The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Component Composition of Soil Profiles of Vineyards
2.2. The Correlation between the Elemental Composition of Soil, Grapes, and Wine
2.3. Establishing the Regional Origin of Grapes
3. Materials and Methods
3.1. Objects of Research
3.2. Materials and Reagents
3.3. Multielement Analysis
3.4. Determination of Various Forms of Elements in Soils
3.5. Pretreatment of Soil Samples for Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, R.S. Wines: Types of Table Wines. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 556–561. [Google Scholar]
- Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-Elemental Analysis as a Tool for Characterization and Differentiation of Portuguese Wines According to Their Protected Geographical Indication. Food Control 2019, 103, 27–35. [Google Scholar] [CrossRef]
- Gnilomedova, N.V.; Anikina, N.S.; Kolesnov, A.Y. A Review of Methodological Approaches to Authenticating the Geographical Origin of Wines. Food Process. Tech. Technol. 2023, 53, 231–246. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Abakumov, A.G.; Kaunova, A.A.; Shelud’ko, O.N.; Tsyupko, T.G. Assessment of quality and regional origin of wines. J. Anal. Chem. 2023, 78, 1724–1740. [Google Scholar] [CrossRef]
- Su, Y.; Li, Y.; Zhang, J.; Wang, L.; Rengasamy, K.R.; Ma, W.; Zhang, A. Analysis of Soils, Grapes, and Wines for Sr Isotope Characterisation in Diqing Tibetan Autonomous Prefecture (China) and Combining Multiple Elements for Wine Geographical Traceability Purposes. J. Food Compos. Anal. 2023, 122, 105470. [Google Scholar] [CrossRef]
- Catarino, S.; Madeira, M.; Monteiro, F.; Caldeira, I.; Bruno de Sousa, R.; Curvelo-Garcia, A. Mineral Composition through Soil-Wine System of Portuguese Vineyards and Its Potential for Wine Traceability. Beverages 2018, 4, 85. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, J.; Wang, L.; Dias Araujo, L.; Tan, D.; Yuan, C.; Zhang, A. Assessing Geographical Origin of Diqing Wines Based on Their Elemental and Isotopic Profiles. J. Food Compos. Anal. 2024, 125, 105671. [Google Scholar] [CrossRef]
- Compendium of International Methods of Wine and Must Analysis (OIV-MA-INT-00-2023.). Available online: https://www.oiv.int/sites/default/files/publication/2023-05/Compendium%20MA%20complet_EN.pdf (accessed on 15 April 2024).
- Rapa, M.; Ferrante, M.; Rodushkin, I.; Paulukat, C.; Conti, M.E. Venetian Protected Designation of Origin Wines Traceability: Multi-Elemental, Isotopes and Chemometric Analysis. Food Chem. 2023, 404, 134771. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-Y.; Gao, J.; Zhao, Y.-F.; Wen, H.-S.; Zhang, J.-J.; Zhang, A.; Yuan, C.-L. Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles. J. Food Prot. 2020, 83, 1323–1334. [Google Scholar] [CrossRef]
- Dutra, S.V.; Adami, L.; Marcon, A.R.; Carnieli, G.J.; Roani, C.A.; Spinelli, F.R.; Leonardelli, S.; Vanderlinde, R. Characterization of Wines According the Geographical Origin by Analysis of Isotopes and Minerals and the Influence of Harvest on the Isotope Values. Food Chem. 2013, 141, 2148–2153. [Google Scholar] [CrossRef]
- Boschetti, W.; Rampazzo, R.T.; Dessuy, M.B.; Vale, M.G.R.; de Oliveira Rios, A.; Hertz, P.; Manfroi, V.; Celso, P.G.; Ferrão, M.F. Detection of the Origin of Brazilian Wines Based on the Determination of Only Four Elements Using High-Resolution Continuum Source Flame AAS. Talanta 2013, 111, 147–155. [Google Scholar] [CrossRef]
