Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Properties
2.2. Thermo-Physical Properties
2.2.1. Density
2.2.2. Viscosity
2.2.3. Specific Heat Capacity
2.2.4. Thermal Conductivity
2.3. Thermal Energy Storage Capacity
2.4. XRD Analysis
2.5. FTIR Characterization
2.6. Raman Spectra
2.7. SEM Characterization
2.8. Molecular-Scale Analysis
2.8.1. RDF
2.8.2. Coordination Number
2.8.3. Angular Distribution Functions (ADF)
2.9. Thermal Stability
3. Materials and Methods
3.1. Materials and Synthesis
3.2. Characterization of Thermal Properties
3.3. Material Characterization
3.4. MD Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols and Acronyms
Symbols | |
ρ | Density, g/cm3 |
η | Viscosity, cp |
Eη | Energy for the activation of viscous flow, kJ·mol−1 |
Cp | Specific heat capacity, J·K−1·g−1 |
α | Thermal coefficient, - |
k | Thermal conductivity, w/mk |
ETES | Thermal energy storage capacity, J·cm−3 |
Nαβ | Coordination number |
R | Gas constant, J/(K·mol) |
Acronyms | |
TMS | NaNO3-KNO3-Na2SO4 |
TES | Thermal energy storage |
ETES | Volumetric thermal energy storage capacity |
XRD | X-ray diffraction |
FTIR | Fourier transform infrared |
SEM | Scanning electron microscope |
MD | Molecular dynamics |
CSP | Concentrating solar power |
DSC | Differential scanning calorimetry |
TG | Thermo-gravimetric |
RDF | Radial distribution function |
ADF | Angular distribution function |
References
- Kwasi-Effah, C.; Egware, H.; Obanor, A.; Ighodaro, O. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant. Heliyon 2023, 9, e16096. [Google Scholar] [CrossRef] [PubMed]
- Palacios, A.; Barreneche, C.; Navarro, M.E.; Ding, Y. Thermal energy storage technologies for concentrated solar power—A review from a materials perspective. Renew. Energy 2020, 156, 1244–1265. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.; Wang, X.; Sun, S.; Cui, D.; Pan, S.; Sheng, H. A review of eutectic salts as phase change energy storage materials inthe context of concentrated solar power. Int. J. Heat Mass. Tran. 2023, 205, 123904. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Siddiqui, S.; Sreedhar, I.; Parameshwaran, R. Molten salts: Potential candidates for thermal energy storage applications. Int. J. Energy Res. 2022, 46, 17755–17785. [Google Scholar] [CrossRef]
- Kousksou, T.; Bruel, P.; Jamil, A.; Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energ. Mat. Sol. C. 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Sang, L.; Lv, X.; Wang, Y.; Huang, J.; Wu, Y. Investigation of KNO2-KNO3-K2CO3 mixed molten salts with higher working temperature for supercritical CO2 concentrated solar power application. J. Energy Storage 2023, 61, 106724. [Google Scholar] [CrossRef]
- Sau, B.; Uranga, N.; Hernaiz, M.; Bauer, T. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog. Energy Combust. Sci. 2018, 67, 69–87. [Google Scholar]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A. Heat transfer fluids for concentrating solar power systems—A review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Pascual, S.; Lisbona, P.; Romeo, L. Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects. Energies 2022, 15, 8570. [Google Scholar] [CrossRef]
- Alnaimatand, F.; Rashid, Y. Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations and Proposed Solutions. Energies 2019, 12, 4164. [Google Scholar] [CrossRef]
- Aljaerani, H.; Samykano, M.; Saidur, R.; Pandey, A.; Kadirgama, K. Nanoparticles as molten salts thermophysical properties enhancer fo concentrated solar power: A critical review. J. Energy Storage 2021, 44, 103280. [Google Scholar] [CrossRef]
- Kunkel, S.; Klasing, F.; Hanke, A.; Bauer, T.; Bonk, A. Concentrating solar power at higher limits: First studies on molten nitrate salts at 600 °C in a 100 kg-scale hot tank. Sol. Energy Mater. Sol. Cells 2023, 258, 112412. [Google Scholar] [CrossRef]
