Innovative Detection of Testosterone Esters in Camel Hair: Unravelling the Mysteries of Dromedary Endocrinology
Abstract
:1. Introduction
1.1. Overview
1.2. Animal Racing
1.3. Hair Analysis
1.4. Testosterone, an Anabolic Steroid
1.5. Studies Conducted to Identify Steroids in Animal Hair
2. Results and Discussion
Camel Sample Results
3. Materials and Methods
3.1. Materials
3.1.1. Preparation of Standard Solutions
3.1.2. Collection of Hair Samples
3.1.3. Hair Sample Extraction Method
3.1.4. Liquid Chromatography and Mass Spectrometry
3.1.5. Data Analysis
3.1.6. Method Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
LOD | Limit of Detection |
LOQ | Limit of Quantification |
LLOQ | Lower Limit of Quantitation |
CV | Coefficient of Variation |
EIA | Enzyme Immunoassay |
°C | Degree Celsius |
QCs | Quality Controls |
QCH | Quality Control High |
QCM | Quality Control Medium |
QCL | Quality Control Low |
RIA | Radioimmunoassay |
SD | Standard Deviation |
References
- Shah, I.; Ashraf, S.S. An Undergraduate Forensic Biochemistry Laboratory Experiment to Detect Doping in Animal Hair Using LCMS. Int. J. Innov. Educ. Res. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Holt, R.I.; Erotokritou-Mulligan, I.; Sönksen, P.H. The History of Doping and Growth Hormone Abuse in Sport. Growth Horm. IGF Res. 2009, 19, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.I. Anabolic–Androgenic Steroid Dependence? Insights from Animals and Humans. Front. Neuroendocrinol. 2008, 29, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Sjöqvist, F.; Garle, M.; Rane, A. Use of Doping Agents, Particularly Anabolic Steroids, in Sports and Society. Lancet 2008, 371, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.; Haddow, J.D.; Ibrahim, H.A.; Sheikh, M.V.; Alhemeiri, F.S. A Novel and Innovative Hair Test to Determine Glucocorticoid Levels in Racing Camels for Use in Assessment of Doping, Health, and Disease. Drug Test. Anal. 2018, 10, 742–749. [Google Scholar] [CrossRef]
- Camel Doping. abdulrahmanalnuaimi2018; 2017. Available online: https://abdulrahmanalnuaimi2018.wordpress.com/2017/08/23/camel-doping (accessed on 3 December 2023).
- Khaled, A. As Dubai Festival Draws near Camel Doping No Longer a Problem in Racing. Available online: https://www.thenationalnews.com/sport/as-dubai-festival-draws-near-camel-doping-no-longer-a-problem-in-racing-1.289363 (accessed on 6 December 2023).
- Ashraf, S.S.; El-Gahany, W.; Alraeesi, A.; Al-Hajj, L.; Al-Maidalli, A.; Shah, I. Analysis of Illicit Glucocorticoid Levels in Camel Hair Using Competitive ELISA–Comparison with LC–MS/MS. Drug Test. Anal. 2020, 12, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.A.; Kronstrand, R.; Kintz, P. Society of Hair Testing Guidelines for Drug Testing in Hair. Forensic Sci. Int. 2012, 218, 20–24. [Google Scholar] [CrossRef]
- Bechshøft, T.; Sonne, C.; Dietz, R.; Born, E.; Novak, M.; Henchey, E.; Meyer, J. Cortisol Levels in Hair of East Greenland Polar Bears. Sci. Total Environ. 2011, 409, 831–834. [Google Scholar] [CrossRef]
- Kintz, P.; Cirimele, V.; Jeanneau, T.; Ludes, B. Identification of Testosterone and Testosterone Esters in Human Hair. J. Anal. Toxicol. 1999, 23, 352–356. [Google Scholar] [CrossRef]
- Deshmukh, N.; Hussain, I.; Barker, J.; Petroczi, A.; Naughton, D.P. Analysis of Anabolic Steroids in Human Hair Using LC–MS/MS. Steroids 2010, 75, 710–714. [Google Scholar] [CrossRef]