- Vitali Čepo, D.; Karoglan, M.; Borgese, L.; Depero, L.E.; Marguí, E.; Jablan, J. Application of Benchtop Total-Reflection X-Ray Fluorescence Spectrometry and Chemometrics in Classification of Origin and Type of Croatian Wines. Food Chem. X 2022, 13, 100209. [Google Scholar] [CrossRef]
- Lima, M.M.M.; Hernandez, D.; Runnebaum, R.C. Reproducibility of the Elemental Profile of Pinot Noir Wines: A Comparison across Three Vintages. ACS Food Sci. Technol. 2023, 3, 1646–1653. [Google Scholar] [CrossRef]
- Coelho, I.; Matos, A.S.; Epova, E.N.; Barre, J.; Cellier, R.; Ogrinc, N.; Castanheira, I.; Bordado, J.; Donard, O.F.X. Multi-element and multi-isotopic profiles of Port and Douro wines as tracers for authenticity. J. Food Compos. Anal. 2023, 115, 104988. [Google Scholar] [CrossRef]
- Monteiro, B.; Vilela, A.; Correia, E. Sensory Profile of Pink Port Wines: Development of a Flavour Lexicon. Flavour Fragr. J. 2014, 29, 50–58. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Khalafyan, A.; Kaunova, A.; Abakumov, A.; Titarenko, V.; Akin’shina, V. Using Neural Networks to Identify the Regional and Varietal Origin of Cabernet and Merlot Dry Red Wines Produced in Krasnodar Region. Foods Raw Mater. 2019, 7, 124–130. [Google Scholar] [CrossRef]
- Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and Sensory Profiles Discriminate Geographical Indications for Malbec Wines from Different Regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R.; Pangrazzi, P.; Bontempo, L. Changes in the contents of micro- and trace elements in wine due to winemaking treatments. Vitis 2004, 43, 41–45. [Google Scholar]
- Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [Google Scholar] [CrossRef]
- Pohl, P. What do metals tell us about wine? TrAC Trends Anal. Chem. 2007, 26, 941–949. [Google Scholar] [CrossRef]
- Blesic, M.; Drmac, M.; Batinic, K.; Spaho, N.; Smajic Murtic, M.; Zele, M. Levels of selected metals in wines from different Herzegovinian viticultural localities. Croat. J. Food Sci. Technol. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Benítez, P.; Castro, R.; Barroso, C.G. Removal of iron, copper and manganese from white wines through ion exchange techniques: Effects on their organoleptic characteristics and susceptibility to browning. Anal. Chim. Acta 2002, 458, 197–202. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology—The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; pp. 301–332. [Google Scholar]
- Deng, Z.-H.; Zhang, A.; Yang, Z.-W.; Zhong, Y.-L.; Mu, J.; Wang, F.; Liu, Y.-X.; Zhang, J.-J.; Fang, Y.-L. A Human Health Risk Assessment of Trace Elements Present in Chinese Wine. Molecules 2019, 24, 248. [Google Scholar] [CrossRef]
- The International Organisation of Vine and Wine. Maximum Acceptable Limits. 2015. Available online: http://www.oiv.int/en/technical-standards-and-documents/oenological-practices/maximum-acceptable-limits/ (accessed on 15 April 2024).
- Council Regulation No 479/2008 (Commission Regulation No 606/2009 of 10 July 2009). Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R0606 (accessed on 15 April 2024).
- Maltman, A. Minerality in Wine: A Geological Perspective. J. Wine Res. 2013, 24, 169–181. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK, 2012; 643p. [Google Scholar]
- Jiménez-Ballesta, R.; Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. Soil and Leaf Mineral Element Contents in Mediterranean Vineyards: Bioaccumulation and Potential Soil Pollution. Water Air Soil Pollut. 2022, 233, 20. [Google Scholar] [CrossRef]
