Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study
Abstract
:1. Introduction
2. Results
3. Materials and Methodology
3.1. Materials
3.2. Methods
3.2.1. Synthesis of Catalysts
3.2.2. Catalytic Test
3.2.3. Catalyst Reuse
3.2.4. Statistical Analysis
3.2.5. Characterizations
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasi, T.U.; Ahmad, M.; Asma, M.; Rozina; Munir, M.; Zafar, M.; Katubi, K.M.; Alsaiari, N.S.; Yahya, A.E.M.; Mubashir, M.; et al. High efficient conversion of Cannabis sativa L. biomass into bioenergy by using green tungsten oxide nano-catalyst towards carbon neutrality. Fuel 2023, 336, 126796. [Google Scholar] [CrossRef]
- Malpartida, I.; Maireles-Torres, P.; Vereda, C.; Rodríguez-Maroto, J.M.; Halloumi, S.; Lair, V.; Thiel, J.; Lacoste, F. Semi-continuous mechanochemical process for biodiesel production under heterogeneous catalysis using calcium diglyceroxide. Renew. Energy 2020, 159, 117. [Google Scholar] [CrossRef]
- Farokhi, G.; Saidi, M. Catalytic activity of bimetallic spinel magnetic catalysts (NiZnFe2O4, CoZnFe2O4 and CuZnFe2O4) in biodiesel production process from neem oil: Process evaluation and optimization. Chem. Eng. Process. Process Intensif. 2022, 181, 109170. [Google Scholar] [CrossRef]
- Karmakar, B.; Ghosh, B.; Samanta, S.; Halder, G. Sulfonated catalytic esterification of Madhuca indica oil using waste Delonix regia: L16 Taguchi optimization and kinetics. Sustain. Energy Technol. Assess. 2020, 37, 100568. [Google Scholar] [CrossRef]
- Ganesha, T.; Prakash, S.B.; Rani, S.S.; Ajith, B.S.; Patel, G.C.M.; Samuel, O.D. Biodiesel yield optimization from ternary (animal fat-cotton seed and rice bran) oils using response surface methodology and grey wolf optimizer. Ind. Crops Prod. 2023, 206, 117569. [Google Scholar] [CrossRef]
- Karimi, S.; Saidi, M. Converting neem seed-derived oil into biodiesel using zeolite ZSM-5 as an efficient catalyst via electrosynthesis procedure: Optimization of operating variables using response surface methodology (RSM). Process Saf. Environ. Prot. 2024, 183, 111. [Google Scholar] [CrossRef]
- Hasannia, S.; Kazemeini, M.; Seif, A. Optimizing parameters for enhanced rapeseed biodiesel production: A study on acidic and basic carbon-based catalysts through experimental and DFT evaluations. Energy Convers. Manag. 2024, 303, 118201. [Google Scholar] [CrossRef]
- Grosmann, M.T.; Andrade, T.A.; Bitonto, L.D.; Pastore, C.; Corazza, M.L.; Tronci, S.; Errico, M. Hydrated metal salt pretreatment and alkali catalyzed reactive distillation: A two-step production of waste cooking oil biodiesel. Chem. Eng. Process Process Intensif. 2022, 176, 108980. [Google Scholar] [CrossRef]
- Ibrahim, S.M. Preparation, characterization and application of novel surface-modified ZrSnO4 as Sn-based TMOs catalysts for the stearic acid esterification with methanol to biodiesel. Renew. Energy 2021, 173, 151. [Google Scholar] [CrossRef]
- Lin, X.; Li, M.; Chen, Z.; Li, M.; Huang, Y.; Qiu, T. One-step fabrication of polymeric self-solidifying ionic liquids as the efficient catalysts for biodiesel production. J. Clean. Prod. 2021, 292, 125967. [Google Scholar] [CrossRef]
- Albuquerque, A.A.; Ng, F.T.T.; Danielski, L.; Stragevitch, L. A new process for biodiesel production from tall oil via catalytic distillation. Chem. Eng. Res. Des. 2021, 170, 314. [Google Scholar] [CrossRef]
