Novel Combretastatin A-4 Analogs—Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Crystal Structure of Benzyl Ester 7
2.3. Biological Results
2.3.1. In Vitro Cytotoxicity
2.3.2. Cell Cycle Arrest
2.3.3. Tubulin Polymerization Acceleration
Compound | SW480 | SW620 | PC3 | HepG2 | MDA | A549 | HaCaT |
---|---|---|---|---|---|---|---|
3 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
4 * | 57.6 ± 9.4 | 61.8 ± 11.4 | 65.9 ± 16.1 | 63.7 ± 12.6 | 55.2 ± 17.3 | 53.0 ± 10.8 | 68.3 ± 19.6 |
5 | 73.6 ± 8.4 | 57.5 ± 3.9 | 43.2 ± 10.2 | 42.1 ± 10.2 | 45.2 ± 5.5 | 46.6 ± 12.1 | 45.0 ± 7.2 |
6 * | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
7 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
8 | 32.7 ± 6.7 | 24.2 ± 8.4 | 31.0 ± 5.5 | 25.54 ± 6.3 | 23.1 ± 7.7 | 19.6 ± 2.0 | 23.9 ± 3.9 |
9 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
10 * | 52.2 ± 17.9 | 46.0 ± 11.4 | 44.9 ± 12.1 | 50.5 ± 10.5 | 55.5 ± 20.3 | 49.3 ± 16.3 | 55.3 ± 17.0 |
11 * | 50.2 ± 11.2 | 50.8 ± 14.5 | 67.2 ± 18.6 | 50.5 ± 17.5 | 61.4 ± 21.8 | 65.1 ± 17.3 | 58.6 ± 22.2 |
12 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
13 | 59.8 ± 23.0 | 62.4 ± 3.1 | 55.8 ± 23.7 | 56.2 ± 22.2 | 59.8 ± 18.8 | 82.1 ± 13.9 | 68.5 ± 4.8 |
14 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
15 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
16 * | >100 | >100 | >100 | >100 | 99.8 ± 3.9 | 92.8 ± 7.7 | >100 |
17 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
18 | >100 | >100 | >100 | 89.6 ± 24.4 | 66.7 ± 6.4 | 62.2 ± 8.6 | >100 |
19 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
20 | 18.8 ± 0.8 | 20.9 ± 2.9 | 23.7 ± 10.3 | 25.8 ± 9.6 | 19.0 ± 7.1 | 19.4 ± 2.2 | 20.5 ± 9.7 |
21 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
22 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
CA4 | 0.00281 ± 0.00017 | 0.00221 ± 0.00088 | 0.00210 ± 0.00026 | 0.00158 ± 0.00019 | 0.00372 ± 0.00027 | 0.00343 ± 0.00096 | 0.00427 ± 0.00047 |
podophyllotoxin | 0.0444 ± 0.0022 | 0.0292 ± 0.0078 | 0.0129 ± 0.0015 | 0.0258 ± 0.0056 | 0.0293 ± 0.0028 | 0.0247 ± 0.0039 | 0.0316 ± 0.0040 |
colchicine | 0.166 ± 0.065 | 0.130 ± 0.089 | 0.118 ± 0.047 | 0.107 ± 0.025 | 0.110 ± 0.015 | 0.094 ± 0.009 | 0.104 ± 0.012 |
2.4. Computational Studies
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Procedures
4.1.2. Synthesis of Compound 3
4.1.3. General Procedure for the Synthesis of Compounds 4 and 5
4.1.4. General Procedure for the Synthesis of Compounds 6–9
4.1.5. General Procedure for the Synthesis of Compounds 10–22
4.2. X-ray Measurements
4.3. In Vitro Biological Studies
4.3.1. Cell Culture
4.3.2. Cytotoxicity Assay
4.3.3. Cell Cycle Analysis
4.3.4. Tubulin Polymerization
4.4. Computational Studies
4.4.1. Homology Modeling of Human Tubulin Isotypes
4.4.2. Human Sequence Selection
5. Conclusions
- (a)
- 3,4,5-trimethoxyphenyl-subsituted ring A.
- (b)
- 3-hydroxy-4-methoxyphenyl-substituted ring B.