- Blotevogel, S.; Schreck, E.; Audry, S.; Saldi, G.D.; Viers JCourjalt-Rade, P.; Darrozes, J.; Orgogozo, L.; Oliva, P. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy). Geoderma 2019, 343, 72–85. [Google Scholar] [CrossRef]
- Ramirez, P.M.; Ibanez, J.D.I.H. Nutrient content of vineyard leaves after prolonged treated wastewater irrigation. Agronomy 2023, 13, 620. [Google Scholar] [CrossRef]
- Parr, W.; Maltman, A.; Easton, S.; Ballester, J. Minerality in Wine: Towards the Reality behind the Myths. Beverages 2018, 4, 77. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; 548p. [Google Scholar] [CrossRef]
- Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Oliva, P. Soil Chemistry and Meteorological Conditions Influence the Elemental Profiles of West European Wines. Food Chem. 2019, 298, 125033. [Google Scholar] [CrossRef]
- Li, X.; Dong, S.; Su, X. Copper and other heavy metals in grapes: A pilot study tracing influential factors and evaluating potential risks in China. Sci. Rep. 2018, 8, 17407. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Abakumov, A.G.; Kaunova, A.A.; Ageeva, N.M. Correlations between the Elemental Composition of Grapes, Soils of the Viticultural Area and Wine. Ind. Lab. Diagnostics Mater. 2021, 87, 11–18. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L.A. The Role of Root Exudates and Allelochemicals in the Rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Preston, W.; da Silva, Y.J.A.B.; do Nascimento, C.W.A.; da Cunha, K.P.V.; Silva, D.J.; Ferreira, H.A. Soil Contamination by Heavy Metals in Vineyard of a Semiarid Region: An Approach Using Multivariate Analysis. Geoderma Reg. 2016, 7, 357–365. [Google Scholar] [CrossRef]
- Stefanello, L.; Schwalbert, R.; Schwalbert, R.; Tassinari, A.; Garlet, L.; De Conti, L.; Ciotta, M.; Ceretta, C.; Ciampitti, I.; Brunetto, G. Phosphorus Critical Levels in Soil and Grapevine Leaves for South Brazil Vineyards: A Bayesian Approach. Eur. J. Agron. 2023, 144, 126752. [Google Scholar] [CrossRef]
- Prabagar, S.; Dharmadasa, R.M.; Lintha, A.; Thuraisingam, S.; Prabagar, J. Accumulation of Heavy Metals in Grape Fruit, Leaves, Soil and Water: A Study of Influential Factors and Evaluating Ecological Risks in Jaffna, Sri Lanka. Environ. Sustain. Indic. 2021, 12, 100147. [Google Scholar] [CrossRef]
- de la Guardia, M.; Garrigues, S. Handbook of Mineral Elements in Food; John Wiley & Sons, Ltd.: Chicheter, UK, 2015; 792p. [Google Scholar]
- Arbigaus Bredun, M.; Sartor, S.; Pretto Panceri, C.; Chaves, E.S.; Maria Burin, V. Changes in Phytochemical Composition of Merlot Grape and Wine Induced by the Direct Application of Boron. Food Res. Int. 2023, 163, 112258. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Santamaría, P.; Rubio-Bretón, P.; González-Arenzana, L.; López-Alfaro, I.; López, R. Foliar Application of Proline, Phenylalanine, and Urea to Tempranillo Vines: Effect on Grape Volatile Composition and Comparison with the Use of Commercial Nitrogen Fertilizers. LWT—Food Sci. Technol. 2015, 60, 684–689. [Google Scholar] [CrossRef]
- Chen, R.; Chang, H.; Wang, Z.; Lin, H. Determining Organic-Inorganic Fertilizer Application Threshold to Maximize the Yield and Quality of Drip-Irrigated Grapes in an Extremely Arid Area of Xinjiang, China. Agric. Water Manag. 2023, 276, 108070. [Google Scholar] [CrossRef]
- Piccin, R.; Couto, R.d.R.; Bellinaso, R.J.S.; Gatiboni, L.C.; De Conti, L.; Rodrigues, L.A.T.; Michelon, L.S.; de Souza Kulmann, M.S.; Brunetto, G. Phosphorus Forms in Leaves and Their Relationships with Must Composition and Yield in Grapevines. Pesqui. Agropecuária Bras. 2017, 52, 319–327. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Osborne, J. Defining Phosphorus Requirements for Pinot Noir Grapevines. Am. J. Enol. Vitic. 2018, 69, 351–359. [Google Scholar] [CrossRef]
