- Ribaucourt, A.; Towers, C.; Josa-Culleré, L.; Willenbrock, F.; Thompson, A.L.; Hodgson, D.M. Aruncin B: Synthetic Studies, Structural Reassignment and Biological Evaluation. Chem. Eur. J. 2017, 23, 16525–16534. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Y.; Zhou, M.; Cao, H.; Peng, X.-G.; Liang, J.-J.; Zhao, X.-Y.; Xiang, M.; Ruan, H.-L. Spiroschincarins A–E: Five Spirocyclic Nortriterpenoids from the Fruit of Schisandra incarnata. Org. Lett. 2017, 19, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, G.; Manse, Y.; Ogawa, T.; Sonoda, N.; Marumoto, S.; Ishikawa, F.; Ninomiya, K.; Chaipech, S.; Pongpiriyadacha, Y.; Muraoka, O.; et al. Total Synthesis of γ-Alkylidenebutenolides, Potent Melanogenesis Inhibitors from Thai Medicinal Plant Melodorum fruticosum. J. Org. Chem. 2018, 83, 8250–8264. [Google Scholar] [CrossRef] [PubMed]
- Abranson, S.N.; Trischman, J.A.; Tapiolas, D.M.; Harold, E.E.; Fenical, W.; Taylor, P. Structure Activity and Molecular Modeling Studies of Lophotoxin Family of Irreversible Nicotinic Recepot Antagonistc. J. Med. Chem. 1991, 34, 1789–1804. [Google Scholar]
- Rodríguez, A.D.; Shi, J.-G. The First Cembrane-Pseudopterane Cycloisomerization. J. Org. Chem. 1998, 63, 420–421. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Capson, T.L.; Guzmán, H.M.; González, J.; Ortega-Barría, E.; Quiñoá, E.; Riguera, R. Leptolide, a New Furanocembranolide Diterpene from Leptogorgia alba. J. Nat. Prod. 2005, 68, 614–616. [Google Scholar] [CrossRef]
- Li, Y.; Pattenden, G. Photochemical Isomerization Studies of Rubifolide and Bipinnatin J. Unravelling Some of the Biosynthesis Interrelationships between Macrocyclic and Polycyclic Cembranoids Found in Corals. Tet. Lett. 2011, 52, 3315–3319. [Google Scholar] [CrossRef]
- Li, Y.; Pattenden, G. Perspectives on the Structural and Biosynthetic Interrelationships between Oxygenated Furanocembranoids and Their Polycyclic Congeners Found in Corals. Nat. Prod. Rep. 2011, 28, 1269–1310. [Google Scholar] [CrossRef]
- Scesa, P.D.; West, L.M.; Roche, S.P. Role of Macrocyclic Conformational Steering in a Kinetic Route toward Bielschowskysin. J. Am. Chem. Soc. 2021, 143, 7566–7577. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Grkovic, T.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2024, 41, 162–207. [Google Scholar] [CrossRef] [PubMed]