- (c)
- Cis double bond separating the two phenyl rings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-Interactive Stilbene Derivatives as Anticancer Agents. Cell Mol. Biol. Lett. 2013, 18, 368–397. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.A.; Kumar, G.B.; Revankar, H.M.; Qin, H.L. Development of Combretastatins as Potent Tubulin Polymerization Inhibitors. Bioorg. Chem. 2017, 72, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Karatoprak, G.Ş.; Akkol, E.K.; Genç, Y.; Bardakci, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020, 25, 2560. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Singh, S.B.; Hamel, E.; Lin, C.M.; Alberts, D.S.; Garcia-Kendal, D. Isolation and Structure of the Strong Cell Growth and Tubulin Inhibitor Combretastatin A-4. Experientia 1989, 45, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Cushma, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.K.; Lin, C.M.; Hamel, E. Synthesis and Evaluation of Stilbene and Dihydrostilbene Derivatives as Potential Anticancer Agents That Inhibit Tubulin Polymerization; Academic Press: Cambridge, MA, USA, 1991; Volume 34. [Google Scholar]
- Avendaño, C.; Menéndez, J.C. Anticancer Drugs Targeting Tubulin and Microtubules. In Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, The Netherlands, 2008; pp. 229–249. [Google Scholar]
- Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent Advances in Trimethoxyphenyl (TMP) Based Tubulin Inhibitors Targeting the Colchicine Binding Site. Eur. J. Med. Chem. 2018, 151, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Lippert, J.W. Vascular Disrupting Agents. Bioorg. Med. Chem. 2007, 15, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Herdman, C.A.; Strecker, T.E.; Tanpure, R.P.; Chen, Z.; Winters, A.; Gerberich, J.; Liu, L.; Hamel, E.; Mason, R.P.; Chaplin, D.J.; et al. Synthesis and Biological Evaluation of Benzocyclooctene-Based and Indene-Based Anticancer Agents That Function as Inhibitors of Tubulin Polymerization. Medchemcomm 2016, 7, 2418–2427. [Google Scholar] [CrossRef]
- Beale, T.M.; Bond, P.J.; Brenton, J.D.; Charnock-Jones, D.S.; Ley, S.V.; Myers, R.M. Increased Endothelial Cell Selectivity of Triazole-Bridged Dihalogenated A-Ring Analogues of Combretastatin A-1. Bioorg. Med. Chem. 2012, 20, 1749–1759. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, C.F.; Zhong, R.Q.; Wei, W.; Huang, W.M.; He, S.J. Synthesis of Combretastatin A-4 and Erianin. J. Chem. Res. 2008, 2008, 354–356. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallogr. B 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Mckinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals. Chem. A Eur. J. 1998, 4, 2136–2141. [Google Scholar] [CrossRef]