- Bronzi, B.; Brilli, C.; Beone, G.M.; Fontanella, M.C.; Ballabio, D.; Todeschini, R.; Consonni, V.; Grisoni, F.; Parri, F.; Buscema, M. Geographical Identification of Chianti Red Wine Based on ICP-MS Element Composition. Food Chem. 2020, 315, 126248. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, J.; Yang, Q. Effects of Geographical Origin, Variety, Harvest Season, and Their Interactions on Multi-Elements in Cereal, Tuber, and Legume Crops for Authenticity. J. Food Compos. Anal. 2021, 100, 103900. [Google Scholar] [CrossRef]
- Bambina, P.; Pollon, M.; Vitaggio, C.; Lo Papa, G.; Conte, P.; Cinquanta, L.; Corona, O. Effect of soil type on some composition parameters of Vitis vinifera L. cv. Nero d’Avola grapes at different stages of ripening. Int. J. Food Sci. Technol. 2024, 59, 2361–2374. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.-P.; De Rességuier, L. Soil-Related Terroir Factors: A Review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; Bravo, S.; Pérez-de-los-Reyes, C.; Amorós, J.A.; García-Navarro, F.J. Soil properties of vineyards on arkoses as a basis to understand their suitability and optimum performance. Eur. J. Soil Sci. 2023, 74, e13401. [Google Scholar] [CrossRef]
- Foldvari, M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice; Geological Institute of Hungary: Budapest, Hungary, 2011; 118р. [Google Scholar]
- Ferretti, C.G. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the Dolomites of northern Italy. CATENA 2019, 179, 74–84. [Google Scholar] [CrossRef]
- Holzapfel, B.P. Seasonal Vine Nutrient Dynamics and Distribution of Shiraz Grapevines. OENO One 2019, 53, 221–230. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of Heavy Metals in the Soil-Grape System and Potential Health Risk Assessment. Sci. Total Environ. 2022, 806, 150646. [Google Scholar] [CrossRef] [PubMed]
- Beygi, M.; Jalali, M. Assessment of Trace Elements (Cd, Cu, Ni, Zn) Fractionation and Bioavailability in Vineyard Soils from the Hamedan, Iran. Geoderma 2019, 337, 1009–1020. [Google Scholar] [CrossRef]
- Milićević, T.; Urošević, M.A.; Relić, D.; Vuković, G.; Škrivanj, S.; Popović, A. Bioavailability of Potentially Toxic Elements in Soil–Grapevine (Leaf, Skin, Pulp and Seed) System and Environmental and Health Risk Assessment. Sci. Total Environ. 2018, 626, 528–545. [Google Scholar] [CrossRef]
- Ko, B.G.; Vogeler, I.; Bolan, N.S.; Clothier, B.; Green, S.; Kennedy, J. Mobility of copper, chromium and arsenic from treated timber into grapevines. Sci. Total Environ. 2007, 388, 35–42. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Marin, B.; Mkoungafoko, R.; Rigaux, A.; Hopgood, M.J.; Delannoy, E.; Cancès, B.; Laurain, M. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ. Pollut. 2008, 156, 1092–1098. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Abakumov, A.; Bolshov, M.; Khalafyan, A.; Ageeva, N.; Vasilyev, A.; Ramazanov, A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem. J. 2022, 175, 107145. [Google Scholar] [CrossRef]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; de Sousa, R.B. Effect of Bentonite Characteristics on the Elemental Composition of Wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Bolshov, M.; Abakumov, A.; Khalafyan, A.; Kaunova, A.; Vasilyev, A.; Sheludko, O.; Ramazanov, A. Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines? Molecules 2023, 28, 4319. [Google Scholar] [CrossRef]
