An Aggregation-Induced Fluorescence Probe for Detection H2S and Its Application in Cell Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. AIE Effect of HND in Solution
2.2. Selectivity and Competition
2.3. H2S Response by Probe HND
2.4. Mechanism Investigation
2.5. Fluorescence Imaging
3. Materials and Methods
3.1. Materials
3.2. The Synthesis Process
3.3. Fluorescence Spectral Property
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; et al. H2S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine γ-Lyase. Science 2008, 322, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci. 2007, 28, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Quan, W.; Song, W.; Zhan, J.; Lin, W. Near-infrared fluorescent probe for visualizing hydrogen sulfide fluctuations during arthritis and its treatment. Microchem. J. 2023, 191, 108856. [Google Scholar] [CrossRef]
- Singh, S.; Padovani, D.; Leslie, R.A.; Chiku, T.; Banerjee, R. Relative Contributions of Cystathionine β-Synthase and γ-Cystathionase to H2S Biogenesis via Alternative Trans-sulfuration Reactions. J. Biol. Chem. 2009, 284, 22457–22466. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 2013, 49, 403–405. [Google Scholar] [CrossRef]
- Giuliani, D.; Ottani, A.; Zaffe, D.; Galantucci, M.; Strinati, F.; Lodi, R.; Guarini, S. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem. 2013, 104, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.; Zeng, A.; Leng, J.; Zhao, W. Engineering a mitochondria-targeted ratiometric fluorescent probe with a large Stokes shift for H2S-specific assaying in foodstuffs and living cells. Sens. Actuators B Chem. 2021, 343, 130095. [Google Scholar] [CrossRef]
- Wu, L.; Ishigaki, Y.; Hu, Y.; Sugimoto, K.; Zeng, W.; Harimoto, T.; Sun, Y.; He, J.; Suzuki, T.; Jiang, X.; et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 2020, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, G.; Jia, X.; Wu, L.; Wang, R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol. 2005, 569, 519–531. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Hou, P. A novel imidazo [1,5-α]pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide. Sens. Actuators B Chem. 2018, 256, 1086–1092. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Y.; Huo, F.; Yin, C. Based ‘successive’ nucleophilic substitution mitochondrial-targeted H2S red light emissive fluorescent probe and its imaging in mice. Sens. Actuators B Chem. 2019, 297, 126773. [Google Scholar] [CrossRef]
- Jin, L.; Tan, X.; Dai, L.; Bai, H.; Wang, Q. Modulation of fluorescence sensing properties of coumarin-based fluorescent probe for H2S and its application in cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 221, 117187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yang, Y.; Wu, Y.; Yang, B.; Chai, J.; Hu, X.; Liu, B. To re-evaluate the emission mechanism, AIE activity of 5-azidofluorescein and its reaction with H2S and NO. Sens. Actuators BChem. 2018, 256, 79–88. [Google Scholar] [CrossRef]
- Gunduz, H.; Almammadov, T.; Dirak, M.; Acari, A.; Bozkurt, B.; Kolemen, S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem. Biol. 2023, 4, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Ren, N.; Liu, X.; Dong, Y.; Wang, R.; Gao, J.; Sun, J.; Zhu, Y.; Wang, L.; Fan, C.; et al. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew. Chem. 2021, 60, 8450–8454. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Yu, H.; Ryu, K.; Park, J.; Subedi, S.; Lee, K.-H. Design and synthesis of fluorescent peptide-based probes with aggregation-induced emission characteristic for detecting CH3Hg+ and Hg2+ in aqueous environment: Tuning fluorescent detection for CH3Hg+ by replacing peptide receptors. Dye. Pigment. 2022, 204, 110461. [Google Scholar] [CrossRef]