- van Amsterdam, J.; Opperhuizen, A.; Hartgens, F. Adverse Health Effects of Anabolic–Androgenic Steroids. Regul. Toxicol. Pharmacol. 2010, 57, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Zirkin, B.R.; Papadopoulos, V. Leydig Cells: Formation, Function, and Regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Peachey, H.; Berlin, J.A.; Hannoush, P.; Haddad, G.; Dlewati, A.; Santanna, J.; Loh, L.; Lenrow, D.A.; Holmes, J.H. Effects of Testosterone Replacement in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2000, 85, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Solheim, S.A.; Mørkeberg, J.; Juul, A.; Freiesleben, S.Y.; Upners, E.N.; Dehnes, Y.; Nordsborg, N.B. An Intramuscular Injection of Mixed Testosterone Esters Does Not Acutely Enhance Strength and Power in Recreationally Active Young Men. Front. Physiol. 2020, 11, 563620. [Google Scholar] [CrossRef]
- Lucas-Herald, A.K.; Alves-Lopes, R.; Montezano, A.C.; Ahmed, S.F.; Touyz, R.M. Genomic and Non-Genomic Effects of Androgens in the Cardiovascular System: Clinical Implications. Clin. Sci. 2017, 131, 1405–1418. [Google Scholar] [CrossRef]
- Obukohwo, O.M.; Benneth, B.-A.; Simon, O.I.; Oghenetega, O.B.; Victor, E.; Faith, F.Y.; Okwute, P.G.; Rume, R.A.; Godswill, O.O.; Kingsley, N.E. Testosterone: The Male Sex Hormone. 2023. Available online: https://www.intechopen.com/chapters/86891 (accessed on 1 December 2023).
- Shen, B.; Hao, J.; Lin, Y.; Li, X.; Yang, X.; Huang, T.; Wang, J.; Jia, Y.; Zhou, J.; Wang, J. Estrogen-Induced Extracellular Calcium Influx Promotes Endometrial Cancer Progress by Regulating Lysosomal Activity and Mitochondrial ROS. Front. Med. 2022, 9, 835700. [Google Scholar] [CrossRef]
- Zitzmann, M. Testosterone, Mood, Behaviour and Quality of Life. Andrology 2020, 8, 1598–1605. [Google Scholar] [CrossRef]
- Wrzosek, M.; Woźniak, J.; Włodarek, D. The Causes of Adverse Changes of Testosterone Levels in Men. Expert Rev. Endocrinol. Metab. 2020, 15, 355–362. [Google Scholar] [CrossRef]
- Braun, U.; Michel, N.; Baumgartner, M.R.; Hässig, M.; Binz, T.M. Cortisol Concentration of Regrown Hair and Hair from a Previously Unshorn Area in Dairy Cows. Res. Vet. Sci. 2017, 114, 412–415. [Google Scholar] [CrossRef]
- Yu, T.; Xu, H.; Wang, W.; Li, S.; Chen, Z.; Deng, H. Determination of Endogenous Corticosterone in Rodent’s Blood, Brain and Hair with LC–APCI–MS/MS. J. Chromatogr. B 2015, 1002, 267–276. [Google Scholar] [CrossRef]
- Burnett, T.A.; Madureira, A.M.; Silper, B.F.; Tahmasbi, A.; Nadalin, A.; Veira, D.M.; Cerri, R.L. Relationship of Concentrations of Cortisol in Hair with Health, Biomarkers in Blood, and Reproductive Status in Dairy Cows. J. Dairy Sci. 2015, 98, 4414–4426. [Google Scholar] [CrossRef] [PubMed]
- Stolker, A.; Groot, M.; Lasaroms, J.; Nijrolder, A.; Blokland, M.; Riedmaier, I.; Becker, C.; Meyer, H.; Nielen, M. Detectability of Testosterone Esters and Estradiol Benzoate in Bovine Hair and Plasma Following Pour-on Treatment. Anal. Bioanal. Chem. 2009, 395, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Lovari, S.; Pellizzi, B.; Boesi, R.; Fusani, L. Mating Dominance amongst Male Himalayan Tahr: Blonds Do Better. Behav. Process. 2009, 81, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.; Garcia, P.; Popot, M.; Steiner, V.; Lesieur, M. Detection of Testosterone Propionate Administration in Horse Hair Samples. J. Chromatogr. B 2007, 852, 684–688. [Google Scholar] [CrossRef]
- Bryan, H.M.; Adams, A.G.; Invik, R.M.; Wynne-Edwards, K.E.; Smits, J.E. Hair as a Meaningful Measure of Baseline Cortisol Levels over Time in Dogs. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 189–196. [Google Scholar]
- Food, F. Guidance for Industry: Bioanalytical Method Validation. 2001. Available online: http://www.fda.gov/cder/Guidance/4252fnl.pdf (accessed on 3 December 2023).