- Wucherpfennig, K. WINES|Production of Table Wines. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 6195–6203. [Google Scholar]
- Rao, C.R.M.; Sahuquillo, A.; Lopez Sanchez, J.F. A Review of the Different Methods Applied in Environmental Geochemistry for Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water. Air. Soil Pollut. 2008, 189, 291–333. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The Combined Impact of Vineyard Origin and Processing Winery on the Elemental Profile of Red Wines. Food Chem. 2015, 172, 486–496. [Google Scholar] [CrossRef]
- Hill, T.; Lewicki, P. Statistics Methods and Applications, 1st ed.; OK: Tulsa, OK, USA, 2007. [Google Scholar]
Element | Yurovka | Element | Vinogradny | ||||||
---|---|---|---|---|---|---|---|---|---|
MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | ||
Ca | 2800 ± 800 | 3330 ± 910 | 200 ± 40 | 59 ± 9 | Ca | 3300 ± 900 | 4700 ± 1420 | 220 ± 40 | 64 ± 10 |
Na | 1600 ± 530 | 27,100 ± 8220 | 4.8 ± 1.0 | 10 ± 2 | Na | 54 ± 11 | 9200 ± 2740 | 16 ± 3 | 24 ± 3.6 |
Mg | 4400 ± 1320 | 6930 ± 2120 | 100 ± 20 | 68 ± 10 | Mg | 402 ± 121 | 2400 ± 710 | 110 ± 20 | 62 ± 9.3 |
K | 112 ± 32 | 6110 ± 1820 | 1860 ± 370 | 702 ± 105 | K | 123 ± 41 | 6400 ± 1920 | 3230 ± 650 | 1270 ± 191 |
Al | 71 ± 22 | 38,100 ± 11,200 | 4.0 ± 0.8 | 0.440 ± 0.066 | Al | 62 ± 21 | 19,100 ± 6340 | 2.5 ± 0.5 | 0.440 ± 0.066 |
Fe | 8.0 ± 2.3 | 30,400 ± 9300 | 5.3 ± 1.0 | 5.150 ± 0.770 | Fe | 5.0 ± 1.2 | 20,300 ± 6030 | 5.2 ± 1.04 | 4.740 ± 0.711 |
Ba | 38 ± 11 | 149 ± 45 | 1.4 ± 0.3 | 0.066 ± 0.010 | Ba | 46 ± 14 | 168 ± 50 | 1.5 ± 0.3 | 0.088 ± 0.0132 |
Mn | 19 ± 6 | 593 ± 178 | 0.92 ± 0.18 | 0.704 ± 0.106 | Mn | 29 ± 9 | 430 ± 129 | 1.5 ± 0.3 | 1.020 ± 0.153 |
Sr | 15 ± 4 | 93 ± 28 | 2.0 ± 0.3 | 0.570 ± 0.086 | Sr | 12 ± 4 | 42 ± 12 | 2.0 ± 0.4 | 0.360 ± 0.054 |
Cd | 0.020 ± 0.006 | 0.44 ± 0.13 | <MLOQ | <MLOQ | Cd | 0.02 ± 0.01 | 0.32 ± 0.09 | <MLOQ | <MLOQ |
Co | 0.08 ± 0.024 | 12 ± 4 | <MLOQ 3 | <MLOQ | Co | 0.02 ± 0.01 | 13 ± 4 | <MLOQ | <MLOQ |
Cr | 0.13 ± 0.04 | 73 ± 22 | <MLOQ | <MLOQ | Cr | 0.11 ± 0.03 | 82 ± 24 | 0.016 ± 0.003 | <MLOQ |
Li | 0.31 ± 0.09 | 27 ± 8 | 0.012 ± 0.002 | 0.011 ± 0.002 | Li | 0.31 ± 0.09 | 28 ± 8.4 | 0.016 ± 0.003 | 0.014 ± 0.002 |
Rb | 1.5 ± 0.4 | 62 ± 18 | 5.6 ± 1.1 | 5.280 ± 0.790 | Rb | 1.6 ± 0.5 | 71 ± 21 | 1.3 ± 0.3 | 1.710 ± 0.260 |
Ti | 0.38 ± 0.11 | 353 ± 106 | 0.9 ± 0.2 | 0.043 ± 0.007 | Ti | 0.33 ± 0.09 | 231 ± 69 | 1.1 ± 0.2 | 0.055 ± 0.008 |
V | 0.04 ± 0.01 | 67 ± 20 | 0.028 ± 0.006 | <MLOQ | V | 0.05 ± 0.02 | 75 ± 22 | 0.021 ± 0.004 | <MLOQ |
Ni | 1.2 ± 0.4 | 35 ± 10 | 0.026 ± 0.005 | 0.114 ± 0.017 | Ni | 1.1 ± 0.3 | 35 ± 10 | 0.022 ± 0.004 | 0.140 ± 0.021 |
Cu | 0.33 ± 0.11 | 19 ± 6 | 0.91 ± 0.18 | 0.131 ± 0.020 | Cu | 0.36 ± 0.11 | 32 ± 10 | 0.90 ± 0.18 | 0.068 ± 0.010 |
Pb | 0.39 ± 0.12 | 8.9 ± 2.7 | 0.03 ± 0.01 | 0.0043 ± 0.0007 | Pb | 0.50 ± 0.15 | 8.1 ± 2.4 | 0.03 ± 0.001 | 0.068 ± 0.010 |
Zn | 0.29 ± 0.09 | 54 ± 16 | 1.1 ± 0.2 | 0.140 ± 0.021 | Zn | 0.16 ± 0.05 | 55 ± 16 | 0.82 ± 0.16 | 0.217 ± 0.033 |
Element | Raevskaya | Element | Anapa | ||||||
---|---|---|---|---|---|---|---|---|---|
MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | ||
Ca | 5310 ± 1630 | 8120 ± 2440 | 310 ± 61 | 45 ± 7 | Ca | 16,100 ± 5040 | 26,100 ± 8030 | 270 ± 50 | 33 ± 5 |
Na | 790 ± 230 | 33,100 ± 10,300 | 6.6 ± 1.3 | 4.2 ± 0.6 | Na | 143 ± 41 | 17,200 ± 5040 | 3.0 ± 0.6 | 6.6 ± 1.0 |
Mg | 190 ± 62 | 6210 ± 1920 | 130 ± 25 | 65 ± 10 | Mg | 161 ± 52 | 5040 ± 1510 | 100 ± 20 | 58 ± 9 |