- Nicol, A.; Qin, W.; Kwok RT, K.; Burkhartsmeyer, J.M.; Zhu, Z.; Su, H.; Luo, W.; Lam JW, Y.; Qian, J.; Wong, K.S.; et al. Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chem. Sci. 2017, 8, 4634–4643. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, B.; Hu, X.; Liu, B. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of alpha-cyanostilbenes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 117–122. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, G.; Chen, J.; Kong, L.; Yang, L.; Bi, H.; Yang, J. An AIE active probe for specific sensing of Hg2+ based on linear conjugated bis-Schiff base. Sens. Actuators B Chem. 2016, 229, 338–346. [Google Scholar] [CrossRef]
- Hou, J.; Huang, Y.; Fu, L.; Sun, M.; Wang, L.; Guo, R.; Chen, L.; Lv, C. Evaluating the Effect of Hydrogen Sulfide in the Idiopathic Pulmonary Fibrosis Model with a Fluorescent Probe. Anal. Chem. 2023, 95, 5514–5521. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gu, X.; Li, Q.; Gao, J.; Shi, B.; Xu, G.; Zhu, T.; Tian, H.; Zhao, C. Aggregation Enhanced Responsiveness of Rationally Designed Probes to Hydrogen Sulfide for Targeted Cancer Imaging. J. Am. Chem. Soc. 2020, 142, 15084–15090. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, L.H.; Xu, S.; Ren, T.B.; Zhang, X.X.; Qin, Z.J.; Zhang, X.B.; Yuan, L. Engineering of Reversible NIR-II Redox-Responsive Fluorescent Probes for Imaging of Inflammation In Vivo. Angew. Chem. Int. Ed. Engl. 2022, 61, e202211409. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Tan, J.; Wu, Y.; You, J.; Xie, X.; Zhang, Z.; Li, Z.; Chen, L. NIR Light-Activated Mitochondrial RNA Cross-Linking Strategy for H2S Monitoring and Prolonged Colorectal Tumor Imaging. Anal. Chem. 2023, 95, 17089–17098. [Google Scholar] [CrossRef] [PubMed]
- Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Fluorescent fiber-optic calcium sensor for physiological measurements. Anal. Chem. 1996, 68, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Qi, F.; Xiong, Y.; Lu, J. A chemiluminescent sensor for imaging endogenous hydrogen polysulfides in a living system. Analyst 2023, 148, 3347–3353. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kumar, V.; Jose, D.A. A ruthenium nitrosyl complex-based highly selective colorimetric sensor for biological H2S and H2S-NO cross-talk regulated release of NO. Dalton Trans. 2023, 52, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, X.; Guo, M.-Y.; Chen, X.-Y.; Li, T.; Yan, R.; Yang, Y.-S.; Zhu, H.-L.; Hu, Z.-G. Imaging the dynamic processes of hydrogen sulfide using a rapid “turn-on” mitochondria-targeting fluorescent probe. Sens. Actuators B Chem. 2022, 369, 132285. [Google Scholar] [CrossRef]
- Zhang, C.L.; Liu, C.; Ding, Y.W.; Wang, H.T.; Nie, S.R.; Zhang, Y.P. A novel fluorescent probe based on naphthimide for H2S identification and application. Anal. Biochem. 2023, 677, 115232. [Google Scholar] [CrossRef]
- Du, Y.; Wang, H.; Zhang, T.; Wen, W.; Li, Z.; Bi, M.; Liu, J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120390. [Google Scholar] [CrossRef]
- Zeng, S.; Li, S.J.; Sun, X.J.; Li, M.Q.; Ma, Y.Q.; Xing, Z.Y.; Li, J.L. A naphthalene-quinoline based chemosensor for fluorescent “turn-on” and absorbance-ratiometric detection of Al3+ and its application in cells imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Zhi, W.; Huang, Y.; Han, J.; Wang, Y.; Ren, Y.; Ni, L. A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: An application to bio-imaging. Sens. Actuators B Chem. 2018, 260, 243–254. [Google Scholar] [CrossRef]