- Avhad, A.B.; Bhangale, C.J. Marine Natural Products and Derivatives. RPS Pharm. Pharmacol. Rep. 2023, 2, rqad008. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Oh, S.; Ramsey, K.H.; Jacobson, P.B.; Glaser, K.B.; Romanic, A.M. Escherichia coli Lipopolysaccharide Potentiation and Inhibition of Rat Neonatal Microglia Superoxide Anion Generation: Correlation with Prior Lactic Dehydrogenase, Nitric Oxide, Tumor Necrosis Factor-a, Thromboxane B2, and Metalloprotease Release. Shock 1999, 11, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Corbett, Y.; Herrera, L.; González, J.; Cubilla, L.; Capson, T.; Colley, P.D.; Kursar, T.A.; Romero, L.I.; Ortega-Barria, E. A Novel DNA-Based Microfluorimetric Method to Evaluate Antimalarial Drug Activity. J. Trop. Med. Hyg. 2004, 70, 119–124. [Google Scholar] [CrossRef]
- Collins, L.A.; Franzblau, S.G. Microplate Alamar Blue Assay Versus BACTEC 460 System for High—Throughput Screening of Compounds Against Mycobacterium tuberculosis and Mycobacteium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009. [Google Scholar] [CrossRef]
Kallopterolide A (1) | Kallopterolide B (2) | Kallopterolide I (9) | ||||
---|---|---|---|---|---|---|
Atom | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b |
1 | 135.5 (C) | 135.4 (C) | 135.4 (C) | |||
2 | 10.10, s, 1H | 190.6 (CH) | 10.10, s, 1H | 190.7 (CH) | 10.10, s, 1H | 190.6 (CH) |
3 | 173.8 (C) | 173.5 (C) | ||||
4 | 130.9 (C) | 130.9 (C) | ||||
5 | 7.06, dd, 1H (1.2, 1.0) | 146.8 (CH) | 7.10, dd, 1H (1.6, 1.5) | 147.0 (CH) | ||
6 | 5.34, ddd, 1H (3.9, 2.0, 1.9) | 79.8 (CH) | 5.05, dd, 1H (1.7, 1.6) c | 80.0 (CH) | ||
7 | 2.21, dd, 1H (10.0, 4.3) | 53.5 (CH) | 2.60, dd, 1H (7.0, 7.0) | 52.8 (CH) | ||
8 | 5.16, ddd, 1H (10.3, 1.4, 1.0) | 80.1 (CH) | 5.07, m, 1H c | 79.9 (CH) | 204.5 (C) | |
9α | 7.09, dd, 1H (1.6, 1.2) | 147.4 (CH) | 7.13, d, 1H (1.4) | 146.8 (CH) | 2.98, dd, 1H (17.6, 6.8) | 46.9 (CH2) |
9β | 2.63, dd, 1H (17.6, 7.0) | |||||
10 | 134.6 (C) | 134.6 (C) | 5.28, ddd, 1H (7.0, 6.8, 1.6) | 76.8 (CH) | ||
11 | 2.29, m, 2H | 24.5 (CH2) | 2.28, m, 2H | 24.6 (CH2) | 7.17, dd, 1H (1.5, 1.0) | 147.8 (CH) |
12 | 2.52, m, 2H | 23.4 (CH2) | 2.52, m, 2H | 23.4 (CH2) | 133.9 (C) | |
13 | 156.8 (C) | 156.9 (C) | 2.25, m, 2H | 24.4 (CH2) | ||
14 | 2.03, s, 3H | 23.4 (CH3) | 2.03, s, 3H | 23.4 (CH3) | 2.50, m, 2H | 23.3 (CH2) |
15 | 2.21, s, 3H | 19.4 (CH3) | 2.21, s, 3H | 19.4 (CH3) | 156.9 (C) | |
16 | 1.92, d (1.7) | 10.8 (CH3) | 1.94, d (1.6) | 10.7 (CH3) | 2.19, s, 3H | 19.3 (CH3) |
17 | 137.8 (C) | 139.2 (C) | 2.01, s, 3H | 23.4 (CH3) | ||
18α | 4.89, br s, 1H | 117.1 (CH2) | 4.83, br s, 1H | 116.8 (CH2) | ||
18β | 5.07, br s, 1H | 5.08, br s, 1H | ||||
19 | 1.72, br s, 3H | 23.7 (CH3) | 1.81, br s, 3H | 23.6 (CH3) | 2.21, s, 3H | 30.5 (CH3) |
20 | 172.9 (C) | 173.0 (C) | 173.2 (C) |
Kallopterolide A (1) | Kallopterolide B (2) | |||
---|---|---|---|---|
Atom | δH, Mult, Intgrt (J in Hz) | δC (Mult) | δH, Mult, Intgrt (J in Hz) | δC (Mult) |
5 | 7.06, dd, 1H (1.2, 1.0) | 146.8 (CH) | 7.10, dd, 1H (1.6, 1.5) | 147.0 (CH) |