- Al-Mawali, K.S.; Osman, A.I.; Al-Muhtaseb, A.A.H.; Mehta, N.; Jamil, F.; Mjalli, F.; Vakili-Nezhaad, G.R.; Rooney, D.W. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: A circular bioeconomy approach. Renew. Energy 2021, 170, 832. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, W. ZrMo oxides supported catalyst with hierarchical porous structure for cleaner and sustainable production of biodiesel using acidic oils as feedstocks. J. Clean. Prod. 2023, 384, 135594. [Google Scholar] [CrossRef]
- Elouahed, S.K.; Asikin-Mijan, N.; Alsultan, G.A.; Kaddour, O.; Yusop, M.R.; Mimoun, H.; Samidin, S.; Mansir, N.; Taufiq-Yap, Y.H. Optimization of the activity of Mo7-Zn3/CaO catalyst in the transesterification of waste cooking oil into sustainable biodiesel via response surface methodology. Energy Convers. Manag. 2024, 303, 118185. [Google Scholar] [CrossRef]
- Amirkhanyan, N.; Kirakosyan, H.; Zakaryan, M.; Zurnachyan, A.; Rodriguez, M.A.; Abovyan, L.; Aydinyan, S. Sintering of silicon carbide obtained by combustion synthesis. Ceram. Int. 2023, 49, 26129. [Google Scholar] [CrossRef]
- Betinelli, G.A.D.A.; Modolon, H.B.; Wermuth, T.B.; Raupp-Pereira, F.; Montedo, O.R.K.; Vassen, A.B.; Demétrio, K.B.; Arcaro, S. Combustion synthesis of nanostructured calcium silicates: A new approach to develop bioceramic cements in endodontics. Ceram. Int. 2024, 50, 4544. [Google Scholar] [CrossRef]
- Chudakova, M.V.; Popov, M.V.; Korovchenko, P.A.; Pentsak, E.O.; Latypova, A.R.; Kurmashov, P.B.; Pimenov, A.A.; Tsilimbaeva, E.A.; Levin, I.S.; Bannov, A.G.; et al. Effect of potassium in catalysts obtained by the solution combustion synthesis for co-production of hydrogen and carbon nanofibers by catalytic decomposition of methane. Chem. Eng. Sci. 2024, 284, 119408. [Google Scholar] [CrossRef]
- Silva, A.L.; Farias, A.F.F.; Pontes, J.R.M.; Rodrigues, A.M.; Costa, A.C.F.D.M. Synthesis of the ZnO-Ni0.5Zn0.5Fe2O4-Fe2O3 magnetic catalyst in pilot-scale by combustion reaction and its application on the biodiesel production process from oil residual. Arab. J. Chem. 2020, 13, 7665. [Google Scholar] [CrossRef]
- Alanis, C.; Córdoba, L.I.Á.; Álvarez-Arteaga, G.; Romero, R.; Padilla-Rivera, A.; Natividad, R. Strategies to improve the sustainability of the heterogeneous catalysed biodiesel production from waste cooking oil. J. Clean. Prod. 2022, 380, 134970. [Google Scholar] [CrossRef]
- Wang, Q.; Wenlei, X.; Guo, L. Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils. Renew. Energy 2022, 187, 907. [Google Scholar] [CrossRef]
- Sebayang, A.H.; Kusumo, F.; Milano, J.; Shamsuddin, A.H.; Silitonga, A.S.; Ideris, F.; Siswantoro, J.; Veza, I.; Mofijur, M.; Chia, S.R. Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel 2023, 346, 128404. [Google Scholar] [CrossRef]
- Alotaibi, M.A.; Naeem, A.; Khan, I.W.; Farooq, M.; Din, I.U.; Saharun, M.S. Optimization and cost analysis evaluation studies of the biodiesel production from waste cooking oil using Na–Si/Ce-500 heterogeneous catalyst. Biomass Bioenergy 2024, 182, 107078. [Google Scholar] [CrossRef]
- Xie, W.; Gao, C.; Li, J. Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites. Renew. Energy 2021, 168, 927. [Google Scholar] [CrossRef]