Year | Animal | Detection Method and Mobile Phase | Steroid Detected and Column Used | Extraction Method | LOD | LLOQ | Reference |
---|---|---|---|---|---|---|---|
2017 | Domestic cattle breeds | QuadrupoleLC–MS/MS. Mobile phase solvent A consisted of ammonium formate (200 mM) with 0.1% formic acid and eluent B consisted of ammonium formate (200 mM) in methanol. | Cortisol Column: 50 × 2.10 mm 2.6 μm C18 column | 20 mg hair snippets were extracted in 3 mL methanol for 16 h overnight in an ultrasonic bath at 55 °C | Regrown hair/Hair from unshorn area 0.2 pg/mg/ 0.1 pg/mg | 1 pg/mg/ 0.5 pg/mg | [22] |
2015 | House rat/mouse | LC–MS/ MS The mobile phase was a mixture of methanol and water (90:10 v/v) containing 2.0 mM ammonium acetate, which was filtered through a microporous membrane (0.22 μm) before use | Cortisol Column: 5 μm, 150 × 4.6 mm, Platisiltm ODS-C18 | 20 mg of hair pieces was incubated in 1 mL of methanol for 24 h followed by the solid phase extraction using (SPE) C18 column | House rat/House mouse 0.5/1.25 pg/mg | 1.25/2.5 pg/mg | [23] |
2015 | Domestic cattle: Holstein | Enzyme Immunoassay (EIA) | Cortisol | 20 mg was taken 1 mL methanol added and incubated at 100 rpm at 50 °C | 1 pg/mg | 2 pg/mg | [24] |
2009 | Bovine hair | LC–MS/MS Mobile Phase: solvent A, water–acetonitrile–methanol–formic acid (300:350:350:20, v/v/v/v); solvent B, acetonitrile–methanol–formic acid (500:500:20, v/v/v)) | Estradiol benzoate (EB), testosterone cypionate (TC) and testosterone decanoate (TD)Column: Waters acquity UPLC BEH C18 analytical column of 100 × 2.1 mm and 1.7 μm particle size | 200 mg hair was digested with the 2 mL reduction agent tris(2-carboxyethyl) phosphine hydrochloride (TCEP) for 1 h, followed by extraction using SPE C18 cartridges | 2 pg/mg for all | 5 pg/mg for all | [25] |
2009 | Himalayan Tahr | Radioimmunoassay (RIA) | Testosterone | 50 mg hair was collected and incubated with 3 mL of 1 M NaOH for 40 min, at 38 °C. A 300 μL aliquote was extracted with 5 mL of diethyl ether | 0.9 pg/mg | Not reported by authors | [26] |
2007 | Domestic horse (Equus ferus caballus) | GC–MS/MS The following temperature ramp was used: 150 °C (1 min) to 320 °C at 18 °C/min. The temperature of the source was 280 °C and the transfer line was set to 300 °C. | Testosterone Column: silica capillary column DB5MS, 30 m × 0.25 mm i.d. × 0.25 μm | Tail hair samples (100 mg) were dissolved in 1 mL of sodium hydroxide for 15 min at 95 °C. Followed by diethyl ether extraction and a SPE Isolute C18 cartridges eluted with methanol | 1 pg/mg | 2 pg/mg | [27] |