6 | 5.34, ddd, 1H (3.9, 2.0, 1.9) | 79.8 (CH) | 5.05, dd, 1H (1.7, 1.6) | 80.0 (CH) |
7 | 2.21, dd, 1H (10.0, 4.3) | 53.5 (CH) | 2.60, dd, 1H (7.0, 7.0) | 52.8 (CH) |
8 | 5.16, ddd, 1H (10.3, 1.4, 1.0) | 80.1 (CH) | 5.07, m, 1H | 79.9 (CH) |
9 | 7.09, dd, 1H (1.6, 1.2) | 147.4 (CH) | 7.13, d, 1H (1.4) | 146.8 (CH) |
6S,7S,8R | 6S,7S,8S | 6R,7S,8R | 6R,7S,8S | |
---|---|---|---|---|
A | {1.73/0.19/1.49} | {0.50/0.20/1.39} | {0.41/0.19/1.28} | {1.51/0.18/1.65} |
B | {0.42/0.20/1.32} | {2.05/0.25/1.28} | {1.73/0.25/1.24} | {0.59/0.20/1.49} |
Kallopterolide C (3) | Kallopterolide D (4) | Kallopterolide E (5) | ||||
---|---|---|---|---|---|---|
Atom | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b |
1 | 135.4 (C) | 135.5 (C) | 135.5 (C) | |||
2 | 10.10, s, 1H | 190.7 (CH) | 10.10, s, 1H | 192.7 (CH) | 10.10, s, 1H | 190.6 (CH) |
3 | 170.0 (C) | 170.0 (C) | 170.0 (C) | |||
4 | 131.3 (C) | 129.3 (C) | 129.5 (C) | |||
5 | 7.88, q, 1H (1.5) | 136.5 (CH) | 7.05, dd, 1H (1.5, 1.0) | 138.6 (CH) | 7.02, dd, 1H (1.5, 1.0) | 138.5 (CH) |
6 | 149.5 (C) | 146.9 (C) | 146.0 (C) | |||
7 | 5.62, s, 1H | 117.4 (CH) | 5.43, s, 1H | 118.3 (CH) | 5.37, s, 1H | 119.2 (CH) |
8 | 72.7 (C) | 71.8 (C) | 72.0 (C) | |||
9α | 2.09, dd, 1H (15.0, 2.8) | 46.3 (CH2) | 2.11, dd, 1H (14.6, 4.3) | 45.8 (CH2) | 2.40, dd, 1H (14.7, 3.5) | 45.1 (CH2) |
9β | 1.77, dd, 1H (15.0, 10.3) | 1.92, dd, 1H (14.6, 8.3) | 1.85, dd, 1H (14.6, 5.3) | |||
10 | 5.08, ddd, 1H (10.3, 2.8, 1.5) | 78.8 (CH) | 5.15, ddd, 1H (8.2, 4.2, 2.6) | 80.9 (CH) | 5.07, ddd, 1H (5.1, 3.4, 1.7) | 78.8 (CH) |
11 | 7.07, d, 1H (1.5) | 148.6 (CH) | 7.14, dd, 1H (2.8, 1.4) | 149.6 (CH) | 7.12, dd, 1H (1.6, 1.2) | 149.1 (CH) |
12 | 133.6 (C) | 133.1 (C) | 133.2 (C) | |||
13 | 2.27, m, 2H | 24.2 (CH2) | 2.26, m, 2H | 24.4 (CH2) | 2.26, m, 2H | 24.4 (CH2) |
14 | 2.50, m, 2H | 23.3 (CH2) | 2.50, m, 2H | 23.4 (CH2) | 2.49, m, 2H | 23.3 (CH2) |
15 | 157.1 (C) | 156.7 (C) | 156.8 (C) | |||
16 | 2.21, s, 3H | 19.4 (CH3) | 2.20, s, 3H | 19.4 (CH3) | 2.20, s, 3H | 19.4 (CH3) |
17 | 2.03, s, 3H | 23.4 (CH3) | 2.01, s, 3H | 23.4 (CH3) | 2.01, s, 3H | 23.4 (CH3) |
18 | 2.02, s, 3H | 10.8 (CH3) | 2.01, s, 3H | 10.5 (CH3) | 2.00, s, 3H | 10.5 (CH3) |
19 | 1.48, s, 3H | 30.8 (CH3) | 1.55, s, 3H | 30.1 (CH3) | 1.53, s, 3H | 28.9 (CH3) |
20 | 172.7 (C) | 173.5 (C) | 173.2 (C) | |||
8 OH | 2.99, br s, 1H |
SS-E | SS-Z | SR-Z | SR-E | |
---|---|---|---|---|
C | 1.23 | 1.83 | 2.02 | 1.37 |
D | 1.71 | 1.34 | 1.66 | 1.45 |
E | 1.75 | 1.12 | 1.66 | 1.50 |
Kallopterolide F (6) | Kallopterolide G (7) | Kallopterolide H (8) | ||||
---|---|---|---|---|---|---|
Atom | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b | δH, Mult, Intgrt (J in Hz) | δC (Mult) b |