- Argirova, M.; Guncheva, M.; Momekov, G.; Cherneva, E.; Mihaylova, R.; Rangelov, M.; Todorova, N.; Denev, P.; Anichina, K.; Mavrova, A.; et al. Modulation Effect on Tubulin Polymerization, Cytotoxicity and Antioxidant Activity of 1H-Benzimidazole-2-Yl Hydrazones. Molecules 2023, 28, 291. [Google Scholar] [CrossRef] [PubMed]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Leandro-García, L.J.; Leskelä, S.; Landa, I.; Montero-Conde, C.; López-Jiménez, E.; Letón, R.; Cascón, A.; Robledo, M.; Rodríguez-Antona, C. Tumoral and Tissue-Specific Expression of the Major Human β-Tubulin Isotypes. Cytoskeleton 2010, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Sheng, C.; Lv, Z.; Dong, G.; Wang, T.; Liu, J.; Zhang, M.; Li, L.; Zhang, T.; et al. Design and Synthesis of Cyclopropylamide Analogues of Combretastatin-A4 as Novel Microtubule-Stabilizing Agents. J. Med. Chem. 2013, 56, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Huzil, J.T.; Ludueña, R.F.; Tuszynski, J. Comparative Modelling of Human β Tubulin Isotypes and Implications for Drug Binding. Nanotechnology 2006, 17, 90–100. [Google Scholar] [CrossRef] [PubMed]
- CrysAlis CCD and CrysAlis RED Red 1.171.38.43 2015, Rigaku Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H. DIAMOND Version 3.0; Crystal Impact GbR: Bonn, Germany, 2006. [Google Scholar]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 3.0; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mcmahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Orellana, E.; Kasinski, A. Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio Protoc. 2016, 6, e1984. [Google Scholar] [CrossRef]
- Gaspari, R.; Prota, A.E.; Bargsten, K.; Cavalli, A.; Steinmetz, M.O. Structural Basis of Cis- and Trans-Combretastatin Binding to Tubulin. Chem 2017, 2, 102–113. [Google Scholar] [CrossRef]
- Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization. J. Mol. Biol. 2014, 426, 1848–1860. [Google Scholar] [CrossRef]
- Wei, W.; Ayad, N.G.; Wan, Y.; Zhang, G.J.; Kirschner, M.W.; Kaelin, W.G. Degradation of the SCF Component Skp2 in Cell-Cycle Phase G1 by the Anaphase-Promoting Complex. Nature 2004, 428, 194–198. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Kumbhar, B.V.; Bhandare, V.V.; Panda, D.; Kunwar, A. Delineating the Interaction of Combretastatin A-4 with Aβ Tubulin Isotypes Present in Drug Resistant Human Lung Carcinoma Using a Molecular Modeling Approach. J. Biomol. Struct. Dyn. 2020, 38, 426–438. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
Torsion Angles | |||
---|---|---|---|
C19—C20—O4—C24 | −4.6 (7) | C23—C22—O6—C26 | 2.9 (6) |
C22—C21—O5—C25 | −101.6 (5) | C17—C8—C9—O2 | 5.3 (5) |
C5—C8—C17—C18 | −1.0 (7) | C8—C17—C18—C19 | 8.5 (6) |
O2—C10—C11—C12 | 101.4 (5) | C6—C5—C8—C17 | 83.3 (5) |
rings: C18 to C23 = Plane P1; C1 to C6 = Plane P2; C11 to C16 = Plane P3 | |||
dihedral angles between the planes of the phenyl rings: | |||
P1/P2 = 77.3 (4) | P1/P3 = 69.3 (4) | P2/P3 = 14.8 (4) |
αβI | αβIIa | αβIIb | αβIII | αβIVa | αβIVb | αβV | αβVI | αβVIII | |
---|---|---|---|---|---|---|---|---|---|
4 | −8.69 | −8.35 | −8.4 | −8.67 | −8.63 | −8.52 | −8.21 | −8.81 | −8.9 |
5 | −9.32 | −8.96 | −8.95 | −9.16 | −9.21 | −9.1 | −8.8 | −9.5 | −9.46 |
8 | −7.83 | −7.66 | −7.57 | −7.85 | −7.79 | −7.72 | −7.12 | −7.98 | −7.9 |
10 | −8.56 | −8.51 | −8.53 | −8.34 | −8.78 | −8.63 | −8.34 | −8.44 | −8.58 |
11 | −9 | −8.82 | −8.84 | −8.86 | −9.16 | −9.14 | −8.82 | −8.89 | −8.92 |
13 | −8.67 | −8.48 | −8.16 | −8.99 | −8.85 | −8.49 | −8.47 | −8.92 | −8.98 |