- Abdelbasset, W.K.; Alrawaili, S.M.; Elsayed, S.H.; Diana, T.; Ghazali, S.; Felemban, B.F.; Zwawi, M.; Algarni, M.; Su, C.-H.; Nguyen, H.C.; et al. Optimization of heterogeneous Catalyst-assisted fatty acid methyl esters biodiesel production from Soybean oil with different Machine learning methods. Arab. J. Chem. 2022, 15, 103915. [Google Scholar] [CrossRef]
- Badia, J.H.; Ramírez, E.; Soto, R.; Bringué, R.; Tejero, J.; Cunill, F. Optimization and green metrics analysis of the liquid-phase synthesis of sec-butyl levulinate by esterification of levulinic acid with 1-butene over ion-exchange resins. Fuel Process. Technol. 2021, 220, 106893. [Google Scholar] [CrossRef]
- Bastos, R.R.C.; da Luz Corrêa, A.P.; da Luz, P.T.S.; da Rocha Filho, G.N.; Zamian, J.R.; da Conceição, L.R.V. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Convers. Manag. 2020, 205, 112457. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Gumbyte, M. Application of dolomite as solid base catalyst for transesterification of rapeseed oil with butanol. Sustain. Energy Technol. Assess. 2022, 52, 102278. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selvan, V.A.M. Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresour. Technol. Rep. 2021, 14, 100658. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ehinmowo, A.B.; Ajala, M.A.; Ohiro, O.A.; Aderibigbe, F.A.; Ajao, A.O. Optimisation of CaO-Al2O3-SiO2-CaSO4-based catalysts performance for methanolysis of waste lard for biodiesel production using response surface methodology and meta-heuristic algorithms. Fuel Process. Technol. 2022, 226, 107066. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gokul, C.; Dheen, S.A.T.; Eashwar, S.J.; Kumar, N.A. Application of grey relational analysis in biodiesel production from linseed oil using novel eggshell catalyst. Mater. Today Proc. 2021, 45, 1962. [Google Scholar] [CrossRef]
- Novaes, C.G.; Yamaki, R.T.; de Paula, V.F.; Júnior, B.B.D.N.; Barreto, J.A.; Valasques, G.S.; Bezerra, M.A. Optimization of Analytical Methods Using Response Surface Methodology—Part I: Process Variables. Rev. Virtual De Química 2017, 9, 1184. [Google Scholar] [CrossRef]
- Gonçalves, M.A.; Mares, E.K.L.; Zamian, J.R.; da Rocha Filho, G.N.; da Conceição, L.R.V. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel 2021, 304, 121463. [Google Scholar] [CrossRef]
- de Brito, V.L.; Gonçalves, M.A.; Santos, H.C.L.D.; da Rocha Filho, G.N.; da Conceição, L.R.V. Biodiesel production from waste frying oil using molybdenum over niobia as heterogeneous acid catalyst: Process optimization and kinetics study. Renew. Energy 2023, 215, 118947. [Google Scholar] [CrossRef]
- Pinto, B.F.; Garcia, M.A.S.; Costa, J.C.S.; de Moura, C.V.R.; de Abreu, W.C.; de Moura, E.M. Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: Screening of substrates for biodiesel production. Fuel 2019, 239, 290. [Google Scholar] [CrossRef]
- Dantas, J.; Leal, E.; Mapossa, A.B.; Pontes, J.R.M.; Freitas, N.L.; Fernandes, P.C.R.; Costa, A.C.F.M. Biodiesel production on bench scale from different sources of waste oils by using NiZn magnetic heterogeneous nanocatalyst. Int. J. Energy Res. 2021, 45, 10924. [Google Scholar] [CrossRef]
- Hou, X.; Huang, J.; Liu, M.; Li, X.; Hu, Z.; Feng, Z.; Zhang, M.; Luo, J. Single-Crystal MoO3 Micrometer and millimeter belts prepared from discarded molybdenum disilicide heating elements. Sci. Rep. 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Al-Alotaibi, A.L.; Altamimi, N.; Howsawi, E.; Elsayed, K.A.; Massoudi, I.; Ramadan, A.E. Synthesis and Characterization of MoO3 for Photocatalytic Applications. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2017. [Google Scholar] [CrossRef]