1 | 135.5 (C) | 135.5 (C) | 124.8 (C) | |||
2 | 10.10, s, 1H | 190.7 (CH) | 10.10, s, 1H | 190.7 (CH) | 172.3 (C) | |
3 | 174.3 (C) | 174.4 (C) | 174.4 (C) | |||
4 | 130.1 (C) | 130.1 (C) | 130.1 (C) | |||
5 | 6.93, dd, 1H (1.6, 1.5) | 147.5 (CH) | 6.95, dd, 1H (1.5, 1.0) | 147.6 (CH) | 6.94, dd, 1H (1.6, 1.5) | 147.6 (CH) |
6 | 5.59, ddq, 1H (8.6, 1.7, 1.6) | 77.5 (CH) | 5.59, ddq, 1H (8.6, 1.8, 1.7) | 77.5 (C) | 5.59, ddd, 1H (8.8, 3.6, 1.8) | 77.5 (C) |
7 | 5.08, dd, 1H (8.6, 1.0) | 122.3 (CH) | 5.04, dd, 1H (8.6, 1.7) | 122.9 (CH) | 5.03, dd, 1H (8.9, 1.5) | 122.9 (CH) |
8 | 138.1 (C) | 138.1 (C) | 138.0 (C) | |||
9α | 2.43, dd, 1H (14.7, 5.4) | 42.7 (CH2) | 2.36, m, 2H | 43.4 (CH2) | 2.37, m, 2H | 43.4 (CH2) |
9β | 2.34, dd, 1H (14.7, 7.7) | |||||
10 | 4.98, ddd, 1H (7.3, 5.5, 1.6) | 79.6 (CH) | 5.02, m, 1H | 79.1 (CH) | 5.00, ddd, 1H (9.0, 7.6, 1.4) | 79.0 (CH) |
11 | 7.05, d, 1H (1.3) | 147.7 (CH) | 7.05, d, 1H (1.3) | 147.8 (CH) | 7.05, d, 1H (1.2) | 148.1 (CH) |
12 | 134.2 (C) | 134.2 (C) | 134.0 (C) | |||
13 | 2.27, m, 2H | 24.5 (CH2) | 2.27, m, 2H | 24.5 (CH2) | 2.42, m, 2H | 24.8 (CH2) |
14 | 2.50, m, 2H | 23.4 (CH2) | 2.51, m, 2H | 23.4 (CH2) | 2.58, m, 2H | 27.8 (CH2) |
15 | 157.1 (C) | 157.0 (C) | 149.0 (C) | |||
16 | 2.21, s, 3H | 19.4 (CH3) | 2.21, s, 3H | 19.4 (CH3) | 1.90, s, 3H | 23.1 (CH3) |
17 | 2.03, s, 3H | 23.5 (CH3) | 2.03, s, 3H | 23.5 (CH3) | 2.10, s, 3H | 23.5 (CH3) |
18 | 1.93, d, 3H (1.6) | 10.7 (CH3) | 1.93, d, 3H (1.5) | 10.7 (CH3) | 1.93, d, 3H (1.5) | 10.6 (CH3) |
19 | 1.87, d, 3H (1.0) | 18.1 (CH3) | 1.91, d, 3H (1.7) | 17.2 (CH3) | 1.91, d, 3H (1.5) | 17.1 (CH3) |
20 | 173.3 (C) | 173.4 (C) | 173.4 (C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrero, J.; Amador, L.A.; Novitskiy, I.M.; Kutateladze, A.G.; Rodríguez, A.D. Kallopterolides A–I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos. Molecules 2024, 29, 2493. https://doi.org/10.3390/molecules29112493
Marrero J, Amador LA, Novitskiy IM, Kutateladze AG, Rodríguez AD. Kallopterolides A–I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos. Molecules. 2024; 29(11):2493. https://doi.org/10.3390/molecules29112493
Chicago/Turabian StyleMarrero, Jeffrey, Luis A. Amador, Ivan M. Novitskiy, Andrei G. Kutateladze, and Abimael D. Rodríguez. 2024. "Kallopterolides A–I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos" Molecules 29, no. 11: 2493. https://doi.org/10.3390/molecules29112493
APA StyleMarrero, J., Amador, L. A., Novitskiy, I. M., Kutateladze, A. G., & Rodríguez, A. D. (2024). Kallopterolides A–I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos. Molecules, 29(11), 2493. https://doi.org/10.3390/molecules29112493