2018 | Dogs | LC-MS/MS Mobile phase: Solvents were 0.1% formic acid: 0.1% ammonium formate (1:1 v/v) (A) and Methanol: Acetonitrile (25:75) (%) (B) | Testosteron propionate, T. phenyl propionate, T. isocaproate, T. Decanoate Column: Poroshell 120 EC-C18 column (3 mm × 50 mm, 2.7 μm particle size) | 100 mg hair obtained now 4 mL of 0.1 M phosphate buffer at pH 9.5 was added to the sample. The sample was then ultrasonicated for 60 min, the extracted with 2 × 4 mL of hexane: ethyl acetate (7:3, v/v). This was followed by solid phase extraction (SPE) using Bond Elut NH2 cartridges | 0.05 pg/mg | 0.1 pg/mg | [28] |
Testosterone and Its Esters | Structure | Molar Mass (g/mol) | [M + H]+ | Retention Time (min) |
---|---|---|---|---|
Testosterone enanthate (4-Androsten-17β-ol-3-one Enanthate) | 400.59 | 401.61 | 0.52 | |
Testosterone benzoate (4-Androsten-17β-ol-3-one Benzoate) | 392.53 | 393.51 | 3.70 | |
Testosterone cypionate (4-Androsten-17β-ol-3-one Cypionate) | 412.60 | 413.61 | 3.34 | |
Testosterone decanoate (4-Androsten-17β-ol-3-one Decanoate) | 456.70 | 457.71 | 5.66 | |
Testosterone valerate | 372.50 | 373.56 | 3.83 | |
Testosterone caproate | 386.60 | 387.51 | 3.04 | |
Testosterone (4-Androsten-17β-ol-3-one) | 288.41 | 289.44 | 1.07 | |
Testosterone laurate | 470.73 | 471.74 | 6.59 | |
Testosterone undecanoate (4-Androsten-17β-ol-3-one Undecanoate) | 456.70 | 457.71 | 6.09 | |
Testosterone isocaproate (4-Androsten-17β-ol-3-one Isocaproate) | 386.58 | 387.51 | 4.08 | |
Testosterone hexahydrobenzo-ate (Testosterone 17-cyclohexaanecarboxylate) | 398.58 | 399.59 | 4.34 |
No. | Analytes | Mass (g/mol) | Precursor (m/z) | Product (m/z) | Collision Energy (eV) |
---|---|---|---|---|---|
1 | Testosterone | 288.4 | 289.41 | 97.1 109 79.2 77.1 | 21 21 61 77 |
2 | Testosterone enanthate | 400.6 | 401.61 | 392.8 384.4 89.1 | 5 9 17 |
3 | Testosterone benzoate | 392.5 | 393.51 | 77.2 105 97.1 109 | 85 21 25 41 |
4 | Testosterone isocaproate | 386.5 | 387.51 | 81.2 96.2 97.1 79.2 | 33 25 29 73 |
5 | Testosterone cypionate | 412.6 | 413.61 | 79.1 97.1 238 | 41 25 21 |
6 | Testosterone laurate | 470.73 | 471.74 | 97.1 109.1 57.3 81.2 | 29 29 45 61 |