- Sales, H.B.; Menezes, R.R.; Neves, G.A.; Souza, J.J.N.; Ferreira, J.M.; Chantelle, L.; de Oliveira, A.L.M.; Lira, H.D.L. Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents. Sustainability 2020, 12, 7393. [Google Scholar] [CrossRef]
- Joya, M.; Alfonso, J.; Moreno, L. Photoluminescence and Raman studies of α-MoO3 doped with erbium and neodymium. Curr. Sci. 2019, 116, 1690. [Google Scholar] [CrossRef]
- Moura, J.; Silveira, J.; da Silva Filho, J.; Filho, A.S.; Luz-Lima, C.; Freire, P. Temperature-induced phase transition in h-MoO3: Stability loss mechanism uncovered by Raman spectroscopy and DFT calculations. Vib. Spectrosc. 2018, 98, 98. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, L.; Zhang, Z.; Dai, R.; Wang, Z.; Zhang, J.; Ding, Z. Raman studies of hexagonal MoO3 at high pressure. Phys. Status Solid 2011, 248, 1119. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Nguyen, H.N.; Oliveira, R.C.; Nadres, E.T.; Paparella, A.; Rodrigues, D.F. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and alpha-molybdenum trioxide nanoparticles. Nanoscale 2018, 10, 20702. [Google Scholar] [CrossRef] [PubMed]
- Shahsank, M.; Naik, H.S.B.; Sumedha, H.N.; Nagaraju, G. Implementing an in-situ carbon formation of MoO3 nanoparticles for high performance lithium-ion battery. Ceram. Int. 2021, 47, 10261. [Google Scholar] [CrossRef]
- Prakash, N.G.; Dhananjaya, M.; Narayana, A.L.; Shaik, D.P.M.D.; Rosaiah, P.; Hussain, O.M. High Performance One Dimensional α-MoO3 Nanorods for Supercapacitor Applications. Ceram. Int. 2018, 44, 9967. [Google Scholar] [CrossRef]
- Rammal, M.B.; Omanovic, S. Synthesis and characterization of NiO, MoO3, and NiMoO4 nanostructures through a green, facile method and their potential use as electrocatalysts for water splitting. Mater. Chem. Phys. 2020, 255, 123570. [Google Scholar] [CrossRef]
- Paula, H.M.D.; Fernandes, C.E. Otimização do tratamento de água cinza a partir do uso combinado de coagulantes químicos. Eng. Sanit. E Ambient. 2018, 23, 951. [Google Scholar] [CrossRef]
- Jain, S.; Adiga, K.; Verneker, V.P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 1981, 40, 71. [Google Scholar] [CrossRef]
- Silva, A.L.D.; Costa, A.C.F.D.M.; Farias, A.F.F.; Araujo, R.G. Dispositivo De Patente: Br 10 2021 018179 6—Síntese Por Reação De Combustão Do MoO3 Para Uso Como Catalisador Heterogêneo. Rev. De Propr. Ind. RPI RPI 2021, 2725, 36. [Google Scholar]
- Costa, A.; Kiminami, R. Dispositivo para produção de nanomateriais cerâmicos em larga escala por reação de combustão e processo contínuo de produção dos nanomateriais BR 10 2012 002180 3. Rev. De Propr. Ind. RPI 2012, 25, 002181. [Google Scholar]
- Amenaghawon, A.N.; Evbarunegbe, N.I.; Obahiagbon, K. Optimum biodiesel production from waste vegetable oil using functionalized cow horn catalyst: A comparative evaluation of some expert systems. Clean. Eng. Technol. 2021, 4, 100184. [Google Scholar] [CrossRef]
- Patil, S.A.; Arakerimath, D.R.R. Biodiesel Production Optimization using Heterogeneous Catalyst (Al2O3) in Karanja oil by Taguchi Method. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 5555. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