- Chen, G.; Xu, J.; Zhan, Z.; Gao, X.; Jiao, M.; Ren, M.; Lv, L.; Chen, T.; Li, Y.; Liu, Y. A bright two-photon fluorescence probe with large stokes shift for deep tissue imaging of H2S during metabolism. Dye. Pigment. 2020, 172, 107850. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Cai, S.; Ding, H.; He, S.; Zhao, L.; Zeng, X.; Gong, J. Novel near-infrared spectroscopic probe for visualizing hydrogen sulfide in lysosomes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 271, 120917. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, D.; Yang, X.; Yuan, F.; Yang, S.; Yang, Y.; Wang, K.; Qian, J.; Long, L. Construction of bifunctional fluorescent probe for two-step cascade recognition of hydrogen sulfide and biothiols in biological system. Sens. Actuators B Chem. 2023, 381, 133440. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, X.; Yang, B.; Liu, B. Dual sites fluorescence probe for hydrogen sulfide: AIEE activity and supramolecular assembly with β-cyclodextrin. Sens. Actuators B Chem. 2019, 282, 743–749. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Wang, Z.; Zhang, G.; Chen, X.; Zhang, Y.; Luo, Y.; Gao, G.; Zhou, X. A water-soluble NIR fluorescent probe capable of rapid response and selective detection of hydrogen sulfide in food samples and living cells. Talanta 2023, 256, 124303. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Feng, Y.; Jiang, Y.; Qiu, F.; Wang, Y.; Song, X.; Tang, X.; Zhang, G.; Liu, W. A coumarin-based colorimetric fluorescent probe for rapid response and highly sensitive detection of hydrogen sulfide in living cells. Talanta 2019, 197, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, H.; Qin, L.; Zhao, M.; Pan, C. Rational development of an ESIPT-based fluorescent probe with large Stokes shift for imaging of hydrogen sulfide in live cells. Bioorg Chem. 2022, 129, 106158. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, J.; Zhang, N.; Li, D.; Xiao, S.; Zheng, K. A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sens. Actuators B Chem. 2018, 258, 156–162. [Google Scholar] [CrossRef]
- Li, Y.; Chu, T.S. DFT/TDDFT study on the sensing mechanism of a fluorescent probe for hydrogen sulfide: Excited state intramolecular proton transfer coupled twisted intramolecular charge transfer. J. Phys. Chem. A 2017, 121, 5245–5256. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Manna, U.; Ray, T.; Das, G. An aggregation-induced emission (AIE) active probe for multiple targets: A fluorescent sensor for Zn2+ and Al3+ & a colorimetric sensor for Cu2+ and F−. Dalton Trans. 2015, 44, 18902–18910. [Google Scholar] [PubMed]
- Qin, X.; Liu, X.; Wang, J.; Chen, H.; Shen, X.C. A NIR ratiometric fluorescent probe for the rapid detection of hydrogen sulfide in living cells and zebrafish. Talanta 2024, 266, 125043. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Xia, L.; Huang, Q.; Huang, J.; Gu, Y.; Wang, P. Cyanine-based NIR fluorescent probe for monitoring H2S and imaging in living cells and in vivo. Talanta 2018, 184, 109–114. [Google Scholar] [CrossRef]
- Ou, P.; Wang, Y.; Hao, C.; Peng, Y.; Zhou, L.Y. Naphthalimide-based a highly selective two-photon fluorescent probe for imaging of hydrogen sulfide in living cells and inflamed tissue of mouse model. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.-H.; Zhang, H.-N.; Wang, W.-L.; Wang, Q.-M. An Aggregation-Induced Fluorescence Probe for Detection H2S and Its Application in Cell Imaging. Molecules 2024, 29, 2386. https://doi.org/10.3390/molecules29102386
Tang X-H, Zhang H-N, Wang W-L, Wang Q-M. An Aggregation-Induced Fluorescence Probe for Detection H2S and Its Application in Cell Imaging. Molecules. 2024; 29(10):2386. https://doi.org/10.3390/molecules29102386
Chicago/Turabian StyleTang, Xin-Hui, Hao-Na Zhang, Wen-Ling Wang, and Qing-Ming Wang. 2024. "An Aggregation-Induced Fluorescence Probe for Detection H2S and Its Application in Cell Imaging" Molecules 29, no. 10: 2386. https://doi.org/10.3390/molecules29102386
APA StyleTang, X. -H., Zhang, H. -N., Wang, W. -L., & Wang, Q. -M. (2024). An Aggregation-Induced Fluorescence Probe for Detection H2S and Its Application in Cell Imaging. Molecules, 29(10), 2386. https://doi.org/10.3390/molecules29102386