7 | Testosterone hexahydrobenzoate | 398.58 | 399.59 | 83.2 231.7 | 29 93 |
8 | Testosterone valerate | 372.55 | 373.56 | 97.1 109 | 29 37 |
9 | Testosterone decanoate | 456.70 | 457.71 | 97.1 109 95 276.4 | 37 33 37 13 |
10 | Testosterone capurate | 288.43 | 289.44 | ||
11 | Testosterone undecanoate | 422.62 | 443.63 | 97.1 323.3 252.8 | 37 25 21 |
Camel-Hair Samples | Mean ± SD Conc. (pg/mg) | |||||
---|---|---|---|---|---|---|
N | 1 | 2 | 3 | 4 | 5 | |
Valerate | Hexahydrobenzoate | Decanoate | Laurate | Testosterone | ||
1 | Sample-01 | 14.9 ± 0.63 | 48.5 ± 5.95 | |||
2 | Sample-02 | 28.1 ± 6.72 | 50.8 ± 9.95 | |||
3 | Sample-03 (Racing camel) | 31.8 ± 1.99 | 48.2 ± 5.11 | |||
4 | Sample-04 (Racing camel) | 11.7 ± 0.50 | 14.5 ± 2.34 | 81.2 ± 2.93 | ||
5 | Sample-05 (Racing camel) | 5.1 ± 0.85 | 169 ± 19.24 | |||
6 | Sample-06 | 116 ± 20.2 | 4.8 ± 0.76 | 59.2 ± 4.89 | ||
7 | Sample-07 | 109 ± 11.84 | ||||
8 | Sample-08 | 103 ± 13.39 | ||||
9 | Sample-09 | 18.2 ± 1.28 | ||||
10 | Sample-10 | 22.8 ± 5.59 | ||||
11 | Sample-11 | 115 ± 9.36 | ||||
12 | Sample-12 | 127 ± 21.52 | ||||
13 | Sample-13 | 91.8 ± 6.53 | ||||
14 | Sample-14 | 97.6 ± 6.82 | ||||
15 | Sample-15 | 8.35 ± 1.49 | ||||
16 | Sample-16 | 151 ± 7.35 | 15.2 ± 3.84 | 11.1 ± 2.33 | ||
17 | Sample-17 | 44.1 ± 4.55 | ||||
18 | Sample-18 | 14.13 ± 1.82 | 15.1 ± 4.02 | |||
19 | Sample-19 | 10.5 ± 1.81 | 12.6 ± 3.24 | 32.1 ± 1.68 | 14.7 ± 3.66 | |
20 | Sample-20 | 25.2 ± 9.19 | ||||
21 | Sample-21 | 119.3 ± 4.31 | ||||
22 | Sample-22 | 10.7 ± 2.34 | ||||
23 | Sample-23 | 21.1 ± 3.12 | ||||
24 | Sample-24 | 55.1 ± 18.5 | 20.4 ± 1.59 |
N | Analytes | Conc. (pg/mg) | Intra-Day | Inter-Day | Recovery (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Precision (% CV) | % Accuracy | SD | Precision (% CV) | % Accuracy | SD | ||||
1 | Benzoate | QCH 500 | 4.4 | 91.4 | 20 | 5.7 | 96.3 | 27.6 | 85.6 |
QCM 125 | 10.3 | 98.2 | 12.7 | 7.9 | 96.5 | 9.6 | 82 | ||
QCL 31.25 | 7 | 108.1 | 2.4 | 5.8 | 106.3 | 1.9 | 76.7 | ||
QCL-L-3.9 | 5.5 | 102.9 | 0.2 | 7.9 | 100.5 | 0.3 | |||
2 | Valerate | QCH 500 | 2.2 | 93 | 10.3 | 8.2 | 101.2 | 41.4 | 89.4 |
QCM 125 | 11.1 | 87.6 | 12.2 | 8.1 | 91.6 | 9.3 | 96.5 | ||
QCL 31.25 | 8.5 | 109 | 2.9 | 10.6 | 102.6 | 3.4 | 76 | ||
QCL-L-3.9 | 3.4 | 86.5 | 0.1 | 12.8 | 97.7 | 0.5 | |||
3 | Isocaproate | QCH 500 | 4.8 | 91.9 | 22.1 | 4.2 | 94 | 19.9 | 81.6 |
QCM 125 | 3.8 | 89.2 | 4.2 | 4.1 | 91.7 | 4.7 | 86.9 | ||