Oxides Present | Catalysts | |
---|---|---|
α/h-MoO3 | α-MoO3 | |
MoO3 | 99.79% | 99.57% |
Fe2O3 | 0.21% | 0.43% |
Experiment | (1) Time (min) | (2) Type of Catalyst | (3) Alcohol/Oil Ratio | Y = Conversion to Ester (%) |
---|---|---|---|---|
1 | 60 | α/h-MoO3 | 1/15- | 98.41 |
2 | 120 | α/h-MoO3 | 1/15 | 93.89 |
3 | 60 | α-MoO3 | 1/15 | 99.47 |
4 | 120 | α-MoO3 | 1/15 | 99.20 |
5 | 60 | α/h-MoO3 | 1/20 | 98.66 |
6 | 120 | α/h-MoO3 | 1/20 | 98.53 |
7 | 60 | α-MoO3 | 1/20 | 95.58 |
8 | 120 | α-MoO3 | 1/20 | 97.98 |
9(R) * | 60 | α/h-MoO3 | 1/15 | 99.89 |
10(R) * | 120 | α/h-MoO3 | 1/15 | 94.15 |
11(R) * | 60 | α-MoO3 | 1/15 | 99.39 |
12(R) * | 120 | α-MoO3 | 1/15 | 99.22 |
13(R) * | 60 | α/h-MoO3 | 1/20 | 97.51 |
14(R) * | 120 | α/h-MoO3 | 1/20 | 96.78 |
15(R) * | 60 | α-MoO3 | 1/20 | 95.55 |
16(R) * | 120 | α-MoO3 | 1/20 | 98.86 |
ANOVA Table | ||||
---|---|---|---|---|
Source of Variation | Quadratic Sum | Degrees of Freedom | Quadratic Mean | |
Regression | 51.63 | 6 | 8.60 | Fcal. of regression 17.71 |
Waste | 4.37 | 9 | 0.49 | Fcalc. of (Lack of fit) 1.42 |
Lack of adjustment | 0.66 | 1 | 0.66 | |
Pure error | 3.71 | 8 | 0.46 | |
Total | 56.00 | 15 | ||
Ftabelado REG | 3.37 | Fcal/Ftab (Regression) | 5.25 | |
Ftabelado da F. Aj | 5.32 | Fcal/Ftab (Lack of fit) | 0.27 | |
%Mx. explained | 92.19 | Model Statistics | ||
%Mx. explainable | 93.37 | R2 (%) | 92.19 | |
R2 | 0.92 | R2 adjusted (%) | 76.44 | |
Fit quality | 0.76 | Fcalc/Ftab (regression) | 5.25 | |
S (standard error of regression) | 0.70 | Fcalc/Ftab (lack of fit) | 0.27 | |
Regression standard error | 0.70 |
Levels | ||
---|---|---|
Variables | −1 | +1 |
(1) Time (min) | 60 | 120 |
(2) Type of catalyst | α/h-MoO3 | α-MoO3 |
(3) Alcohol/oil ratio | 15:1 | 20:1 |
Experiment | (1) Time (min) | (2) Type of Catalyst | (3) Alcohol/Oil Ratio |
---|---|---|---|
1 | − | − | − |
2 | + | − | − |
3 | − | + | − |
4 | + | + | − |
5 | − | − | + |
6 | + | − | + |
7 | − | + | + |
8 | + | + | + |
9(R) * | − | − | − |
10(R) * | + | − | − |
11(R) * | − | + | − |
12(R) * | + | + | − |
13(R) * | − | − | + |
14(R) * | + | − | + |
15(R) * | − | + | + |
16(R) * | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.L.d.; Pereira, H.d.L.; Sales, H.B.; Dionízio, J.K.; Alves, M.C.F.; Guedes, D.G.; Luna, C.B.B.; Costa, A.C.F.d.M. Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study. Molecules 2024, 29, 2404. https://doi.org/10.3390/molecules29102404
Silva ALd, Pereira HdL, Sales HB, Dionízio JK, Alves MCF, Guedes DG, Luna CBB, Costa ACFdM. Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study. Molecules. 2024; 29(10):2404. https://doi.org/10.3390/molecules29102404
Chicago/Turabian StyleSilva, Adriano Lima da, Helder de Lucena Pereira, Herbet Bezerra Sales, Juliana Kelly Dionízio, Mary Cristina Ferreira Alves, Danyelle Garcia Guedes, Carlos Bruno Barreto Luna, and Ana Cristina Figueiredo de Melo Costa. 2024. "Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study" Molecules 29, no. 10: 2404. https://doi.org/10.3390/molecules29102404
APA StyleSilva, A. L. d., Pereira, H. d. L., Sales, H. B., Dionízio, J. K., Alves, M. C. F., Guedes, D. G., Luna, C. B. B., & Costa, A. C. F. d. M. (2024). Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study. Molecules, 29(10), 2404. https://doi.org/10.3390/molecules29102404