- Caraballo, D.; Galán-Casado, S.; Caballero, Á.; Serena, S. Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies 2021, 14, 1197. [Google Scholar] [CrossRef]
- Pereira, J.; Moita, A.; Moreira, A. An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media. Energies 2023, 16, 1825. [Google Scholar] [CrossRef]
- Rong, Z.; Ding, J.; Wang, W.; Pan, G. Ab-initio molecular dynamics calculation on microstructures and thermophysical properties of NaCl-CaCl2-MgCl2 for concentrating solar power. Sol. Energy Mater. Sol. Cells 2020, 216, 110696. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.; Coventry, J. Sensible energy storage options for concentrating solar power plant operating above 600 °C. Renew. Sustain. Energy Rev. 2019, 107, 319–337. [Google Scholar] [CrossRef]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Kenisarin, M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Ren, N.; Zhi, R.; Ma, C. Experimental study on the thermal stability of a new molten salt with low melting point for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2018, 176, 181–189. [Google Scholar] [CrossRef]
- Olivares, R.; Chen, C.; Wright, S. The Thermal stability of molten Lithium-Sodium-Potassium carbonate and the influence of additives on the melting point. J. Sol. Energy Eng. 2012, 134, 041002. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, J.; Wei, X.L.; Jiang, G. Thermodynamic Investigation of the Eutectic Mixture of the LiNO3–NaNO3–KNO3–Ca(NO3)2 System. Int. J. Thermophys. 2017, 38, 142. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Ma, C. Improving the thermal properties of NaNO3-KNO3 for concentrating solar power by adding additives. Sol. Energy Mater. Sol. Cells 2017, 160, 263–268. [Google Scholar] [CrossRef]
- Nunes, V.; Queirós, C.; Lourenço, M.; Santos, F.; Nieto de Castro, C. Molten salts as engineering fluids—A review: Part I. Molten alkali nitrates. Appl. Energy 2016, 183, 603–611. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Lu, Y.; Wang, H.; MA, C. Novel low melting point binary nitrates for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2017, 164, 114–121. [Google Scholar] [CrossRef]
- Greis, O.; Bahamdan, K.; Uwais, B. The phase diagram of the system NaNO3-KNO3 studied by differential scanning calorimetry. Thermochim. Acta 1985, 86, 343–350. [Google Scholar] [CrossRef]
- Badger Energy Corporation. Design, Handling, Operation and Main Tenance Procedures for Hitec Molten Salt; Sandia National Laboratories Contractor Report; SAND81-8179; Badger Energy Corporation: Providence, MA, USA, 1981. [Google Scholar]
- Fernández, A.; Ushak, S.; Galleguillos, H.; Pérez, F. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl. Energy 2014, 119, 131–140. [Google Scholar] [CrossRef]
- Dudda, B.; Shin, D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci. 2017, 69, 37–42. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhao, Y.; Wang, M.; Yang, Y. Novel high specific heat capacity ternary nitrate/nitrite eutectic salt for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 227, 111075. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Ma, C. Comparative analysis of thermophysical properties of mixed nitrates. Energy Storage Sci. Technol. 2019, 8, 1224–1229. [Google Scholar]
- Han, Y.; Zhang, C.; Wu, Y.; Lu, Y. Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition. Renew. Energy 2021, 175, 1041–1051. [Google Scholar] [CrossRef]
- Dunlop, T.; Jarvis, D.; Voice, W.; Sullivan, J. Stabilization of molten salt materials using metal chlorides for solar thermal storage. Sci. Rep. 2018, 8, 8190. [Google Scholar] [CrossRef]