QCL 31.25 | 7.7 | 109.3 | 2.6 | 11.4 | 117.8 | 4.2 | 73.5 | ||
QCL-L-3.9 | 11.4 | 104.3 | 0.5 | 9.8 | 103.4 | 0.4 | |||
4 | Hexahydrobenzoate | QCH 500 | 0.4 | 88.4 | 1.8 | 3.9 | 96.5 | 19 | 88.2 |
QCM 125 | 2.5 | 89.9 | 2.8 | 9.4 | 97.8 | 11.5 | 94.8 | ||
QCL 31.25 | 4.9 | 107.8 | 1.7 | 18.8 | 90.8 | 5.3 | 79.2 | ||
QCL-L-3.9 | 3.2 | 103.9 | 0.1 | 2.3 | 110.2 | 0.1 | |||
5 | Decanoate | QCH 500 | 2.6 | 89.6 | 11.4 | 1.2 | 110.8 | 6.6 | 88.5 |
QCM 125 | 9.8 | 98.4 | 12 | 4.2 | 103.8 | 5.5 | 82.7 | ||
QCL 31.25 | 12.1 | 100.9 | 3.8 | 12.8 | 118.8 | 4.7 | 77.2 | ||
QCL-L-3.9 | 15 | 94.4 | 0.6 | 5 | 106.2 | 0.2 | |||
6 | Undecanoate | QCH 500 | 3.8 | 98.1 | 18.8 | 2.9 | 85 | 12.3 | 88.6 |
QCM 125 | 3.8 | 103.7 | 4.9 | 7.1 | 103.5 | 9.2 | 81.9 | ||
QCL 31.25 | 4.2 | 104.8 | 1.4 | 6.9 | 102.7 | 2.2 | 78.4 | ||
QCL-L-3.9 | 3.7 | 97.7 | 0.1 | 4.2 | 106.9 | 0.2 | |||
7 | Laurate | QCH 500 | 4.3 | 89 | 19.3 | 2.6 | 105.2 | 13.4 | 90.3 |
QCM 125 | 9.1 | 96 | 10.9 | 10.3 | 89.8 | 12.7 | 81.7 | ||
QCL 31.25 | 7.4 | 105 | 2.4 | 9.1 | 95.8 | 2.7 | 76.7 | ||
QCL-L-3.9 | 2 | 18.1 | 0.1 | 3.3 | 106.9 | 0.1 | |||
8 | Testosterone | QCH 500 | 1.4 | 107.4 | 7.6 | 1.7 | 88.8 | 7.5 | 88.4 |
QCM 125 | 3.7 | 108.9 | 5 | 2.9 | 105.6 | 3.9 | 84.6 | ||
QCL 31.25 | 6 | 93.8 | 1.8 | 5.5 | 105.9 | 1.8 | 77.2 | ||
QCL-L-3.9 | 14 | 97.5 | 0.5 | 4.6 | 108.7 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, I.; Hakeem, M.K.; Alraeesi, A.; Barker, J. Innovative Detection of Testosterone Esters in Camel Hair: Unravelling the Mysteries of Dromedary Endocrinology. Molecules 2024, 29, 97. https://doi.org/10.3390/molecules29010097
Shah I, Hakeem MK, Alraeesi A, Barker J. Innovative Detection of Testosterone Esters in Camel Hair: Unravelling the Mysteries of Dromedary Endocrinology. Molecules. 2024; 29(1):97. https://doi.org/10.3390/molecules29010097
Chicago/Turabian StyleShah, Iltaf, Muhammad K. Hakeem, Aysha Alraeesi, and James Barker. 2024. "Innovative Detection of Testosterone Esters in Camel Hair: Unravelling the Mysteries of Dromedary Endocrinology" Molecules 29, no. 1: 97. https://doi.org/10.3390/molecules29010097
APA StyleShah, I., Hakeem, M. K., Alraeesi, A., & Barker, J. (2024). Innovative Detection of Testosterone Esters in Camel Hair: Unravelling the Mysteries of Dromedary Endocrinology. Molecules, 29(1), 97. https://doi.org/10.3390/molecules29010097