K | 733 ± 221 | 9310 ± 2820 | 2460 ± 492 | 940 ± 140 | K | 780 ± 230 | 5830 ± 1700 | 2410 ± 480 | 1561 ± 234 |
Al | 31 ± 11 | 2910 ± 9210 | 4.0 ± 0.8 | 0.214 ± 0.032 | Al | 42 ± 10 | 19,100 ± 6030 | 1.6 ± 0.3 | 0.350 ± 0.053 |
Fe | 4.0 ± 1.2 | 24,100 ± 7240 | 5.0 ± 1.0 | 3.480 ± 0.520 | Fe | 6.0 ± 2.0 | 22,300 ± 7020 | 5.1 ± 1.0 | 1.510 ± 0.227 |
Ba | 16 ± 5 | 80 ± 24 | 1.5 ± 0.3 | 0.026 ± 0.004 | Ba | 33 ± 10 | 91 ± 27 | 1.2 ± 0.2 | 0.044 ± 0.007 |
Mn | 24 ± 7 | 450 ± 135 | 2.0 ± 0.4 | 1.250 ± 0.190 | Mn | 60 ± 18 | 653 ± 196 | 1.7 ± 0.3 | 1.500 ± 0.225 |
Sr | 23 ± 6 | 120 ± 36 | 2.5 ± 0.5 | 0.760 ± 0.115 | Sr | 245 ± 70 | 93 ± 28 | 1.3 ± 0.3 | 0.525 ± 0.079 |
Cd | 0.06 ± 0.02 | 0.26 ± 0.08 | <MLOQ | <MLOQ | Cd | 0.09 ± 0.03 | 0.45 ± 0.14 | <MLOQ | <MLOQ |
Co | 0.05 ± 0.02 | 5.8 ± 1.7 | 0.01 ± 0.002 | <MLOQ | Co | 0.06 ± 0.02 | 8.2 ± 2.5 | <MLOQ | <MLOQ |
Cr | 0.17 ± 0.05 | 147 ± 44 | <MLOQ 3 | <MLOQ | Cr | 0.21 ± 0.06 | 99 ± 29 | 0.016 ± 0.003 | <MLOQ |
Li | 0.16 ± 0.05 | 22 ± 6 | 0.010 ± 0.002 | 0.010 ± 0.002 | Li | 0.20 ± 0.06 | 13 ± 4 | 0.009 ± 0.002 | 0.011 ± 0.002 |
Rb | 1.9 ± 0.6 | 71 ± 21 | 3.6 ± 0.7 | 1.950 ± 0.290 | Rb | 1.3 ± 0.4 | 37 ± 11 | 3.5 ± 0.7 | 1.250 ± 0.188 |
Ti | 0.19 ± 0.06 | 296 ± 89 | 1.3 ± 0.3 | 0.042 ± 0.006 | Ti | 0.16 ± 0.05 | 137 ± 41 | 0.80 ± 0.15 | 0.032 ± 0.005 |
V | 0.13 ± 0.04 | 85 ± 25 | 0.040 ± 0.007 | <MLOQ | V | 0.18 ± 0.05 | 52 ± 16 | 0.024 ± 0.005 | <MLOQ |
Ni | 0.86 ± 0.26 | 22 ± 7 | 0.071 ± 0.014 | 0.154 ± 0.023 | Ni | 1.3 ± 0.4 | 26 ± 8 | 0.024 ± 0.005 | 0.066 ± 0.010 |
Cu | 2.2 ± 0.7 | 47 ± 14 | 1.2 ± 0.2 | 0.038 ± 0.006 | Cu | 2.6 ± 0.8 | 46 ± 14 | 0.87 ± 0.17 | 0.116 ± 0.017 |
Pb | 0.70 ± 0.21 | 3.6 ± 1.1 | <MLOQ | 0.079 ± 0.012 | Pb | 0.50 ± 0.15 | 4.5 ± 1.4 | 0.03 ± 0.01 | 0.080 ± 0.012 |
Zn | 0.57 ± 0.17 | 42 ± 13 | 1.1 ± 0.2 | 0.275 ± 0.041 | Zn | 0.59 ± 0.18 | 46 ± 14 | 1.2 ± 0.2 | 0.255 ± 0.038 |
Element | Haykadzor | Element | Gostagaevskaya | ||||||
---|---|---|---|---|---|---|---|---|---|
MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | MF 1, mg/kg | TC 2, mg/kg | Grape, mg/kg | Wine, mg/L | ||
Ca | 62,100 ± 18,100 | 103,200 ± 30,300 | 200 ± 40 | 53 ± 8 | Ca | 12,100 ± 4020 | 40,300 ± 12,200 | 250 ± 50 | 58 ± 9 |
Na | 42 ± 11 | 7910 ± 2410 | 3.0 ± 0.6 | 25 ± 4 | Na | 112 ± 34 | 9530 ± 2840 | 6.2 ± 1.2 | 8.0 ± 1.3 |
Mg | 274 ± 83 | 3220 ± 930 | 110 ± 20 | 92 ± 14 | Mg | 641 ± 193 | 8020 ± 2410 | 110 ± 2 | 60 ± 9 |
K | 371 ± 112 | 6740 ± 2130 | 1560 ± 310 | 1131 ± 170 | K | 322 ± 104 | 5810 ± 1700 | 2150 ± 430 | 910 ± 140 |
Al | 41 ± 11 | 24,100 ± 7230 | 2.4 ± 0.5 | 0.310 ± 0.047 | Al | 24 ± 7 | 27,300 ± 8120 | 3.0 ± 0.6 | 0.445 ± 0.067 |
Fe | 4.0 ± 1.1 | 21,300 ± 6120 | 5.7 ± 1.1 | 1.600 ± 0.240 | Fe | 10 ± 3 | 27,300 ± 8020 | 5.2 ± 1.0 | 4.520 ± 0.678 |
Ba | 50 ± 15 | 114 ± 34 | 1.4 ± 0.3 | 0.078 ± 0.012 | Ba | 45 ± 14 | 112 ± 33 | 1.5 ± 0.3 | 0.081 ± 0.012 |
Mn | 85 ± 26 | 800 ± 240 | 1.9 ± 0.4 | 0.790 ± 0.119 | Mn | 65 ± 20 | 634 ± 190 | 0.90 ± 0.17 | 0.570 ± 0.086 |
Sr | 47 ± 14 | 72 ± 22 | 0.62 ± 0.12 | 0.655 ± 0.098 | Sr | 96 ± 29 | 190 ± 57 | 3.0 ± 0.6 | 0.785 ± 0.118 |
Cd | 0.07 ± 0.02 | 0.36 ± 0.11 | <MLOQ | <MLOQ | Cd | 0.12 ± 0.04 | 0.36 ± 0.11 | <MLOQ | <MLOQ |
Co | 0.12 ± 0.04 | 8.4 ± 2.5 | <MLOQ | <MLOQ | Co | 0.07 ± 0.02 | 11 ± 3 | <MLOQ | <MLOQ |
Cr | 0.27 ± 0.08 | 55 ± 17 | <MLOQ | <MLOQ | Cr | 0.21 ± 0.06 | 55 ± 16 | <MLOQ | <MLOQ |
Li | 0.40 ± 0.12 | 16 ± 5 | 0.007 ± 0.002 | 0.0068 ± 0.0010 | Li | 0.4 ± 0.12 | 18 ± 5 | 0.014 ± 0.003 | 0.013 ± 0.002 |
Rb | <MLOQ | 55 ± 16 | 2.1 ± 0.4 | 1.550 ± 0.233 | Rb | 1.8 ± 0.5 | 49 ± 14 | 2.0 ± 0.4 | 1.395 ± 0.210 |