- Castro-Quijada, M.; Faundez, D.; Rojas, R.; Videla, A. Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage. Sol. Energy 2022, 231, 464–472. [Google Scholar] [CrossRef]
- Sang, L.; Lv, X.; Wu, Y. NaNO3-KNO3-KCl/K2CO3 with the elevated working temperature for CSP application: Phase diagram calculation and machine learning. Sol. Energy 2023, 252, 322–329. [Google Scholar] [CrossRef]
- Ding, W.; Shi, H.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Jianu, A.; Bauer, T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells 2018, 184, 22–30. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Yin, H.; Li, N.; Wang, W.; Li, L.; Tang, Z.; Qian, Y. Corrosion behaviour of 316 stainless steel in NaCl-KCl-MgCl2 salt vapour at 700 °C. Corros. Sci. 2022, 194, 109921. [Google Scholar] [CrossRef]
- Robelin, C.; Chartrand, P.; Pelton, A.D. Thermodynamic evaluation and optimization of the (NaNO3+KNO3+Na2SO4+K2SO4) system. J. Chem. Thermodyn. 2015, 83, 12–26. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers. Manag. 2017, 142, 366–373. [Google Scholar] [CrossRef]
- Song, W.; Lu, Y.; Wu, Y.; Ma, C. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt. Sol. Energy Mater. Sol. Cells 2018, 179, 66–71. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Zhang, L.; Wang, X.; Ma, C. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting. Sol. Energy Mater. Sol. Cells 2019, 191, 209–217. [Google Scholar] [CrossRef]
- Qiao, G.; Alexiadis, A.; Ding, Y. Simulation study of anomalous thermal properties of molten nitrate salt. Powder Technol. 2017, 314, 660–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Gao, L.; Wang, M. Nitrate based nanocomposite thermal storage materials: Understanding the enhancement of thermophysical properties in thermal energy storage. Sol. Energy Mater. Sol. Cells 2020, 216, 110727. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, J.; Wei, X.; Yang, J.; Yang, X. The preparation and properties of multicomponent molten salts. Appl. Energy 2010, 87, 2812–2817. [Google Scholar] [CrossRef]
- Petersen, G.; Ewing, W.; Smith, G. Densities of some molten salt mixtures. J. Chem. Eng. Data 1961, 6, 540. [Google Scholar] [CrossRef]
- Nlssen, D. Thermophysical properties of the equimolar mixture NaNO3-KNO3 from 300 to 600 °C. J. Chem. Eng. Data 1982, 27, 269–273. [Google Scholar] [CrossRef]
- Pfleger, N.; Bauer, T.; Martin, C.; Eck, M.; Wörner, A. Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage. Beilstein J. Nanotechnol. 2015, 6, 1487–1497. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, H.; Wang, M.; Du, B. Effect of Purity on Thermo-physical Properties of 60wt% NaNO3-40wt% KNO3 Molten Salt. Inorg. Chem. Ind. 2023, 55, 43–49. [Google Scholar]
- Qin, F.; Yang, X.; Ding, Z.; Zuo, Y.; Shao, Y.; Jiang, R.; Yang, X. Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Appl. Energy 2012, 97, 816–821. [Google Scholar] [CrossRef]
- Bockris, J.; Reddy, A. Modern Electrochemistry; Plenum: New York, NY, USA, 1970; Volume 1, Chapter 6. [Google Scholar]
- Elkabbany, F.; Badr, Y.; Taha, S.; Tosson, M. A study of the phase transition in the system [Ag1-X(Na)X]NO3 by infrared spectroscopy. Ann. Der Phys. 1989, 46, 355–366. [Google Scholar] [CrossRef]
- Yu, H.; Dong, Y.; Zhao, Y.; Zhang, Z.; Yang, R.; Zhang, Y.; Xin, C.; Duan, J. Study on the Tertiary Infrared Spectroscopy of Sodium Sulfate. Hangzhou Chem. Ind. 2019, 49, 28–33. [Google Scholar]
- Hou, H.; You, J.; Huang, S.; Jiang, G.; Xie, G. Raman spectral studies of solid and molten NaNO2. J. Light Scatt. 2000, 11, 375–377. [Google Scholar]
- Janz, G.; James, D. Raman spectra and ionic interactions in molten nitrates. J. Chem. Phys. 1961, 35, 739–744. [Google Scholar] [CrossRef]