16 | −9.56 | −8.91 | −9.23 | −8.95 | −9.47 | −9.32 | −9.12 | −9.49 | −8.98 |
18 | −8.52 | −9.63 | −9.36 | −9.36 | −9.57 | −9.73 | −8.92 | −9.28 | −9.2 |
20 | −7.94 | −7.59 | −7.57 | −7.76 | −7.98 | −8.13 | −8.06 | −7.82 | −7.59 |
SW480 | SW620 | PC3 | HepG2 | MDA | A549 | HaCaT | |
---|---|---|---|---|---|---|---|
4 | −8.10 | −8.16 | −8.09 | −8.14 | −8.04 | −8.08 | −8.08 |
5 | −8.43 | −8.49 | −8.43 | −8.48 | −8.38 | −8.41 | −8.41 |
8 | −7.68 | −7.75 | −7.67 | −7.75 | −7.62 | −7.65 | −7.69 |
10 | −8.48 | −8.52 | −8.48 | −8.51 | −8.44 | −8.47 | −8.44 |
11 | −8.56 | −8.60 | −8.55 | −8.58 | −8.52 | −8.55 | −8.52 |
13 | −8.47 | −8.53 | −8.47 | −8.51 | −8.42 | −8.46 | −8.42 |
16 | −8.64 | −8.67 | −8.63 | −8.62 | −8.61 | −8.63 | −8.58 |
18 | −8.56 | −8.60 | −8,56 | −8.54 | −8.53 | −8.55 | −8.50 |
20 | −8.46 | −8.50 | −8.46 | −8.47 | −8.43 | −8.45 | −8.40 |
R2 | SW480 | SW620 | PC3 | HepG2 | MDA | A549 | HaCaT |
---|---|---|---|---|---|---|---|
BEw | 0.59 | 0.62 | 0.63 | 0.62 | 0.64 | 0.63 | 0.51 |
MLogP | 3.1 × 10−5 | 1.4 × 10−5 | 1.8 × 10−3 | 3.1 × 10−4 | 4.7 × 10−3 | 5.2 × 10−5 | 2.5 × 10−4 |
TPSA | 0.25 | 0.25 | 0.24 | 0.25 | 0.30 | 0.30 | 0.28 |
HBD | 0.32 | 0.36 | 0.39 | 0.41 | 0.42 | 0.43 | 0.38 |
POL | 7.5 × 10−5 | 4.4 × 10−6 | 1.4 × 10−3 | 4 × 10−4 | 5 × 10−3 | 1.6 × 10−4 | 7.6 × 10−4 |
Formula | C26H25BrO6 |
Molecular weight | 513.37 |
Temperature (K) | 295 (1) |
Crystal system | monoclinic |
Space group | P21 |
a (Å) | 7.8506(3) |
b (Å) | 14.7568(5) |
c (Å) | 10.2790(4) |
β (°) | 95.966(3) |
V (Å3) | 1184.37(8) |
Z | 2 |
F(000) | 528 |
Dcal (g cm−1) | 1.440 |
θ range (°) | 2.609 ÷ 27.500 |
μ (mm−1) | 1.775 |
Crystal size (mm) | 0.287 × 0.242 × 0.203 |
Tmin/Tmax | 0.8123/1.000 |
Total/unique/obs refls | 17727/5295/4113 |
Rint | 0.030 |
R [F2 > 2σ(F2)] a | 0.0377 |
wR [F2 all refls] a | 0.0762 |
Flack parameter | 0.006(4) |
S | 1.002 |
Δρmax, Δρmin (eÅ−3) | +0.224, −0.278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejczyk, M.; Morabito, B.; Żyżyńska-Granica, B.; Struga, M.; Janczak, J.; Aminpour, M.; Tuszynski, J.A.; Huczyński, A. Novel Combretastatin A-4 Analogs—Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity. Molecules 2024, 29, 2200. https://doi.org/10.3390/molecules29102200
Jędrzejczyk M, Morabito B, Żyżyńska-Granica B, Struga M, Janczak J, Aminpour M, Tuszynski JA, Huczyński A. Novel Combretastatin A-4 Analogs—Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity. Molecules. 2024; 29(10):2200. https://doi.org/10.3390/molecules29102200
Chicago/Turabian StyleJędrzejczyk, Marta, Benedetta Morabito, Barbara Żyżyńska-Granica, Marta Struga, Jan Janczak, Maral Aminpour, Jack A. Tuszynski, and Adam Huczyński. 2024. "Novel Combretastatin A-4 Analogs—Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity" Molecules 29, no. 10: 2200. https://doi.org/10.3390/molecules29102200
APA StyleJędrzejczyk, M., Morabito, B., Żyżyńska-Granica, B., Struga, M., Janczak, J., Aminpour, M., Tuszynski, J. A., & Huczyński, A. (2024). Novel Combretastatin A-4 Analogs—Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity. Molecules, 29(10), 2200. https://doi.org/10.3390/molecules29102200