Ti | <MLOQ | 350 ± 105 | 1.0 ± 0.2 | 0.039 ± 0.0056 | Ti | 0.13 ± 0.04 | 110 ± 34 | 1.0 ± 0.2 | 0.041 ± 0.006 |
V | 0.10 ± 0.03 | 48 ± 14 | 0.034 ± 0.007 | 0.00010 ± 0.00002 | V | 0.22 ± 0.07 | 66 ± 20 | 0.030 ± 0.006 | 0.00095 ± 0.00014 |
Ni | 1.4 ± 0.4 | 27 ± 8 | 0.013 ± 0.003 | 0.075 ± 0.011 | Ni | 1.9 ± 0.6 | 42 ± 12 | 0.023 ± 0.005 | 0.196 ± 0.029 |
Cu | 2.8 ± 0.8 | 48 ± 14 | 0.74 ± 0.15 | 0.120 ± 0.018 | Cu | 0.80 ± 0.24 | 50 ± 15 | 0.82 ± 0.16 | <MLOQ |
Pb | 1.3 ± 0.4 | 8.6 ± 2.6 | 0.03 ± 0.01 | 0.0046 ± 0.0007 | Pb | 0.98 ± 0.29 | 6.2 ± 1.9 | 0.06 ± 0.01 | 0.056 ± 0.008 |
Zn | 0.58 ± 0.17 | 53 ± 15 | 0.80 ± 0.16 | 0.076 ± 0.011 | Zn | 1.0 ± 0.3 | 64 ± 19 | 1.1 ± 0.2 | 0.101 ± 0.015 |
Element | Biologic Absorption Coefficient | |||||
---|---|---|---|---|---|---|
Yurovka | Vinogradny | Raevskaya | Anapa | Haykadzor | Gostagaevskaya | |
Ca | 0.073 | 0.069 | 0.057 | 0.016 | 0.003 | 0.020 |
Na | 0.031 | 0.266 | 0.008 | 0.021 | 0.072 | 0.054 |
Mg | 0.226 | 0.290 | 0.639 | 0.605 | 0.390 | 0.177 |
K | 16.14 | 28.81 | 3.26 | 3.10 | 3.68 | 6.89 |
Al | 0.060 | 0.045 | 0.124 | 0.046 | 0.073 | 0.125 |
Fe | 0.628 | 1.04 | 1.43 | 0.859 | 1.41 | 0.533 |
Ba | 0.039 | 0.032 | 0.095 | 0.037 | 0.030 | 0.034 |
Mn | 0.048 | 0.057 | 0.083 | 0.029 | 0.023 | 0.013 |
Sr | 0.130 | 0.168 | 0.116 | 0.055 | 0.013 | 0.032 |
Cd | - | 0.025 | - | - | - | - |
Co | 0.035 | 0.093 | 0.161 | 0.083 | 0.029 | 0.041 |
Cr | 0.060 | 0.153 | 0.072 | 0.077 | 0.026 | 0.044 |
Li | 0.040 | 0.041 | 0.061 | 0.045 | 0.019 | 0.035 |
Rb | 3.85 | 0.812 | 1.81 | 2.63 | 2.38 | 1.13 |
Ti | 2.50 | 3.50 | 6.61 | 4.58 | - | 7.86 |
V | 0.734 | 0.374 | 0.321 | 0.146 | 0.355 | 0.137 |
Ni | 0.023 | 0.022 | 0.086 | 0.017 | 0.009 | 0.012 |
Cu | 2.790 | 2.272 | 0.518 | 0.329 | 0.305 | 0.993 |
Pb | 0.007 | 0.005 | 0.003 | 0.005 | 0.002 | 0.006 |
Zn | 3.94 | 5.02 | 2.01 | 1.95 | 1.47 | 1.07 |
Vineyard | Mobile-Form Element | |||||||
---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 60–80 cm | 80–100 cm | 100–120 cm | 120–140 cm | 140–160 cm | |
Yurovka | 0.09092 | 0.09286 | 0.08572 | 0.08476 | 0.08657 | 0.08425 | 0.08459 | 0.08129 |
Gostagaevskaya | 0.08026 | 0.07789 | 0.07832 | 0.07036 | 0.06741 | 0.06600 | 0.06103 | 0.06044 |
Anapa | 0.11353 | 0.10647 | 0.09680 | 0.06388 | 0.05525 | 0.05291 | 0.05276 | 0.05272 |
Raevskaya | 0.21476 | 0.22038 | 0.19200 | 0.12604 | 0.12152 | 0.07454 | 0.09389 | 0.08288 |
Haykadzor | 0.08795 | 0.08883 | 0.08854 | 0.08707 | 0.08574 | 0.08578 | 0.08578 | 0.08413 |
Vinogradny | 0.06069 | 0.05063 | 0.03776 | 0.04089 | 0.03510 | 0.02883 | 0.01994 | 0.01312 |
Vineyard | Total Content Element | |||||||
0–20 cm | 20–40 cm | 40–60 cm | 60–80 cm | 80–100 cm | 100–120 cm | 120–140 cm | 140–160 cm | |
Yurovka | −0.04702 | −0.01178 | 0.00226 | 0.00524 | 0.05104 | 0.01698 | 0.05056 | 0.00527 |
Gostagaevskaya | 0.07781 | 0.11265 | 0.07356 | 0.10395 | 0.09876 | 0.07908 | 0.06077 | 0.08421 |
Anapa | 0.12944 | 0.12031 | 0.08406 | 0.08234 | 0.04431 | 0.06064 | 0.06226 | 0.04291 |
Raevskaya | 0.08311 | 0.09205 | 0.08926 | 0.06110 | 0.06643 | 0.09196 | 0.05079 | 0.08665 |
Haykadzor | 0.12699 | 0.13044 | 0.11108 | 0.12745 | 0.10515 | 0.11488 | 0.11254 | 0.10067 |
Vinogradny | 0.06250 | 0.13935 | 0.12474 | 0.10305 | 0.02809 | 0.09284 | 0.10190 | 0.06780 |
N = 90 | Discriminant Function Analysis Summary No. of Vars in Model: 19; Grouping: Region (6 Grps) Wilks’ Lambda: 0.00000; Approx. F (45.343) = 446.55 p < 0.000 | |||||
---|---|---|---|---|---|---|
Wilks’ Lambda | Partial Lambda | F-Remove (2.78) | p-Value | Tolerance | 1-Tolerance (R-Sqr.) | |