- Rodríguez-Laguna, M.; Gómez-Romero, P.; Torres, C.; Lu, M.; Chávez-Ángel, E. Development of low-melting point molten salts and detection of solid-liquid transitions by alternative techniques to DSC. Sol. Energ. Mat. Sol. Cell 2019, 202, 110107. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Alexiadis, A.; Ding, Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures. Sol. Energ. Mat. Sol. Cell 2019, 200, 109897. [Google Scholar] [CrossRef]
- Ding, J.; Pan, G.; Du, L.; Lu, J.; Wang, W.; Wei, X.; Li, J. Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3. Appl. Energ. 2018, 227, 555–563. [Google Scholar] [CrossRef]
- Bauer, T.; Odenthal, C.; Bonk, A. Molten Salt Storage for Power Generation. Chem. Ing. Tech. 2021, 93, 534–546. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Wang, M.; Wang, H.; Zhong, Y.; Zhao, Y.; Wei, M.; Li, Y. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP. RSC Adv. 2018, 8, 19251–19260. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yuan, J.; Wang, M.; Li, J. Phase diagrams of binary systems Mg(NO3)2-KNO3, Mg(NO3)2-LiNO3 and ternary system Mg(NO3)2-LiNO3-NaNO3. J. Chem. Eng. Data 2020, 65, 3420–3427. [Google Scholar] [CrossRef]
- Mijrgijlescu, I.; Zuca, S. Viscosity of binary mixtures of molten nitrates as a function of ionic radius-II. Electrochim. Acta 1969, 14, 519–526. [Google Scholar]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J. A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z.; Lu, G.; Yu, J. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides. J. Phys. Chem. B 2014, 118, 10196–10206. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Melting Point/°C | Decomposition Temperature/°C | Phase Transition Enthalpy/J∙g−1 | Working Temperature/°C |
---|---|---|---|---|
Solar salt | 227.47 | 572.32 | 113.00 | 344.85 |
TMS-1 | 223.36 | 605.08 | 107.81 | 381.72 |
TMS-2 | 220.97 | 611.25 | 96.04 | 390.28 |
TMS-3 | 221.11 | 604.96 | 94.83 | 383.85 |
TMS-4 | 223.68 | 604.01 | 117.59 | 380.33 |
TMS-5 | 222.13 | 609.63 | 96.73 | 387.50 |
T (°C) | K-N (NO3−) | Na-N (NO3−) | K-S (SO42−) | Na-S (SO42−) |
---|---|---|---|---|
573.15 K | 4.12826 | 5.3302 | 0.09227 | 0.20148 |
623.15 K | 4.11057 | 5.30857 | 0.09137 | 0.19793 |
673.15 K | 4.09284 | 5.27038 | 0.08898 | 0.19755 |
723.15 K | 4.05214 | 5.22777 | 0.0884 | 0.1951 |
773.15 K | 4.00338 | 5.15235 | 0.08819 | 0.19475 |
Sample Number | NaNO3 (wt%) | KNO3 (wt%) | Na2SO4 (wt%) |
---|---|---|---|
Solar salt | 60.00 | 40.00 | 0.00 |
TMS-1 | 54.68 | 44.32 | 1.00 |
TMS-2 | 42.01 | 56.30 | 1.69 |
TMS-3 | 41.46 | 56.04 | 2.50 |
TMS-4 | 54.83 | 42.17 | 3.00 |
TMS-5 | 45.49 | 49.51 | 5.00 |
Irom | q | ||
---|---|---|---|
Na | 1 | 2.407 | 0.1531 |
K | 1 | 3.188 | 0.0999 |
N | 0.95 | 3.431 | 0.0926 |
O(NO3) | −0.65 | 3.285 | 0.0799 |
S | 2.2 | 3.550 | 0.1250 |
S(SO4) | −1.05 | 2.960 | 0.1211 |
Group | ||||
---|---|---|---|---|
525.0 | 1.2676 | 105.0 | 120 | |
367.900096 | 1.78 | 116.59990 | 109.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, J.; Zhong, Y.; Liu, X.; Wang, M. Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage. Molecules 2024, 29, 2328. https://doi.org/10.3390/molecules29102328
Wang H, Li J, Zhong Y, Liu X, Wang M. Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage. Molecules. 2024; 29(10):2328. https://doi.org/10.3390/molecules29102328
Chicago/Turabian StyleWang, Huaiyou, Jinli Li, Yuan Zhong, Xu Liu, and Min Wang. 2024. "Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage" Molecules 29, no. 10: 2328. https://doi.org/10.3390/molecules29102328
APA StyleWang, H., Li, J., Zhong, Y., Liu, X., & Wang, M. (2024). Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage. Molecules, 29(10), 2328. https://doi.org/10.3390/molecules29102328