Rb | 1.837 × 10−7 | 0.062 | 228.136 | 0.000 × 10−1 | 0.897 | 0.103 |
Al | 4.613 × 10−8 | 0.249 | 45.900 | 1.339 × 10−21 | 0.821 | 0.179 |
K | 4.268 × 10−8 | 0.269 | 41.339 | 2.455 × 10−20 | 0.822 | 0.178 |
Sr | 3.245 × 10−8 | 0.354 | 27.789 | 6.828 × 10−16 | 0.667 | 0.333 |
Co | 3.197 × 10−8 | 0.359 | 27.154 | 1.188 × 10−15 | 0.756 | 0.244 |
Na | 2.682 × 10−8 | 0.428 | 20.324 | 8.054 × 10−13 | 0.738 | 0.262 |
Pb | 2.018 × 10−8 | 0.569 | 11.527 | 2.675 × 10−8 | 0.852 | 0.148 |
Ca | 2.004 × 10−8 | 0.573 | 11.341 | 3.441 × 10−8 | 0.754 | 0.246 |
Ni | 1.969 × 10−8 | 0.583 | 10.877 | 6.503 × 10−8 | 0.894 | 0.106 |
The Indicator Being Determined | Territory | |||||
---|---|---|---|---|---|---|
Raevskaya | Anapa | Haykadzor | Vinogradny | Gostagaevskaya | Yurovka | |
Alcohol content, (%, v/v) | 10.9 | 12.1 | 11.7 | 9.1 | 9.7 | 10.9 |
Titratable acidity, (g/L) | 5.3 | 4.8 | 6.3 | 10.8 | 9.6 | 7.2 |
Volatile acidity, (g/L) | 0.53 | 0.60 | 0.59 | 0.53 | 0.52 | 0.56 |
Total sugar, (g/L) | 1.0 | 2.4 | 2.3 | 1.5 | 1.6 | 0.54 |
pH | 3.6 | 3.8 | 3.5 | 3.3 | 3.2 | 3.1 |
Total phenolic, (mg/mL) | 1793 | 2493 | 2710 | 1388 | 1458 | 1676 |
Total SO2, (mg/L) | 95 | 92 | 86 | 88 | 78 | 66 |
ICP-OES (iCAP 7400) | |||
---|---|---|---|
Plasma gas flow rate, L/min | 12.0 | ||
Nebulizer gas flow rate, L/min | 0.5 | ||
Auxiliary gas flow rate, L/min | 0.5 | ||
Applied power, W | 1200 | ||
Spectral lines of elements (LOQ 1, µg/L) | |||
Al 396.152 (I), (1.13) | Cu 324.754 (I), (1.41) | Ni 231.604 (II), (0.76) | |
As 189.042 (I), (2.7) | Fe 259.940 (II), (1.34) | Pb 220.353 (II), (1.88) | |
Ba 455.403 (II), (0.41) | K 766.490 (I), (5.2) | Rb 780.023 (I), (0.72) | |
Ca 422.673 (I), (14) | Li 670.784 (I), (0.26) | Sr 421.552 (II), (0.57) | |
Cd 226.502 (II), (0.24) | Mg 280.270 (II), (6.0) | Ti 334.941 (II), (1.6) | |
Co 238.892 (II), (0.79) | Mn 257.610 (II), (0.35) | V 292.402 (II), (0.74) | |
Cr 267.716 (II), (0.89) | Na 588.995 (I), (2.4) | Zn 213.856 (I), (0.85) |
Elements | Element Content, mg/kg | |||
---|---|---|---|---|
Mobile Form (SADPP 10) | Total Content (SDPS-2) | |||
Certified Value | Found | Certified Value | Found | |
Cu | 0.18 ± 0.01 | 0.21 ± 0.06 | 100 ± 10 | 101 ± 30 |
Zn | 1.38 ± 0.06 | 1.40 ± 0.42 | 140 ± 20 | 136 ± 41 |
Cd | 0.058 ± 0.002 | 0.055 ± 0.017 | 1.3 ± 0.3 | 1.3 ± 0.4 |
Pb | 0.66 ± 0.02 | 0.70 ± 0.21 | 87 ± 5 | 84 ± 25 |
Ni | 0.61 ± 0.02 | 0.60 ± 0.18 | 87 ± 9 | 88 ± 26 |
Co | 0.13 ± 0.01 | 0.12 ± 0.04 | 45 ± 3 | 44 ± 13 |
Mn | 31.3 ± 1.6 | 30.0 ± 9.0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temerdashev, Z.; Abakumov, A.; Khalafyan, A.; Bolshov, M.; Lukyanov, A.; Vasilyev, A.; Gipich, E. The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety. Molecules 2024, 29, 2251. https://doi.org/10.3390/molecules29102251
Temerdashev Z, Abakumov A, Khalafyan A, Bolshov M, Lukyanov A, Vasilyev A, Gipich E. The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety. Molecules. 2024; 29(10):2251. https://doi.org/10.3390/molecules29102251
Chicago/Turabian StyleTemerdashev, Zaual, Aleksey Abakumov, Alexan Khalafyan, Mikhail Bolshov, Aleksey Lukyanov, Alexander Vasilyev, and Evgeniy Gipich. 2024. "The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety" Molecules 29, no. 10: 2251. https://doi.org/10.3390/molecules29102251
APA StyleTemerdashev, Z., Abakumov, A., Khalafyan, A., Bolshov, M., Lukyanov, A., Vasilyev, A., & Gipich, E. (2024). The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety. Molecules, 29(10), 2251. https://doi.org/10.3390/molecules29102251